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We construct optimized high-order finite differencing operators which satisfy
summation by parts. Since these operators are not uniquely defined, we con-
sider several optimization criteria: minimizing the bandwidth, the truncation
error on the boundary points, the spectral radius, or a combination of these.
We examine in detail a set of operators that are up to tenth order accurate
in the interior, and we surprisingly find that a combination of these optimi-
zations can improve the operators’ spectral radius and accuracy by orders of
magnitude in certain cases. We also construct high-order dissipation operators
that are compatible with these new finite difference operators and which are
semi-definite with respect to the appropriate summation by parts scalar prod-
uct. We test the stability and accuracy of these new difference and dissipation
operators by evolving a three-dimensional scalar wave equation on a spherical
domain consisting of seven blocks, each discretized with a structured grid, and
connected through penalty boundary conditions. In particular, we find that the
constructed dissipation operators are effective in suppressing instabilities that
are sometimes otherwise present in the restricted full norm case.
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1. INTRODUCTION

Kreiss and Scherer proposed quite some time ago [1,2] a powerful
way of constructing linearly stable schemes for solving evolution par-
tial differential equations which admit an energy estimate at the contin-
uum, through the use of difference operators satisfying summation by
parts (SBP). These operators essentially make it possible, up to bound-
ary terms, to derive estimates analogous to the continuum ones. While
the latter guarantee well posedness, their discrete counterparts guaran-
tee numerical stability. The boundary terms left after SBP can be con-
trolled by, for example, orthogonal projections [3–5], penalty terms [6],
or a combination of them [7] (see [8,9] for a comparison between these
methods). Furthermore, SBP difference operators and penalty techniques
have been rather recently combined to construct stable schemes of arbi-
trary high order for multi-block simulations [10,11]. These are simulations
where the domain is broken into different sub-domains which are “glued”
together through an appropriate interface treatment, in this case penalty
terms. This semi-structured approach allows for non-trivial geometries
while at the same time ensuring stability for schemes of arbitrary high
order using derivatives satisfying SBP.

Systems which have smooth solutions (that is, without shocks), such
as the Einstein vacuum equations (see, for example, [12]), are ideal for
using high-order methods. Furthermore, in numerical relativity one typ-
ically deals with non-trivial topologies and the need for smooth bound-
aries. Although there are proofs for particular systems in non-smooth
domains, proofs of well posedness for the initial-boundary value prob-
lem for general symmetric hyperbolic systems usually require smooth outer
boundaries [13–15].

Multi-block domains are also more efficient than single-block ones,
as they can be chosen to adapt to particular situations. For instance,
they can be made to mimic spherical coordinates which automatically
reduce the angular resolution at large radii (this allowed, for exam-
ple, studying late time behavior in a rotating black hole background
in full three-dimensions, placing the outer boundary at very large dis-
tances with modest computational resources [16]), and one can also reduce
the radial resolution (e.g., logarithmically). Last, the need for non-triv-
ial topologies includes the particular but very important case of black
hole excision, where the black hole singularity is removed from the com-
putational domain. In sum, the penalty multi-block approach combined
with high order SBP operators appears to be promