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We consider the Dirichlet boundary value problem for Poisson’s equation in an
L-shaped region or a rectangle with a cross-point. In both cases, we approxi-
mate the Dirichlet problem using Legendre spectral collocation, that is, polyno-
mial collocation at the Legendre–Gauss nodes. The L-shaped region is
partitioned into three nonoverlapping rectangular subregions with two inter-
faces and the rectangle with the cross-point is partitioned into four rectangular
subregions with four interfaces. In each rectangular subregion, the approxi-
mate solution is a polynomial tensor product that satisfies Poisson’s equation
at the collocation points. The approximate solution is continuous on the entire
domain and its normal derivatives are continuous at the collocation points on
the interfaces, but continuity of the normal derivatives across the interfaces
is not guaranteed. At the cross point, we require continuity of the normal
derivative in the vertical direction. The solution of the collocation problem is
first reduced to finding the approximate solution on the interfaces. The discrete
Steklov–Poincaré operator corresponding to the interfaces is self-adjoint and
positive definite with respect to the discrete inner product associated with the
collocation points on the interfaces. The approximate solution on the interfaces
is computed using the preconditioned conjugate gradient method. A precondi-
tioner is obtained from the discrete Steklov–Poincaré operators corresponding
to pairs of the adjacent rectangular subregions. Once the solution of the dis-
crete Steklov–Poincaré equation is obtained, the collocation solution in each
rectangular subregion is computed using a matrix decomposition method. The
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total cost of the algorithm is O(N 3), where the number of unknowns is pro-
portional to N 2.

KEY WORDS: Dirichlet problem; Poisson’s equation; nonoverlapping domain
decomposition; Legendre spectral collocation; preconditioned conjugate gradi-
ent method.
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1. INTRODUCTION

Nonoverlapping domain decomposition methods for solving boundary
value problems with finite difference, finite element, and spectral element
disretizations are surveyed in [5,15,17,20]. According to [1], there are two
nonoverlapping domain decomposition approaches for spectral discretiza-
tions: one based on the variational formulation of the continuous prob-
lem and the other one based on the strong formulation of the continuous
problem. The spectral element method [11] and the spectral mortar element
method [1], which fall into the first category, require constructions of H1

and mortar subspaces, respectively, for the whole domain of the problem.
On the other hand, the spectral collocation method [13], which belongs to
the second category, relies on the construction of independent subspaces
on each constituent subdomain. This paper is concerned with a nonov-
erlapping domain decomposition spectral collocation method. In contrast
to the spectral element and spectral mortar element methods (see [2] and
references therein), the literature on nonoverlapping domain decomposi-
tion spectral collocation methods is limited. For Helmholtz’s equation on
a rectangle partitioned into two subrectangles, a nonoverlapping domain
decomposition method is analyzed in [8] for computing the spectral collo-
cation solution with the collocation points being the nodes of either the
Legendre–Gauss–Lobatto or the Chebyshev–Gauss–Lobatto quadrature. In
[14], following the approach of [7], a modification of the method of [8]
and its analysis are given for a rectangle partitioned into several subrec-
tangles. In comparison to [8], where the jump in the normal derivative is
zero at the interface collocation points, the approach of [14] requires that
such jumps be equal to “a suitable linear combination of the residual of
the equation.” It is claimed in [14] that this modified method can also be
formulated for a rectangular polygon, that is, a region which is a union of
rectangles with sides parallel to the x- and y-coordinate axes. The iterative
Dirichlet–Neumann domain decomposition methods of [8,14] require the
dynamical selection of relaxation parameters. In [9], spectral collocation at
the Legendre–Gauss–Lobatto nodes is combined with the so-called projec-
tion decomposition method to solve Helmholtz’s equation in a rectangular
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polygon. In this method, the continuous Steklov–Poincaré equation corre-
sponding to the interfaces is first solved using the Galerkin method with
piecewise-polynomials. The use of special basis functions for the Galerkin
problem leads to a symmetric, positive definite, and well-conditioned linear
system which is solved by the conjugate gradient method. Using the decom-
position of [9] and finite element preconditioning techniques, several pre-
conditioners are discussed in [12] for the preconditioned conjugate gradient
(PCG) solution of the Schur complement system arising from the spectral
element method [11] applied to Helmholtz’s equation in a rectangular poly-
gon partitioned into many rectangular subregions. It should be noted that
the schemes in [11,9,12], derived from the variational formulation of the
continuous problem, lead to the standard collocation equations at the inte-
rior Legendre–Gauss–Lobatto nodes in each rectangular subregion. On the
other hand, the development of and the solution procedure for our nonvari-
ational spectral collocation scheme are based on a general idea described in
Sec. 1.1 of [15] for the continuous problem. The same idea was used suc-
cessfully in [3] for orthogonal spline collocation and an L-shaped region.

Although our approach is applicable to Helmholtz’s equation with a var-
iable coefficient and a rectangular polygon partitioned into many rectangular
subregions, for the sake of simplicity, we consider Poisson’s equation in an
L-shaped region or a rectangle with a single cross point. We use a nonoverlap-
ping domain decomposition technique to first define and then to compute the
spectral collocation solution with the collocation points being the nodes of the
Legendre–Gauss, rather than, the Legendre–Gauss–Lobatto quadrature. As
in [8], we require that the jump in the normal derivative be zero at the interface
collocation points. At a cross-point, we require the continuity of the normal
derivative in the vertical direction. (Our treatment of a cross-point seems to
contradict the statement at the bottom of page 86 in [11], where it is specu-
lated that in the patching method approach, the sense in which the normal
derivative is to be interpreted at internal corners is much less obvious than in
the spectral element method.) In contrast to the approach based on the use
of the Legendre–Gauss–Lobatto nodes, our approach leads, in a natural way,
to a self-adjoint and positive definite interface problem which is solved by the
PCG method. It should be noted that our previous numerical tests indicate
(see, e.g., Example 1 in [4]) that, in the continuous maximum norm, the Legen-
dre–Gauss nodes are less accurate than the Legendre–Gauss–Lobatto nodes
by only a factor of 2. Hence, while not being significantly less accurate than
the Legendre–Gauss–Lobatto nodes, the Legendre–Gauss nodes allow for the
more efficient solution of the resulting discrete problem.

In this paper, the rectangular subregions �i and the interfaces �i are
defined by (see Fig. 2)
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Fig. 1. Domain decomposition of L-shaped domain.

�1 = (a1,b1)× (a2,b2), �2 = (a1,b1)× (b2, c2), �3 = (b1, c1)× (a2,b2),

�4 = (b1, c1)× (b2, c2),

�1 = (a1,b1)×{b2}, �2 ={b1}× (a2,b2), �3 ={b1}× (b2, c2),

�4 = (b1, c1)×{b2}.
We consider the model Dirichlet boundary value problem for Poisson’s

equation

�u = f in �, u = g on ∂�, (1.1)

where

�=
3⋃

i=1

�i ∪
2⋃

i=1

�i (1.2)

is the L-shaped region (see Fig. 1) or

�=
4⋃

i=1

�i ∪
4⋃

i=1

�i ∪{(b1,b2)} (1.3)

is the rectangle with the cross-point (b1,b2) (see Fig. 2). We approximate
(1.1) using domain decomposition with a spectral collocation discretiza-
tion. In each rectangular subregion �i , the collocation solution is a ten-
sor product polynomial that satisfies Poisson’s equation at the colloca-
tion points. The collocation solution is continuous in � and its normal
derivatives are continuous at the collocation points on the interfaces �i .
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However, the continuity of the normal derivatives across the interfaces
is not guaranteed. At a cross-point, we require continuity of the normal
derivative in the vertical direction. We prove existence and uniqueness of
the collocation solution. The solution of the collocation problem is first
reduced to finding the collocation solution on the interfaces. The discrete
Steklov–Poincaré operator corresponding to the interfaces is self-adjoint
and positive definite with respect to the discrete inner product associated
with the collocation points on the interfaces. The right-hand side in the
discrete Steklov–Poincaré operator equation is obtained by solving a col-
location problem with Dirichlet boundary conditions in each rectangular
subregion. With the use of the matrix decomposition method of [4] this
is accomplished at a cost of O(N 3), where the number of unknowns in
the collocation solution is O(N 2). The collocation solution on the inter-
faces is computed using the PCG method with a preconditioner obtained
from the discrete Steklov–Poincaré operators corresponding to pairs of the
adjacent rectangular subregions. The cost of each PCG iteration is O(N 2).
(In comparison, the cost of each PCG iteration in [9,12] appears to be
proportional to N 4 and N 3, respectively.) Once the solution of the dis-
crete Steklov–Poincaré equation is available, the collocation solution in
each rectangular subregion is computed at a cost O(N 3) using the matrix
decomposition method of [4]. The total cost of the algorithm is O(N 3)+
O(m N 2), where m is the number of PCG iterations required to solve the
interface problem. For the L-shaped region, our preconditioner is spec-
trally equivalent to the interface operator with spectral constants indepen-
dent of N . Hence in this case, the number m should be proportional to
ln(1/ε), where ε is the factor by which the initial error is to be reduced.
With ε= O(N−k), which corresponds to the convergence rate of our spec-
tral collocation method, m = O(k ln N ). Clearly, even with m = O(N ), the
total cost of our algorithm is O(N 3).

An outline of this paper is as follows. In Sec. 2, we introduce
certain spectral collocation concepts, state and prove some necessary
results. The spectral collocation problem for the L-shaped region is
defined and analyzed in Sec. 3. In Sec. 4, we formulate an algorithm
for solving the collocation problem in the L-shaped region. The solu-
tion of the interface problem is discussed in Sec. 5. The cost of solv-
ing the collocation problem in the L-shaped region is given in Sec. 6.
In Sec. 7, we consider spectral collocation for the rectangle with a
cross point. Extensions of our method are discussed in Sec. 8. Numer-
ical results are presented in Sec. 9 and conclusions are given in
Sec. 10.
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Fig. 2. Domain decomposition of rectangle with cross-point.

2. PRELIMINARIES

Let PN (a,b) denote the set of polynomials of degree ≤ N on [a,b],
and let

P0
N (a,b)={p ∈ PN (a,b) : p(a)= p(b)=0}.

Let Ga,b ={ξa,b
i }N−1

i=1 and {wa,b
i }N−1

i=1 be, respectively, the nodes and weights
of the N −1-point Legendre–Gauss quadrature on (a,b). Note that

ξi = 2ξa,b
i −a −b

b −a
, wi = 2

b −a
w

a,b
i , i =1, . . . , N −1,

where {ξi }N−1
i=1 and {wi }N−1

i=1 are, respectively, the nodes and weights of the
N −1-point Legendre–Gauss quadrature on (−1,1). Let

D =diag(w1, . . . ,wN−1). (2.1)

Let {Lk(t)}∞k=0, t ∈[−1,1], be the set of Legendre polynomials, that is,

L0(t)=1, L1(t)= t, Lk(t)= 2k −1
k

t Lk−1(t)− k −1
k

Lk−2(t), k =2, . . . .

Let {φk(t)}N
k=0, t ∈ [−1,1], be the basis for PN (−1,1) defined by (cf.

(3.12a), (3.12c) in [19], (2.7) in [16], and (4.3), (4.5) in [4])

φ0(t)= 1
2

L0(t)− 1
2

L1(t), φ1(t)= 1
2

L0(t)+ 1
2

L1(t), (2.2)
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φk(t)= ck[Lk−2(t)− Lk(t)], k =2, . . . , N , (2.3)

where

ck =[4k −2]−1/2, k =2, . . . , N −1, cN =[(4N −2)(2−1/N )]−1/2.

Note that {φk(t)}N
k=2 is a basis for P0

N (−1,1). Let A and B be two dense
(N −1)× (N −1) matrices defined by (see (4.13) in [4])

A = (−φ′′
k (ξi ))

N−1,N
i=1,k=2, B = (φk(ξi ))

N−1,N
i=1,k=2, (2.4)

where i and k are the row and column indices, respectively. With D of
(2.1), we introduce

A′ = BT D A, B ′ = BT DB. (2.5)

It follows from (4.30) in [4] that

A′ = I, (2.6)

where I denotes the identity matrix. It also follows from (4.9), (4.17), and
(4.21) in [4] that the symmetric, positive definite, pentadiagonal matrix
B ′ splits into two tridiagonal matrices whose entries are given by (4.16),
(4.18), (4.19), (4.20), and (4.22) in [4]. Since B ′ is symmetric and positive
definite, there exist (see Theorem 8.1.1 in [10]) a real (N − 1)× (N − 1)
matrix Z = (zk,n)

N
k,n=2 and a real matrix

	=diag(λ2, . . . , λN ), λn>0, n =2, . . . , N (2.7)

such that

	= Z T B ′Z , Z T Z = I. (2.8)

For any V,W defined on Ga,b, we introduce

〈V,W 〉a,b =
N−1∑

i=1

w
a,b
i (V W )(ξ

a,b
i ). (2.9)

Lemma 3.1 in [6] implies that

−〈p′′,q〉a,b =
∫ b

a
(p′q ′)(s)ds − p′q|ba +Ca,b

N p(N )q(N ), p,q ∈ PN (a,b),

(2.10)
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where Ca,b
N denotes a generic positive constant that depends on N and

a, b. The property (2.10) plays a key role in proving that the discrete
Steklov–Poincaré operator and its preconditioner are self-adjoint and pos-
itive definite with respect to the discrete inner product associated with the
collocation points on the interfaces.

The lemmata and the remark in the remaining part of this section
are important for the efficient solution with the preconditioner and the
efficient multiplication by the discrete Steklov–Poincaré operator, both of
which rely on the use of separation of variables.

Lemma 2.1. There exist linearly independent functions ψn ∈ P0
N (a,b),

n = 2, . . . , N , and the corresponding positive numbers γn , n = 2, . . . , N ,
such that

−γnψ
′′
n (ξ)=ψn(ξ), ξ ∈Ga,b,

−〈ψ ′′
n ,ψm〉a,b = 2

b−a δn,m, n,m =2, . . . , N ,

where δn,m is the Kronecker delta.

Proof. Let {φa,b
k }N

k=2 be the basis for P0
N (a,b) defined by

φ
a,b
k (s)=φk

(
2s −a −b

b −a

)
, k =2, . . . , N , (2.11)

where {φk}N
k=2 are given by (2.3). Then ψn ∈ P0

N (a,b) can be written as

ψn =
N∑

k=2

ψk,nφ
a,b
k . (2.12)

Thus, the two equations in Lemma 2.1 are equivalent to

γn
4

(b −a)2
A 	ψn = B 	ψn,

2
b −a

(D A 	ψn, B 	ψm)RN−1 = 2
b −a

δn,m,

where 	ψn =[ψ2,n, . . . ,ψN ,n]T and D, A, B are defined in (2.1), (2.4). It fol-
lows from (2.5) and (2.6) that the last two equations are equivalent to

γn
4

(b −a)2
	ψn = B ′ 	ψn, ( 	ψn, 	ψm)RN−1 = δn,m .

Hence (2.7) and (2.8) show that the required equations are satisfied with

γn =λn
(b −a)2

4
, n =2, . . . , N , ψk,n = zk,n, k,n =2, . . . , N . (2.13)

The linear independence of the {ψn}N
n=2 follows from that of the {φa,b

k }N
k=2

and the invertibility of Z . �
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Lemma 2.2. For any γn > 0, n = 2, . . . , N , there exists a unique vn ∈
PN (a,b) such that

γnv
′′
n (ξ)=vn(ξ), ξ ∈Ga,b, vn(a)=0, vn(b)=1.

Proof. Let {φa,b
k }N

k=0 be the basis for PN (a,b) defined by (2.11) and
by

φ
a,b
k (s)=φk

(
2s −a −b

b −a

)
, k =0,1, (2.14)

where φ0, φ1 are given in (2.2). Since φa,b
0 (a)= 1, φa,b

k (a)= 0, k 
= 0, and
φ

a,b
1 (b) = 1, φa,b

k (b) = 0, k 
= 1, the boundary conditions in Lemma 2.2
imply that

vn =
N∑

k=2

vk,nφ
a,b
k +φa,b

1 . (2.15)

Since φa,b
1 is a linear function, the problem reduces to finding vk,n , k =

2, . . . , N , such that

N∑

k=2

{
γn[−φa,b

k ]′′(ξ)+φa,b
k (ξ)

}
vk,n =−φa,b

1 (ξ), ξ ∈Ga,b.

Introducing 	vn = [v2,n, . . . , vN ,n]T , 	c1 = [φa,b
1 (ξ

a,b
1 ), . . . , φ

a,b
1 (ξ

a,b
N )]T , and

using (2.4), we obtain
(
γn

4
(b −a)2

A + B

)
	vn =−	c1.

It follows from (2.5) and (2.6) that the last linear system becomes
(
γn

4
(b −a)2

I + B ′
)

	vn =−BT D	c1. (2.16)

The linear system (2.16) has a unique solution 	vn since γn > 0 and since
B ′ is symmetric and positive definite. �

Lemma 2.3. For any γn >0, n =2, . . . , N , there exists a unique wn ∈
PN (a,b) such that

γnw
′′
n(ξ)=wn(ξ), ξ ∈Ga,b, wn(a)=1, wn(b)=0.
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Proof. Let vn be as in Lemma 2.2, and let wn(t) = vn(a + b − t),
t ∈ [a,b]. Then wn ∈ PN (a,b) and wn(a)= 1, wn(b)= 0. Symmetry of Ga,b

about (a +b)/2 implies that a +b − ξ ∈Ga,b if ξ ∈Ga,b. Hence

γnw
′′
n(ξ)=γnv

′′
n (a +b − ξ)=vn(a +b − ξ)=wn(ξ), ξ ∈Ga,b.

�

Lemma 2.4. Let the linearly independent functions ψn ∈ P0
N (a,b),

n = 2, . . . , N , be as in Lemma 2.1. Assume v ∈ P0
N (a,b) and hence

v=
N∑

n=2

αnψn . If 	α=[α2, . . . , αN ]T , then

[v(ξa,b
1 ), . . . , v(ξ

a,b
N−1)]T = B Z 	α, 	α= Z T [B ′]−1 BT D[v(ξa,b

1 ), . . . , v(ξ
a,b
N−1)]T ,

where the matrices D, B, B ′, and Z are those in (2.1), (2.4), (2.5), and
(2.8).

Proof. Using (2.12) and (2.13) we have

v(ξ)=
N∑

n=2

αn

N∑

k=2

zk,nφ
a,b
k (ξ)=

N∑

k=2

φ
a,b
k (ξ)

N∑

n=2

zk,nαn, ξ ∈Ga,b,

which implies the first required equation. The second equation is obtained
from the first one using (B Z)−1 = Z T B−1 and B ′ = BT DB. �

Noting that D is a diagonal matrix, B ′ splits into two tridiagonal
matrices, and B, Z are dense matrices, we have the following remark.

Remark 2.1. The cost of multiplying a vector by B Z is O(N 2) and
the cost of multiplying a vector by Z T [B ′]−1 BT D is O(N 2).

3. SPECTRAL COLLOCATION PROBLEM FOR L-SHAPED
REGION

With � defined in (1.2), we introduce

Q1 = PN (a1,b1)⊗ PN (a2,b2), Q2 = PN (a1,b1)⊗ PN (b2, c2),

Q3 = PN (b1, c1)⊗ PN (a2,b2),

Xi ={v∈ Qi :v=0 on ∂�∩ ∂�i }, i =1,2,3.
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Let

G1 =Ga1,b1 ×Ga2,b2 , G2 =Ga1,b1 ×Gb2,c2 , G3 =Gb1,c1 ×Ga2,b2

be the sets of the collocation points in �1, �2, �3, respectively. For i =
1,2,3, let G̃i be the set of collocation points on ∂�∩ ∂�i ; for example,

G̃1 ={(a1, ξ) : ξ ∈Ga2,b2 ∪{a2,b2}}∪ {(ξ,a2) : ξ ∈Ga1,b1 ∪{b1}}∪ {(b1,b2)}.
For i =1,2, let G′

i be the set of collocation points on �i ; for example, G′
1 =

{(ξ,b2) : ξ ∈Ga1,b1}.
The Legendre spectral collocation problem for (1.1) and (1.2) involves

finding Ui ∈ Qi , i =1,2,3, such that

�Ui (ξ)= f (ξ), ξ ∈Gi , i =1,2,3, (3.1)

Ui (ξ)= g(ξ), ξ ∈ G̃i , i =1,2,3 (3.2)

and such that

∂ jU1

∂y j
(ξ)= ∂ jU2

∂y j
(ξ), ξ ∈G′

1,
∂ jU1

∂x j
(ξ)= ∂ jU3

∂x j
(ξ), ξ ∈G′

2, j =0,1.

(3.3)

While (3.2) and (3.3) with j =0 imply

U1|�1
=U2|�1

, U1|�2
=U3|�2

(3.4)

in general

∂U1

∂y
(b1,b2) 
= ∂U2

∂y
(b1,b2),

∂U1

∂x
(b1,b2) 
= ∂U3

∂x
(b1,b2).

In the remainder of this section, we prove existence and uniqueness
of the spectral collocation solution. For vi ∈ Xi , i =1,2,3, we introduce

‖(v1, v2, v3)‖2 =
3∑

i=1

‖vi‖2
i , (3.5)

where

‖v1‖2
1 =

N−1∑

j=1

w
a2,b2
j

∥∥∥∥
∂v1

∂x
(·, ξa2,b2

j )

∥∥∥∥
2

L2(a1,b1)

+
N−1∑

i=1

w
a1,b1
i

∥∥∥∥
∂v1

∂y
(ξ

a1,b1
i , ·)

∥∥∥∥
2

L2(a2,b2)

,
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‖v2‖2
2 =

N−1∑

j=1

w
b2,c2
j

∥∥∥∥
∂v2

∂x
(·, ξb2,c2

j )

∥∥∥∥
2

L2(a1,b1)

+
N−1∑

i=1

w
a1,b1
i

∥∥∥∥
∂v2

∂y
(ξ

a1,b1
i , ·)

∥∥∥∥
2

L2(b2,c2)

,

‖v3‖2
3 =

N−1∑

j=1

w
a2,b2
j

∥∥∥∥
∂v3

∂x
(·, ξa2,b2

j )

∥∥∥∥
2

L2(b1,c1)

+
N−1∑

i=1

w
b1,c1
i

∥∥∥∥
∂v3

∂y
(ξ

b1,c1
i , ·)

∥∥∥∥
2

L2(a2,b2)

.

It is easy to verify that ‖ · ‖ defined by (3.5) is a norm on X1 × X2 × X3.

Lemma 3.1. For any Ui ∈ Xi , i =1,2,3, satisfying (3.3), we have

‖(U1,U2,U3)‖2 ≤
3∑

i=1

〈−�Ui ,Ui 〉i ,

where

〈V,W 〉1 =
N−1∑

i=1

w
a1,b1
i 〈V (ξa1,b1

i , ·),W (ξ
a1,b1
i , ·)〉a2,b2

=
N−1∑

j=1

w
a2,b2
j 〈V (·, ξa2,b2

j ),W (·, ξa2,b2
j )〉a1,b1 (3.6)

〈·, ·〉i , i =2,3, are defined in a similar way, and where 〈·, ·〉a,b is given in (2.9).

Proof. Using the definitions of 〈·, ·〉i , i =1,2,3, we have

3∑

i=1

〈−�Ui ,Ui 〉i = Ix + Iy, (3.7)

where

Ix = −
N−1∑

j=1

w
a2,b2
j

⎧
⎨

⎩

〈
∂2U1

∂x2
(·, ξa2,b2

j ),U1(·, ξa2,b2
j )

〉

a1,b1

−
〈
∂2U3

∂x2
(·, ξa2,b2

j ),U3(·, ξa2,b2
j )

〉

b1,c1

⎫
⎬

⎭

−
N−1∑

j=1

w
b2,c2
j

〈
∂2U2

∂x2
(·, ξb2,c2

j ),U2(·, ξb2,c2
j )

〉

a1,b1

,



Legendre Spectral Collocation Problems 385

Iy = −
N−1∑

i=1

w
a1,b1
i

⎧
⎨

⎩

〈
∂2U1

∂y2
(ξ

a1,b1
i , ·),U1(ξ

a1,b1
i , ·)

〉

a2,b2

−
〈
∂2U2

∂y2
(ξ

a1,b1
i , ·),U2(ξ

a1,b1
i , ·)

〉

b2,c2

⎫
⎬

⎭

−
N−1∑

i=1

w
b1,c1
i

〈
∂2U3

∂y2
(ξ

b1,c1
i , ·),U3(ξ

b1,c1
i , ·)

〉

a2,b2

.

It follows from (2.10) and (3.3) that

Ix =
N−1∑

j=1

w
a2,b2
j

{∥∥∥∥
∂U1

∂x
(·, ξa2,b2

j )

∥∥∥∥
2

L2(a1,b1)

+Ca1,b1
N

[
U (N ,0)

1 (ξ
a2,b2
j )

]2
}

+
N−1∑

j=1

w
a2,b2
j

{∥∥∥∥
∂U3

∂x
(·, ξa2,b2

j )

∥∥∥∥
2

L2(b1,c1)

+Cb1,c1
N

[
U (N ,0)

3 (ξ
a2,b2
j )

]2
}

+
N−1∑

j=1

w
b2,c2
j

{∥∥∥∥
∂U2

∂x
‖(·, ξb2,c2

j )

∥∥∥∥
2

L2(a1,b1)

+Ca1,b1
N

[
U (N ,0)

2 (ξ
b2,c2
j )

]2
}
,

(3.8)

where

U (N ,0)
1 (ξ)= ∂N U1

∂x N
(·, ξ), U (N ,0)

3 (ξ)= ∂N U3

∂x N
(·, ξ), U (N ,0)

2 (ξ)= ∂N U2

∂x N
(·, ξ).

The required inequality is a consequence of (3.8) and a similar formula for
Iy . �

Theorem 3.1. The Legendre spectral collocation problem (3.1)–(3.3)
has a unique solution.

Proof. Consider the collocation problem (3.1)–(3.3) with f = 0 and
g =0. Then Ui ∈ Xi , i =1,2,3, and since ‖ · ‖ is a norm on X1 × X2 × X3,
Lemma 3.1 gives Ui = 0, i = 1,2,3. This proves the existence and unique-
ness of the collocation solution for any f and g since the number of
degrees of freedom in the collocation problem is equal to the number of
constraints. �
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4. ALGORITHM FOR SOLVING COLLOCATION PROBLEM IN
L-SHAPED REGION

Assume that Ui ∈ Qi , i = 1,2,3, satisfy (3.1)–(3.3). As in the case
of the continuous problem, the idea behind our algorithm for obtaining
the Ui is based on representing each Ui as the sum of two approximate
solutions, one satisfying Poisson’s equation on Gi and the other satisfying
Laplace’s equation on Gi . Let U�i ∈ P0

N (ai ,bi ), i = 1,2, be defined by (cf.
(3.4))

U�1(ξ)=U1(ξ,b2)=U2(ξ,b2), ξ ∈Ga1,b1 ,
(4.1)

U�2(ξ)=U1(b1, ξ)=U3(b1, ξ), ξ ∈Ga2,b2 .

For i =1,2,3, let Ûi ∈ Qi be such that (cf. (3.1)–(3.3))

�Ûi (ξ)= f (ξ), ξ ∈Gi , i =1,2,3, (4.2)

Ûi (ξ)= g(ξ), ξ ∈ G̃i , i =1,2,3, (4.3)

Û1(ξ)= Û2(ξ)=0, ξ ∈G′
1, Û1(ξ)= Û3(ξ)=0, ξ ∈G′

3. (4.4)

Let

Ũi =Ui − Ûi , i =1,2,3. (4.5)

Then it follows from (4.5), (3.1)–(3.2), and (4.1)–(4.4) that Ũi ∈ Xi , i =
1,2,3, and that

�Ũ1(ξ)=0, ξ ∈G1, Ũ1|�1
=U�1 , Ũ1|�2

=U�2 , (4.6)

�Ũ2(ξ)=0, ξ ∈G2, Ũ2|�1
=U�1 , (4.7)

�Ũ3(ξ)=0, ξ ∈G3, Ũ3|�2
=U�2 . (4.8)

Moreover, (3.3) with j =1 and (4.5) give

∂Ũ1

∂y
(ξ)− ∂Ũ2

∂y
(ξ)= ∂Û2

∂y
(ξ)− ∂Û1

∂y
(ξ), ξ ∈G′

1,

(4.9)
∂Ũ1

∂x
(ξ)− ∂Ũ3

∂x
(ξ)= ∂Û3

∂x
(ξ)− ∂Û1

∂x
(ξ), ξ ∈G′

2.

We obtain the following algorithm for solving the problem (3.1)–(3.3).
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Algorithm.

Step 1. With Ûi ∈ Qi , i =1,2,3, defined by (4.2)–(4.4), compute the
right sides of (4.9).
Step 2. Compute U�i ∈ P0

N (ai ,bi ), i = 1,2, such that Ũi ∈ Xi , i =
1,2,3, satisfy (4.6)–(4.9).
Step 3. Compute Ui ∈ Qi , i =1,2,3, satisfying (3.1)–(3.2), (4.1).

5. INTERFACE PROBLEM FOR L-SHAPED REGION

In this section, we discuss in more detail step 2 of the Algorithm in
Sec. 4.

5.1. Discrete Steklov–Poincaré Operator

Let K : P0
N (a1,b1)× P0

N (a2,b2)→ P0
N (a1,b1)× P0

N (a2,b2) be defined for
V�i ∈ P0

N (ai ,bi ), i =1,2, by

K (V�1,V�2)= (W�1,W�2), (5.1)

where W�i ∈ P0
N (ai ,bi ), i =1,2, are uniquely determined by

W�1(ξ)=
∂V1

∂y
(ξ,b2)− ∂V2

∂y
(ξ,b2), ξ ∈Ga1,b1,

(5.2)
W�2(ξ)=

∂V1

∂x
(b1, ξ)− ∂V3

∂x
(b1, ξ), ξ ∈Ga2,b2

with Vi ∈ Xi , i =1,2,3, satisfying

�V1(ξ)=0, ξ ∈G1, V1|�1
= V�1 , V1|�2

= V�2 , (5.3)

�V2(ξ)=0, ξ ∈G2, V2|�1
= V�1 , (5.4)

�V3(ξ)=0, ξ ∈G3, V3|�2
= V�2 . (5.5)

Then step 2 of the Algorithm is equivalent to finding U�i ∈ P0
N (ai ,bi ), i =

1,2, such that

K (U�1,U�2)= (F�1, F�2), (5.6)
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where, with Ûi ∈ Qi , i = 1,2,3, satisfying (4.2)–(4.4), F�i ∈ P0
N (ai ,bi ), i =

1,2, are given by

F�1(ξ)=
∂Û2

∂y
(ξ,b2)− ∂Û1

∂y
(ξ,b2), ξ ∈Ga1,b1 ,

(5.7)

F�2(ξ)=
∂Û3

∂x
(b1, ξ)− ∂Û1

∂x
(b1, ξ), ξ ∈Ga2,b2 .

The inner product in P0
N (a1,b1)× P0

N (a2,b2) is defined by

〈(V�1 ,V�2), (W�1 ,W�2)〉=
2∑

i=1

〈V�i ,W�i 〉ai ,bi , (5.8)

where 〈·, ·〉a,b is given in (2.9).

Theorem 5.1. The operator K : P0
N (a1,b1)× P0

N (a2,b2)→ P0
N (a1,b1)×

P0
N (a2,b2) defined by (5.1), (5.2) is self-adjoint and positive definite with

respect to the inner product (5.8).

Proof. To show that K is self-adjoint, we have to verify that

〈K (V�1 ,V�2), (W�1 ,W�2)〉=〈(V�1 ,V�2), K (W�1,W�2)〉,
V�i ,W�i ∈ P0

N (0,1), i =1,2.

It follows from (5.8), (5.1), and (5.2) that

〈K (V�1 ,V�2), (W�1 ,W�2)〉 =
〈
∂V1

∂y
(·,b2)− ∂V2

∂y
(·,b2),W�1

〉

a1,b1

+
〈
∂V1

∂x
(b1, ·)− ∂V3

∂x
(b1, ·),W�2

〉

a2,b2

, (5.9)

where Vi ∈ Xi , i = 1,2,3, satisfy (5.3)–(5.5). Let Wi ∈ Xi , i = 1,2,3, satisfy
(5.3)–(5.5) with W�i in place of V�i , that is,

�W1(ξ)=0, ξ ∈G1, W1|�1
= W�1 , W1|�2

= W�2 , (5.10)

�W2(ξ)=0, ξ ∈G2, W2|�1
= W�1 , (5.11)

�W3(ξ)=0, ξ ∈G3, W3|�2
= W�2 . (5.12)
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Using (5.3), (3.6), (2.10), and (5.10), we obtain

0 = 〈−�V1,W1〉1 =−
N−1∑

j=1

w
a2,b2
j

〈
∂2V1

∂x2
(·, ξa2,b2

j ),W1(·, ξa2,b2
j )

〉

a1,b1

−
N−1∑

i=1

w
a1,b1
i

〈
∂2V1

∂y2
(ξ

a1,b1
i , ·),W1(ξ

a1,b1
i , ·)

〉

a2,b2

= I1(V1,W1)−
〈
∂V1

∂x
(b1, ·),W�2

〉

a2,b2

−
〈
∂V1

∂y
(·,b2),W�1

〉

a1,b1

, (5.13)

where

I1(V1,W1)=
∫ b1

a1

〈
∂V1

∂x
(x, ·), ∂W1

∂x
(x, ·)

〉

a2,b2

dx +Ca1,b1
N

〈
V (N ,0)

1 ,W (N ,0)
1

〉

a2,b2

+
∫ b2

a2

〈
∂V1

∂y
(·, y),

∂W1

∂y
(·, y)

〉

a1,b1

dy +Ca2,b2
N

〈
V (0,N )

1 ,W (0,N )
1

〉

a1,b1
,

(5.14)

V (N ,0)
1 (ξ) = ∂N V1

∂x N
(x, ξ),W (N ,0)

1 (ξ)= ∂N W1

∂x N
(x, ξ), x ∈[a1,b1], ξ ∈Ga2,b2 ,

V (0,N )
1 (ξ) = ∂N V1

∂yN
(ξ, y),W (0,N )

1 (ξ)= ∂N W1

∂yN
(ξ, y), ξ ∈Ga1,b1 , y ∈[a2,b2].

In a similar way, using (5.4), (5.5), (2.10), (5.11), and (5.12), we obtain

0 = 〈−�V2,W2〉2 = I2(V2,W2)+
〈
∂V2

∂y
(·,b2),W�1

〉

a1,b1

, (5.15)

0 = 〈−�V3,W3〉3 = I3(V3,W3)+
〈
∂V3

∂x
(b1, ·),W�2

〉

a2,b2

, (5.16)

where

I2(V2,W2)=
∫ b1

a1

〈
∂V2

∂x
(x, ·), ∂W2

∂x
(x, ·)

〉

b2,c2

dx +Ca1,b1
N

〈
V (N ,0)

2 ,W (N ,0)
2

〉

b2,c2

+
∫ c2

b2

〈
∂V2

∂y
(·, y),

∂W2

∂y
(·, y)

〉

a1,b1

dy +Cb2,c2
N

〈
V (0,N )

2 ,W (0,N )
2

〉

a1,b1
,

(5.17)
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I3(V3,W3)=
∫ c1

b1

〈
∂V3

∂x
(x, ·), ∂W3

∂x
(x, ·)

〉

a2,b2

dx +Cb1,c1
N

〈
V (N ,0)

3 ,W (N ,0)
3

〉

a2,b2

+
∫ b2

a2

〈
∂V3

∂y
(·, y),

∂W3

∂y
(·, y)

〉

b1,c1

dy +Ca2,b2
N

〈
V (0,N )

3 ,W (0,N )
3

〉

b1,c1
.

(5.18)

Equations (5.9), (5.13), (5.15), and (5.16) yield

〈K (V�1,V�2), (W�1 ,W�2)〉=
3∑

i=1

Ii (Vi ,Wi ) (5.19)

and hence (5.14), (5.17), and (5.18) imply that K is self-adjoint.
Equations (5.19), (5.14), (5.17), and (5.18) imply that 〈K (V�1,V�2),

(V�1 ,V�2)〉≥0. To show that K is positive definite, we assume 〈K (V�1 ,V�2),

(V�1 ,V�2)〉=0. Then using (5.14), we obtain

∂V1

∂x
(x, ξ)=0, x ∈[a1,b1], ξ ∈Ga2,b2 ,

∂V1

∂y
(ξ, y)=0, ξ ∈Ga1,b1 , y ∈[a2,b2].

Since V1 ∈ X1, we have

V1(a1, ξ)=0, ξ ∈Ga2,b2 , V1(ξ,a2)=0, ξ ∈Ga1,b1 .

Hence,

V1(x, ξ)=0, x∈[a1,b1], ξ∈Ga2,b2 , V1(ξ, y)=0, ξ ∈Ga1,b1 , y ∈[a2,b2].
Taking x =b1 and y =b2, and using (5.3) and that V�i ∈ P0

N (ai ,bi ), i =1,2,
we obtain V�1 = V�2 =0. �

5.2. Preconditioner

Let P : P0
N (a1,b1)× P0

N (a2,b2)→ P0
N (a1,b1)× P0

N (a2,b2) be defined for
V�i ∈ P0

N (ai ,bi ), i =1,2, by

P(V�1 ,V�2)= (W�1 ,W�2), (5.20)

where the W�i ∈ P0
N (ai ,bi ), i =1,2, are uniquely determined by (cf. (5.2))

W�1(ξ)=
∂V h

1

∂y
(ξ,b2)− ∂V2

∂y
(ξ,b2), ξ ∈Ga1,b1 ,

(5.21)
W�2(ξ)=

∂V v
1

∂x
(b1, ξ)− ∂V3

∂x
(b1, ξ), ξ ∈Ga2,b2
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and where the Vi ∈ Xi , i =2,3, satisfy (5.4), (5.5), and V h
1 ,V v

1 ∈ X1 satisfy
(cf. (5.3))

�V h
1 (ξ)=0, ξ ∈G1, V h

1 |�1
= V�1 , V h

1 |�2
=0, (5.22)

�V v
1 (ξ)=0, ξ ∈G1, V v

1 |�1
=0, V v

1 |�2
= V�2 . (5.23)

Clearly, our definition of P involves two pairs of adjacent problems: (5.22),
(5.4) and (5.23), (5.5). In terms of matrices, the matrix representation of P
consists of the diagonal blocks in the matrix representation of K .

Theorem 5.2. The operator P : P0
N (a1,b1)× P0

N (a2,b2)→ P0
N (a1,b1)×

P0
N (a2,b2) defined by (5.20), (5.21) is self-adjoint and positive definite with

respect to the inner product (5.8).

Proof. Following the proof of Theorem 5.1, using (5.8), (5.20), and
(5.21), we have

〈P(V�1 ,V�2), (W�1 ,W�2)〉 =
〈
∂V h

1

∂y
(·,b2)− ∂V2

∂y
(·,b2),W�1

〉

a1,b1

+
〈
∂V v

1

∂x
(b1, ·)− ∂V3

∂x
(b1, ·),W�2

〉

a2,b2

,

(5.24)

where the Vi ∈ Xi , i = 2,3, satisfy (5.4), (5.5), and V h
1 , V v

1 ∈ X1 satisfy
(5.22), (5.23). Let Wi ∈ Xi , i =2,3, satisfy (5.11), (5.12), and let W h

1 , W v
1 ∈

X1 be such that

�W h
1 (ξ)=0, ξ ∈G1, W h

1 |�1
= W�1 , W h

1 |�2
=0, (5.25)

�W v
1 (ξ)=0, ξ ∈G1, W v

1 |�1
=0, W v

1 |�2
= W�2 . (5.26)

Using (5.22), (5.23), (3.6), (2.10), (5.25), and (5.26), we obtain (cf. (5.13))

0 = 〈−�V h
1 ,W h

1 〉1 =−
N−1∑

j=1

w
a2,b2
j

〈
∂2V h

1

∂x2
(·, ξa2,b2

j ),W h
1 (·, ξa2,b2

j )

〉

a1,b1

−
N−1∑

i=1

w
a1,b1
i

〈
∂2V h

1

∂y2
(ξ

a1,b1
i , ·),W h

1 (ξ
a1,b1
i , ·)

〉

a2,b2
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=
∫ b1

a1

〈
∂V h

1

∂x
(x, ·), ∂W h

1

∂x
(x, ·)

〉

a2,b2

dx +Ca1,b1
N

〈
V h(N ,0)

1 ,W h(N ,0)
1

〉

a2,b2

+
∫ b2

a2

〈
∂V h

1

∂y
(·, y),

∂W h
1

∂y
(·, y)

〉

a1,b1

dy −
〈
∂V h

1

∂y
(·,b2),W�1

〉

a1,b1

+Ca2,b2
N

〈
V h(0,N )

1 ,W h(0,N )
1

〉

a1,b1
(5.27)

and

0 = 〈−�V v
1 ,W v

1 〉1 =−
N−1∑

j=1

w
a2,b2
j

〈
∂2V v

1

∂x2
(·, ξa2,b2

j ),W v
1 (·, ξa2,b2

j )

〉

a1,b1

−
N−1∑

i=1

w
a1,b1
i

〈
∂2V v

1

∂y2
(ξ

a1,b1
i , ·),W v

1 (ξ
a1,b1
i , ·)

〉

a2,b2

=
∫ b1

a1

〈
∂V v

1

∂x
(x, ·), ∂W v

1

∂x
(x, ·)

〉

a2,b2

dx −
〈
∂V v

1

∂x
(b1, ·),W�2

〉

a2,b2

+Ca1,b1
N

〈
V v(N ,0)

1 ,W v(N ,0)
1

〉

a2,b2
+

∫ b2

a2

〈
∂V v

1

∂y
(·, y),

∂W v
1

∂y
(·, y)

〉

a1,b1

dy

+Ca2,b2
N

〈
V v(0,N )

1 ,W v(0,N )
1

〉

a1,b1
. (5.28)

Since Vi , Wi , i = 2,3, are the same as in the proof of Theorem 5.1, (5.15) and
(5.16) are satisfied. Hence (5.24), (5.27), (5.28), (5.15), and (5.16) give (cf. (5.19))

〈P(V�1 ,V�2), (W�1 ,W�2)〉= I1(V
h
1 ,W h

1 )+ I1(V
v
1 ,W v

1 )+
3∑

i=2

Ii (Vi ,Wi ),

(5.29)

where the Ii , i = 1,2,3, are defined in (5.14), (5.17), (5.18). Equations (5.29)
and (5.14), (5.17), (5.18) imply that P is self-adjoint and positive definite. �

We show the spectral equivalence of the operators K and P in a spe-
cial case.

Theorem 5.3. Assume that bi − ai = ci − bi , i = 1,2. Then K and P
are spectrally equivalent with respect to the inner product (5.8). Specifi-
cally, for V�i ∈ P0

N (ai ,bi ), i =1,2,

1
2
〈P(V�1 ,V�2), (V�1 ,V�2)〉≤ 〈K (V�1 ,V�2), (V�1 ,V�2)〉

≤2〈P(V�1 ,V�2), (V�1 ,V�2)〉. (5.30)
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Proof. We take V�i ∈ P0
N (ai ,bi ), i =1,2. Then (5.19) gives

〈K (V�1 ,V�2), (V�1 ,V�2)〉=
3∑

i=1

Ii (Vi ,Vi ), (5.31)

where Vi ∈ Xi , i =1,2,3, satisfy (5.3)–(5.5) and Ii , i =1,2,3, are defined in
(5.14), (5.17), (5.18). It follows from (5.29) that

〈P(V�1 ,V�2), (V�1 ,W�2)〉= I1(V
h
1 ,V h

1 )+ I1(V
v
1 ,V v

1 )+
3∑

i=2

Ii (Vi ,Vi ),

(5.32)

where Vi , i = 1,2, satisfy (5.4), (5.5), and V h
1 , V v

1 satisfy (5.22), (5.23).
Using (5.4), (5.22), and (5.23), we have V1 = V h

1 + V v
2 . Hence (5.14) and

the inequality (α+β)2 ≤2(α2 +β2), α,β ∈ R, give

I1(V1,V1)≤2[I1(V
h
1 ,V h

1 )+ I1(V
v
1 ,V v

1 )].
Therefore (5.31), (5.32), and the last inequality imply the second inequality
in (5.30).

It follows from (5.4), (5.22), and symmetry of the collocation points
in the y-direction about b2 that V h

1 (x, y) = V2(x,b2 − y). Hence (5.14),
(5.17), and symmetry of the collocation points give

I1(V
h
1 ,V h

1 )= I2(V2,V2).

In a similar way, we obtain

I1(V
v
1 ,V v

1 )= I3(V3,V3).

Hence (5.32), the last two equations, and (5.31) yield the first inequality
in (5.30). �

Our numerical tests indicate that the assumption bi − ai = ci − bi , i =
1,2, in Theorem 5.3 is technical rather than essential. If the assumption is
not satisfied, the operators K and P remain spectrally equivalent with the
spectral constants depending on bi −ai , ci −bi , i =1,2.

5.3. Solving with P and Multiplying by K

The definition (5.20)–(5.21) of the operator P implies that, given
W�i ∈ P0

N (ai ,bi ), i =1,2, the solution of

P(V�1 ,V�2)= (W�1 ,W�2)
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for V�i ∈ P0
N (ai ,bi ), i =1,2, consists of solving two independent problems.

The first problem involves finding V�1 ∈ P0
N (a1,b1) such that

∂V h
1

∂y
(ξ,b2)− ∂V2

∂y
(ξ,b2)= W�1(ξ), ξ ∈Ga1,b1 , (5.33)

where V h
1 ∈ X1 satisfies (5.22) and V2 ∈ X2 satisfies (5.4). The second prob-

lem involves finding V�2 ∈ P0
N (a2,b2) such that

∂V v
1

∂x
(b1, ξ)− ∂V3

∂x
(b1, ξ)= W�2(ξ), ξ ∈Ga2,b2 ,

where V v
1 ∈ X1 satisfies (5.23) and V3 ∈ X3 satisfies (5.5). We show how to

solve (5.33); the second problem can be solved in a similar way. To this
end let ψn , γn , n = 2, . . . , N , be as in Lemma 2.1 for a = a1, b = b1. Let
vn , n = 2, . . . , N , be as in Lemma 2.2 for a = a2, b = b2, and let wn , n =
2, . . . , N , be as in Lemma 2.3 for a =b2, b=c2. Then for arbitrary {αn}N

n=2,
V h

1 defined by

V h
1 (x, y)=

N∑

n=2

αnψn(x)vn(y), x ∈[a1,b1], y ∈[a2,b2]

is in X1 and it satisfies �V h
1 (ξ)= 0, ξ ∈ G1, and V h

1 |�2
= 0. Similarly, V2

given by

V2(x, y)=
N∑

n=2

αnψn(x)wn(y), x ∈[a1,b1], y ∈[b2, c2]

is in X2 and it satisfies �V2(ξ)=0, ξ ∈G2. Moreover,

V�1(x)= V h
1 (x,b2)= V2(x,b2)=

N∑

n=2

αnψn(x), x ∈[a1,b1]. (5.34)

Since W�1 ∈ P0
N (a1,b1), we have

W�1(x)=
N∑

n=2

βnψn(x), x ∈[a1,b1]. (5.35)

Hence (5.33) becomes

N∑

n=2

αnψn(ξ)[v′
n(b2)−w′

n(b2)]=
N∑

n=2

βnψn(ξ), ξ ∈Ga1,b1 ,
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which yields

αn = βn

v′
n(b2)−w′

n(b2)
, n =2, . . . , N .

It follows from (2.15), (2.16) with a = a2, b = b2, that all v′
n(b2), n =

2, . . . , N , can be precomputed with the cost O(N 2). Similarly, it follows
from the proof of Lemma 2.3, that all w′

n(b2), n = 2, . . . , N , can be pre-
computed with the cost O(N 2) using (2.15), (2.16) with a =b2, b=c2, and
then taking w′

n(b2)=−v′
n(c2).

Remark 5.1. If b2 −a2 = c2 −b2, then w′
n(b2)=−vn(b2) and hence

αn = βn

2v′
n(b2)

, n =2, . . . , N .

We introduce

	α=[α2, . . . , αN ]T , 	β=[β2, . . . , βN ]T .

Then (5.35), (5.34), and Lemma 2.4 give

	β = Z T [B ′]−1 BT D[W�1(ξ
a1,b1
1 ), . . . ,W�1(ξ

a1,b1
N−1 )]T ,

(5.36)
[V�1(ξ

a1,b1
1 ), . . . ,V�1(ξ

a1,b1
N−1 )]T = B Z 	α.

Thus, given W�1(ξ), ξ ∈ Ga1,b1 , (5.36) and Remark 2.1 imply that V�1(ξ),
ξ ∈Ga1,b1 , can be computed with the cost O(N 2) provided that the matrix
Z is known. It follows from the discussion at the end of Sec. 4 in [4] that
Z can be precomputed at the cost of O(N 2).

The definition (5.1)–(5.2) of the operator K implies that, given V�i ∈
P0

N (ai ,bi ), i =1,2, the computation of W�i ∈ P0
N (ai ,bi ), i =1,2, such that

(W�1 ,W�2)= K (V�1 ,V�2), involves solving the collocation problems (5.3)–
(5.5). Let V1,V h

1 ,V v
1 ∈ X1 be respectively solutions of (5.3), (5.22), (5.23).

Then V1 = V h
1 + V v

1 . Hence, it follows from (5.2) that

W�1(ξ)=
∂V h

1

∂y
(ξ,b2)+ ∂V v

1

∂y
(ξ,b2)− ∂V2

∂y
(ξ,b2), ξ ∈Ga1,b1 ,

W�2(ξ)=
∂V h

1

∂x
(b1, ξ)+ ∂V v

1

∂x
(b1, ξ)− ∂V3

∂x
(b1, ξ), ξ ∈Ga2,b2 .

We show how to compute
∂V h

1

∂y
(ξ,b2), ξ ∈Ga1,b1 , and

∂V h
1

∂x
(b1, ξ), ξ ∈ Ga2,b2 .

(All remaining partial derivatives can be computed in a similar way.) Let
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ψn , γn , n = 2, . . . , N , be as in Lemma 2.1 for a = a1, b = b1, and let vn ,
n =2, . . . , N , be as in Lemma 2.2 for a =a2, b =b2. Since V�1 ∈ P0

N (a1,b1),
we have

V�1(x)=
N∑

n=2

αnψn(x), x ∈[a1,b1]. (5.37)

Moreover, V h
1 defined by

V h
1 (x, y)=

N∑

n=2

αnψn(x)vn(y), x ∈[a1,b1], y ∈[a2,b2] (5.38)

is a solution of (5.22). Hence

∂V h
1

∂y
(x,b2)=

N∑

n=2

αnv
′
n(b2)ψn(x), x ∈[a1,b1], (5.39)

where all v′
n(b2), n =2, . . . , N , have been precomputed. We introduce

	α=[α2, . . . , αN ]T , 	β=[α2v
′
2(b2), . . . , αNv

′
N (b2)]T .

Then (5.37), (5.39), and Lemma 2.4 yield

	α= Z T [B ′]−1 BT D[V�1(ξ
a1,b1
1 ), . . . ,V�1(ξ

a1,b1
N−1 )]T ,

[
∂V h

1

∂y
(ξ

a1,b1
1 ,b2), . . . ,

∂V h
1

∂y
(ξ

a1,b1
N−1 ,b2)

]T

= B Z 	β.

Thus, given V�1(ξ), ξ ∈ Ga1,b1 , Remark 2.1 implies that
∂V h

1

∂y
(ξ,b2), ξ ∈

Ga1,b1 , can be computed with cost O(N 2). Equation (5.38) gives

∂V h
1

∂x
(b1, ξ)=

N∑

n=2

αnψ
′
n(b1)vn(ξ), ξ ∈Ga2,b2 .

All ψ ′
n(b1), n =2, . . . , N , can be precomputed with cost O(N 2) using (2.12)

and (2.13) with a =a1, b =b1. Also, all vn(ξ), ξ ∈Ga2,b2 , n =2, . . . , N , can
be precomputed with cost O(N 3) using (2.15), (2.16) with a = a2, b = b2.

Hence
∂V h

1

∂x
(b1, ξ), ξ ∈Ga2,b2 , can be obtained with a cost O(N 2) by com-

puting the product of the matrix C = (ci,n)
N−1,N
i=1,n=2, ci,n =vn(ξ

a2,b2
i ), and the

vector [α2ψ
′
2(b1), . . . , αNψ

′
N (b1)]T .
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6. COST OF SOLVING THE COLLOCATION PROBLEM FOR
L-SHAPED REGION

First, with cost O(N 2), we precompute {ξi }N
i=1, φk(ξi ), k = 0, . . . , N ,

i =1, . . . , N −1, of (2.2) and (2.3), the matrices 	 and Z of (2.7) and (2.8),
and ψ ′

n(b1), n =2, . . . , N , of (2.12). Also, with cost O(N 3), we precompute
vn(ξ), ξ ∈Ga2,b2 , n =2, . . . , N .

We perform step 1 of the Algorithm in Sec. 4 using the matrix
decomposition algorithm of [4]. For example, it follows from [4] that the
coefficients {û(1)k,l }N

k,l=0 in

Û1(x, y)=
N∑

k,l=0

û(1)k,lφ
a1,b1
k (x)φa2,b2

l (y)

are computed with a cost of O(N 3). Thus the cost of step 1 is O(N 3). In
step 2 of the Algorithm in Sec. 4, we solve (5.6), (5.7) using PCG with
the P of (5.20), (5.21) as a preconditioner and (5.8) as an inner product.
It follows from the discussion in Sec. 5.3 that the cost of a PCG step is
O(N 2). Hence if the number of PCG steps equal to m, the cost of step 2
is O(m N 2). Finally, step 3 of the Algorithm in Sec. 4 is performed using
the matrix decomposition algorithm of [4]. For example, it follows from [4]
that the coefficients {u(1)k,l }N

k,l=0 in

U1(x, y)=
N∑

k,l=0

u(1)k,lφ
a1,b1
k (x)φa2,b2

l (y)

are computed with a cost of O(N 3). Thus the cost of step 3 is O(N 3). It
follows that the total cost of the Algorithm in Sec. 4 for solving the col-
location problem (3.1), (3.3) is O(N 3)+ O(m N 2).

7. SPECTRAL COLLOCATION FOR RECTANGLE WITH
CROSS-POINT

With � as in (1.3), let Qi , Xi , Gi , G̃i , i = 1,2,3, and G′
i , i = 1,2, be

defined as in Sec. 3. Note, for example, that now

G̃1 ={(a1, ξ) : ξ ∈Ga2,b2 ∪{a2,b2}}∪ {(ξ,a2) : ξ ∈Ga1,b1 ∪{b1}}.
Let

Q4 = PN (b1, c1)⊗ PN (b2, c2), X4 ={v∈ Q4 :v=0 on ∂�∩ ∂�4},
G4 =Gb1,c1 ×Gb2,c2 .
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Let G̃4 be the set of collocation points on ∂�∩ ∂�4, and let for i = 3,4,
G′

i be the set of collocation points on �i .
The Legendre spectral collocation problem for (1.1) and (1.3) consists

of finding Ui ∈ Qi , i =1,2,3,4, satisfying (3.1)–(3.3),

�U4(ξ)= f (ξ), ξ ∈G4, (7.1)

U4(ξ)= g(ξ), ξ ∈ G̃4, (7.2)

∂ jU2

∂x j
(ξ)= ∂ jU4

∂x j
(ξ), ξ ∈G′

3,
∂ jU3

∂y j
(ξ)= ∂ jU4

∂y j
(ξ), ξ ∈G′

4, j =0,1,

U1(b1,b2)=U2(b1,b2)=U3(b1,b2)=U4(b1,b2)

and

∂U1

∂y
(b1,b2)= ∂U2

∂y
(b1,b2). (7.3)

Our cross-point equation (7.3) appears to be much simpler than the cor-
responding equation in the spectral element method (see the discussion at
the bottom of page 86 in [11] or (28) in [12].) It can be shown that the
spectral collocation problem defined in this way has a unique solution.

In addition to (3.4), we have

U2|�3
=U4|�3

, U3|�4
=U4|�4

.

Let Y be the space defined by

Y ={(V1,V2,V3,V4) : V1 ∈ PN (a1,b1),V2 ∈ PN (a2,b2),V3 ∈ PN (b2, c2),

V4 ∈ PN (b1, c1),V1(a1)= V2(a2)= V3(c2)= V4(c1)=0,
V1(b1)= V2(b2)= V3(b2)= V4(b1),V ′

2(b2)= V ′
3(b2) } .

It follows from Lemma 2.3 in [6] that any (V1,V2,V3,V4) in Y is uniquely
determined by the values of V1, V2, V3, and V4 on Ga1,b1 , Ga2,b2 , Gb2,c2 ,
and Gb1,c1 , respectively.

Assume that Ui ∈ Xi , i = 1,2,3,4, are solutions to the collocation
problem with a cross-point. Let (U�1,U�2 ,U�3 ,U�4) ∈ Y be defined by
(4.1) and

U�3(ξ) = U2(b1, ξ)=U4(b1, ξ), ξ ∈Gb2,c2 ,
(7.4)

U�4(ξ) = U3(ξ,b2)=U4(ξ,b2), ξ ∈Gb1,c1 .
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Let Ûi ∈ Qi , i =1,2,3,4, be defined by (4.2)–(4.4),

�Û4(ξ)= f (ξ), ξ ∈G4, (7.5)

Û4(ξ)= g(ξ), ξ ∈ G̃4, (7.6)

Û2(ξ)= Û4(ξ)=0, ξ ∈G′
3, Û3(ξ)= Û4(ξ)=0, ξ ∈G′

4, (7.7)

Û1(b1,b2)= Û2(b1,b2)= Û3(b1,b2)= Û4(b1,b2)=0. (7.8)

Let Ũi ∈ Xi , i =1,2,3, be defined by (4.5) and let Ũ4 ∈ X4 be such that

Ũ4 =U4 − Û4.

Then, in addition to (4.6), we have

�Ũ2(ξ)=0, ξ ∈G2, Ũ2|�1
=U�1 , Ũ2|�3

=U�3 , (7.9)

�Ũ3(ξ)=0, ξ ∈G3, Ũ3|�2
=U�2 , Ũ3|�4

=U�4 , (7.10)

�Ũ4(ξ)=0, ξ ∈G4, Ũ4|�3
=U�3 , Ũ4|�4

=U�4 . (7.11)

Also, in addition to (4.9), we have

∂Ũ2

∂x
(ξ)− ∂Ũ4

∂x
(ξ)= ∂Û4

∂x
(ξ)− ∂Û2

∂x
(ξ), ξ ∈G′

3,

(7.12)
∂Ũ3

∂y
(ξ)− ∂Ũ4

∂y
(ξ)= ∂Û4

∂y
(ξ)− ∂Û3

∂y
(ξ), ξ ∈G′

4.

We thus obtain the following algorithm for solving the collocation
problem with a cross-point.

Algorithm.
Step 1. With Ûi ∈ Qi , i = 1,2,3,4, defined by (4.2)–(4.4), (7.5)–(7.8),

compute the right sides of (4.9), (7.12).
Step 2. Compute (U�1,U�2 ,U�3 ,U�4) ∈ Y such that Ũi ∈ Xi , i =

1,2,3,4, satisfy (4.6), (7.9)–(7.11), (4.9), (7.12).
Step 3. Compute Ui ∈ Qi , i = 1,2,3,4, satisfying (3.1), (3.2), (7.1),

(7.2), (4.1), (7.4).
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Let K:Y →Y be defined for (V�1 ,V�2 ,V�3 ,V�4) in Y by

K (V�1,V�2 ,V�3 ,V�4)= (W�1 ,W�2 ,W�3 ,W�4),

where (W�1 ,W�2 ,W�3 ,W�4) in Y is uniquely defined by (5.2) and

W�3(ξ) = ∂V2

∂x
(b1, ξ)− ∂V4

∂x
(b1, ξ), ξ ∈Gb2,c2 ,

W�4(ξ) = ∂V3

∂y
(ξ,b2)− ∂V4

∂y
(ξ,b2), ξ ∈Gb1,c1

with Vi in Xi , i =1,2,3,4, satisfying (5.3) and

�V2(ξ) = 0, ξ ∈G2, V2|�1
= V�1 , V2|�3

= V�3 ,

�V3(ξ) = 0, ξ ∈G3, V3|�2
= V�2 , V3|�4

= V�4 ,

�V4(ξ) = 0, ξ ∈G4, V4|�3
= V�3 , V4|�4

= V�4 .

Then step 2 of the Algorithm in this section is equivalent to finding
(U�1 ,U�2 ,U�3 ,U�4) in Y such that

K (U�1 ,U�2 ,U�3 ,U�4)= (F�1, F�2 , F�3, F�4), (7.13)

where, with Ûi in Qi , i = 1,2,3,4, satisfying (4.2)–(4.4), (7.5)–(7.8),
(F�1 , F�2 , F�3 , F�4) in Y is given by (5.7), and

F�3(ξ) = ∂Û4

∂x
(b1, ξ)− ∂Û2

∂x
(b1, ξ), ξ ∈Gb2,c2 ,

F�4(ξ) = ∂Û4

∂y
(ξ,b2)− ∂Û3

∂y
(ξ,b2), ξ ∈Gb1,c1 .

In addition to K , we introduce K̃:Y →Y defined for (V�1 ,V�2 ,V�3 ,V�4)

in Y by

K̃ (V�1 ,V�2 ,V�3 ,V�4)= (W�1 ,W�2 ,W�3 ,W�4), (7.14)

where (W�1 ,W�2 ,W�3 ,W�4) in Y is uniquely defined by

W�1(ξ)=
∂ Ṽ1

∂y
(ξ,b2)− ∂ Ṽ2

∂y
(ξ,b2), ξ ∈Ga1,b1,

(7.15)

W�2(ξ)=
∂ Ṽ1

∂x
(b1, ξ)− ∂ Ṽ3

∂x
(b1, ξ), ξ ∈Ga2,b2 ,
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W�3(ξ)=
∂ Ṽ2

∂x
(b1, ξ)− ∂ Ṽ4

∂x
(b1, ξ), ξ ∈Gb2,c2 ,

(7.16)

W�4(ξ)=
∂ Ṽ3

∂y
(ξ,b2)− ∂ Ṽ4

∂y
(ξ,b2), ξ ∈Gb1,c1

with Ṽi in Xi , i =1,2,3,4, satisfying

�Ṽ1(ξ) = 0, ξ ∈G1, Ṽ1|�1
= Ṽ�1 , Ṽ1|�2

= Ṽ�2 ,

�Ṽ2(ξ) = 0, ξ ∈G2, Ṽ2|�1
= Ṽ�1 , Ṽ2|�3

= Ṽ�3 ,

�Ṽ3(ξ) = 0, ξ ∈G3, Ṽ3|�2
= Ṽ�2 , Ṽ3|�4

= Ṽ�4 ,

�Ṽ4(ξ) = 0, ξ ∈G4, Ṽ4|�3
= Ṽ�3 , Ṽ4|�4

= Ṽ�4 ,

where Ṽ�i ∈ P0
N (ai ,bi ), i = 1,2, Ṽ�3 ∈ P0

N (b2, c2), Ṽ�4 ∈ P0
N (b1, c1), are

defined by

Ṽ�i (ξ)= V�i (ξ), ξ ∈Gai ,bi , i =1,2, (7.17)

Ṽ�3(ξ)= V�3(ξ), ξ ∈Gb2,c2 , Ṽ�4(ξ)= V�4(ξ), ξ ∈Gb1,c1 . (7.18)

It can be shown that for every (V1,V2,V3,V4) in Y , we have

K (V1,V2,V3,V4)= K̃ (V1,V2,V3,V4),

that is, the application of K to (V1,V2,V3,V4) in Y does not depend on
the cross-point value V1(b1)= V2(b2)= V3(b2)= V4(b1). Hence it follows
that the interface problem (7.13) is equivalent to

K̃ (U�1 ,U�2 ,U�3 ,U�4)= (F�1, F�2 , F�3, F�4). (7.19)

We define the inner product in Y by

〈(V�1 ,V�2 ,V�3 ,V�4), (W�1 ,W�2 ,W�3 ,W�4)〉

=
2∑

i=1

〈V�i ,W�i 〉ai ,bi +〈V�3 ,W�3〉b2,c2 +〈V�4 ,W�4〉b1,c1 , (7.20)

where 〈·, ·〉a,b is given in (2.9). It can be shown that the operator K̃:Y →Y
defined by (7.14)–(7.16) is self-adjoint and positive definite with respect to
the inner product (7.20).

The preconditioner P̃: Y → Y for K̃ is defined for (V�1 ,V�2 ,V�3 ,V�4)

in Y by

P̃(V�1 ,V�2 ,V�3 ,V�4)= (W�1 ,W�2 ,W�3 ,W�4), (7.21)
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where (W�1 ,W�2 ,W�3 ,W�4) in Y is uniquely defined by

W�1(ξ) = ∂ Ṽ h
1

∂y
(ξ,b2)− ∂ Ṽ h

2

∂y
(ξ,b2), ξ ∈Ga1,b1 ,

(7.22)

W�2(ξ) = ∂ Ṽ v
1

∂x
(b1, ξ)−

∂ Ṽ v
3

∂x
(b1, ξ), ξ ∈Ga2,b2 ,

W�3(ξ) = ∂ Ṽ v
2

∂x
(b1, ξ)− ∂ Ṽ v

4

∂x
(b1, ξ), ξ ∈Gb2,c2 ,

(7.23)

W�4(ξ) = ∂ Ṽ h
3

∂y
(ξ,b2)− ∂ Ṽ h

4

∂y
(ξ,b2), ξ ∈Gb1,c1

with Ṽ v
i , Ṽ h

i in Xi , i =1,2,3,4, satisfying

�Ṽ h
1 (ξ) = 0, ξ ∈G1, Ṽ h

1 |�1
= Ṽ�1 , Ṽ h

1 |�2
=0,

�Ṽ v
1 (ξ) = 0, ξ ∈G1, Ṽ v

1 |�1
=0, Ṽ v

1 |�2
= Ṽ�2 ,

�Ṽ h
2 (ξ) = 0, ξ ∈G2, Ṽ h

2 |�1
= Ṽ�1 , Ṽ h

2 |�3
=0,

�Ṽ v
2 (ξ) = 0, ξ ∈G2, Ṽ v

2 |�1
=0, Ṽ v

2 |�3
= Ṽ�3 ,

�Ṽ h
3 (ξ) = 0, ξ ∈G3, Ṽ h

3 |�2
=0, Ṽ h

3 |�4
= Ṽ�4 ,

�Ṽ v
3 (ξ) = 0, ξ ∈G3, Ṽ v

3 |�2
= Ṽ�2 , Ṽ v

3 |�4
=0,

�Ṽ h
4 (ξ) = 0, ξ ∈G4, Ṽ h

4 |�3
=0, Ṽ h

4 |�4
= Ṽ�4 ,

�Ṽ v
4 (ξ) = 0, ξ ∈G4, Ṽ v

4 |�3
= Ṽ�3 , Ṽ v

4 |�4
=0,

where Ṽ�i ∈ P0
N (ai ,bi ), i = 1,2, Ṽ�3 ∈ P0

N (b2, c2), Ṽ�4 ∈ P0
N (b1, c1) are

defined in (7.17), (7.18). Again, our definition of P̃ involves pairs of adja-
cent problems and, in terms of matrices, the matrix representation of P̃
consists of the diagonal blocks in the matrix representation of K̃ . It can
be shown that the operator P̃:Y →Y defined by (7.21)–(7.23) is self-adjoint
and positive definite with respect to the inner product (7.20).

The implementation of the Algorithm of this section is similar to the
implementation of the Algorithm in Sec. 4. In particular, in step 2, we
solve (7.19) using PCG, with P̃ as a preconditioner and (7.20) as an inner
product, to obtain U�i (ξ), ξ ∈ Gai ,bi , i = 1,2, U�3(ξ), ξ ∈ Gb2,c2 , U�4(ξ),
ξ ∈Gb1,c1 . In order to carry out step 3, we need to evaluate

U1(b1,b2)=U2(b1,b2)=U3(b1,b2)=U4(b1,b2).

This evaluation is equivalent to computing V2(b2) given

V2(a2), V2(ξ
a2,b2
i ), i =1, . . . , N−1, V3(ξ

b2,c2
i ), i =1, . . . , N−1, V3(c2),
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where V2 ∈ PN (a2,b2) and V3 ∈ PN (b2, c2) are such that V ( j)
2 (b2)= V ( j)

3 (b2),
j = 0,1. Let {φa2,b2

k }N
k=0 be the basis for PN (a2,b2) defined by (2.11) and

(2.14). Similarly, let {φb2,c2
k }N

k=0 be the basis for PN (b2, c2). Then

V2 =
N∑

k=0

αkφ
a2,b2
k , V3 =

N∑

k=0

βkφ
b2,c2
k

satisfy

N∑

k=0

αkφ
a2,b2
k (a2)= V2(a2), (7.24)

N∑

k=0

αkφ
a2,b2
k (ξ

a2,b2
i )= V2(ξ

a2,b2
i ), i =1, . . . N −1, (7.25)

N∑

k=0

αkφ
a2,b2
k (b2)−

N∑

k=0

βkφ
b2,c2
k (b2)=0, (7.26)

N∑

k=0

αk[φa2,b2
k ]′(b2)−

N∑

k=0

βk[φb2,c2
k ]′(b2)=0, (7.27)

N∑

k=0

βkφ
b2,c2
k (ξ

b2,c2
i )= V3(ξ

b2,c2
i ), i =1, . . . N −1, (7.28)

N∑

k=0

βkφ
b2,c2
k (c2)= V3(c2). (7.29)

Equations (7.25) can be written as the (N −1)× (N +1) system
[ 	b0 	b1 B

] 	α= 	v2,

where 	α= [α0, . . . , αN ]T and 	v2 = [V2(ξ
a2,b2
1 ), . . . ,V2(ξ

a2,b2
N−1 )]T . Premultipli-

cation by BT D yields
[ 	b′

0
	b′

1 B ′ ] 	α= 	v′
2,
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where 	b′
j = BT D	b j , j = 0,1, B ′ = BT DB, 	v′

2 = BT D	v2. Equivalently, we
have

[α2, . . . , αN ]T =[B ′]−1	v′
2 −α0[B ′]−1 	b′

0 −α1[B ′]−1 	b′
1. (7.30)

Using (7.28), we obtain a similar expression for [β2, . . . , βN ]T . Substitution
of these expressions into (7.24), (7.26), (7.27), and (7.29) yields a system of
four equations in α0, α1, β0, and β1. Having solved this system, we obtain
[α2, . . . , αN ]T from (7.30) and hence V2(b2) is given by

V2(b2)=
N∑

k=0

αkφ
a2,b2
k (b2).

It should be noted that the costs of multiplying by BT and solving with
B ′ are O(N 2) and O(N ), respectively. Hence the cost of computing V2(b2)

is O(N 2).

8. EXTENSIONS

The algorithms of Secs. 4 and 7 generalize to Robin boundary condi-
tions with constant coefficients. For example, Eq. (2.9) still guarantees that
the operators K and P are self-adjoint and positive definite. The colloca-
tion solution in each rectangular subregion is obtained using the matrix
decomposition method of [4] which allows for Robin boundary conditions.

Assume that a rectangular polygon � is partitioned into l rectangu-
lar subregions �i . Then the definitions of the Legendre spectral colloca-
tion problem, the operators K̃ and P̃ are similar to those in Sec. 7. For
example, the collocation problem consists of finding Ui ∈ Qi , i = 1, . . . , l,
satisfying:

�Ui (ξ)= f (ξ), ξ ∈Gi , Ui (ξ)= g(ξ), ξ ∈ G̃i , i =1, . . . , l

continuity conditions (also involving the normal derivatives) at the collo-
cation points on each interface; continuity conditions (involving also the
partial derivative in the y-direction) at each cross point. For each inter-
face, P̃ is defined in terms of a jump, at the collocation points on the
interface, of the normal derivative of spectral harmonic extensions corre-
sponding to two rectangular subregions adjacent to the interface. It is very
likely that, as in the case of the finite element Galerkin method, the pre-
conditioner P̃ may be spectrally equivalent to the operator K̃ with the
spectral constants depending on the polynomial degree and the number
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of the rectangular subregions. A coarse grid modification of the precondi-
tioner P̃ may be necessary to reduce the dependence of the spectral con-
stants on the number of the rectangular subregions.

9. NUMERICAL RESULTS

The algorithms of Secs. 4 and 7 were used to solve problem (1.1) for
the L-shaped region � given by (1.2) and the rectangle � with a cross-
point given by (1.3). All computations were carried out in double precision
on an IBM RS6000 (375 MHz) workstation. The initial guess in the PCG
part of each algorithm was taken to be 0. In one test, the PCG method
for solving (5.6) and (7.13) was terminated using the stopping criterion

√
〈r (k), r (k)〉≤10−13

√
〈r (0), r (0)〉,

where r (k) is the residual in the kth PCG iteration and 〈·, ·〉 is defined
in (5.8) for the L-shaped region and in (7.20) for the rectangle with a
cross-point. In the second test, the number of PCG iterations was set to
3 log2 N .

In �1 = (a1,b1)× (a2,b2), we computed the error e1,N , approximating
the maximum norm, using the formula

e1,N = max
0≤k,l≤100

|u(xk, yl)−U1(xk, yl)|,

where xk =a1 + k(b1 −a1)/100, yl =a2 + l(b2 −a2)/100. In a similar way, we
computed the error ei,N in �i for i = 2,3,4. For the L-shaped region �

and the rectangle � with a cross-point, the maximum errors eN were taken
to be

eN =max{e1,N , e2,N , e3,N }
and

eN =max{e1,N , e2,N , e3,N , e4,N },
respectively.

We considered the following problems for the L-shaped region �:

Problem 1. The exact solution u(x, y)= cos(3x + 4y) and � defined
by a1 =−0.5, b1 =0, c1 =1, a2 =0, b2 =1, c2 =2.5.

Problem 2. The exact solution u(x, y)=cosh(3x +4y) and � defined
by a1 =−0.5, b1 =0, c1 =1, a2 =−1, b2 =0.5, c2 =1.
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Table I. Errors and Numbers of PCG Iterations for Problem 1 in L-shaped Region

Error Iterations with Error 3N log2 N
N eN stopping criterion eN iterations

6 1.10-02 8 1.10-02 8
8 3.55-04 9 3.55-04 9

10 7.44-06 10 7.44-06 10
12 1.09-07 10 1.09-07 11
14 1.19-09 11 1.19-09 12
16 9.93-12 11 9.93-12 12
18 7.16-14 11 7.16-14 13

Table II. Errors and Numbers of PCG Iterations for Problem 2 in L-shaped Region

Error Iterations with Error 3N log2 N
N eN stopping criterion eN iterations

6 1.56-01 8 1.56-01 8
8 4.61-03 9 4.61-03 9

10 9.08-05 9 9.08-05 10
12 1.27-06 10 1.27-06 11
14 1.33-08 10 1.33-08 12
16 1.09-10 11 1.09-10 12
18 9.52-13 11 9.52-13 13

The maximum errors eN and the numbers of PCG iterations for Problems
1 and 2 are presented in Tables I and II.
For the rectangle � with a cross-point, we considered the problems:

Problem 3. The exact solution u(x, y)= cos(3x + 4y) and � defined
by a1 =−1, b1 =1, c1 =2, a2 =0, b2 =0.5, c2 =2.

Problem 4. The exact solution u(x, y)=cosh(3x +4y) and � defined
by a1 =−1, b1 =0, c1 =1, a2 =−1, b2 =0.5, c2 =1.

The maximum errors eN and the numbers of PCG iterations for Problems
3 and 4 are presented in Tables III and IV.

With the number of PCG iterations equal to 3N log2 N , CPU times
for Problem 2, shown in Table V, confirm that the cost of our method is
O(N 3).
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Table III. Errors and Numbers of PCG Iterations for Problem 3 in Rectangle with Cross-
point

Error Iterations with Error 3N log2 N
N eN stopping criterion eN iterations

6 3.17-02 10 3.17-02 8
8 1.11-03 12 1.11-03 9

10 2.38-05 11 2.38-05 10
12 3.47-07 12 3.47-07 11
14 3.75-09 12 3.75-09 12
16 3.11-11 13 3.11-11 12
18 3.61-13 13 3.61-13 13

Table IV. Errors and Numbers of PCG Iterations for Problem 4 in Rectangle with Cross-
point

Error Iterations with Error 3N log2 N
N eN stopping criterion eN iterations

6 6.99-01 10 6.99-01 8
8 2.08-02 11 2.08-02 9

10 4.10-04 12 4.10-04 10
12 5.74-06 12 5.74-06 11
14 6.02-08 13 6.02-08 12
16 4.90-10 13 4.90-10 12
18 4.76-12 13 4.76-12 13

In our last example, we solved the problem

�u =−1 in �, u =0 on ∂�,

where � is the L-shaped region defined by a1 = a2 = −1,b1 = b2 =
0, c1 = c2 = 1. It is well known (see, for example, Chapter 8 in [18])
that the solution of this problem has singularities at the corners. For
N = 8,16,32,64,128,256, with the number of PCG iterations equal to
3N log2 N , we calculated the maximum norm errors ei,N , i =1,2,3, using,
in place of the exact solution u, the approximate solution corresponding to
N = 384. As expected, the errors presented in Table VI exhibit slow con-
vergence due to the corner singularities.
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Table V. CPU Times for Problem 2

N CPU time (seconds)

6 0.01
12 0.04
24 0.19
48 1.26
96 8.94

Table VI. Errors for Singular Problem on L-shaped Region

N Error eN

8 6.56-3
16 2.18-3
32 4.23-4
64 1.37-4
128 4.28-5
256 1.30-5

10. CONCLUSIONS

We present a spectral collocation method, with the collocation points
being the Legendre–Gauss nodes, for the solution of Poisson’s equation on
a rectangular polygon partitioned into rectangular subregions. In contrast
to other spectral collocation approaches, our method does not rely on
the variational formulation of the continuous problem and, in particular,
involves a novel and simple way of treating cross-points. The implemen-
tational simplicity of our method is based on the solution of decou-
pled spectral collocation problems on the rectangular subregions and on
the solution of the discrete Steklov–Poincaré equation associated with
the normal derivative equations at the interface collocation points; the
cross point equations do not enter explicitly into the definition of the
discrete Steklov–Poincaré equation. The discrete Steklov–Poincaré equa-
tion is solved using the preconditioned conjugate gradient method with
a preconditioner obtained from the discrete Steklov–Poincaré operators
corresponding to pairs of adjacent rectangular subregions. The use of
appropriate basis functions along with separation of variables renders our
method more efficient than other spectral collocation methods. In the
future, we will study the dependence of our preconditioner on the polyno-
mial degree and the number of rectangular subregions, and, if necessary,
we will introduce a coarse grid modification of the preconditioner.
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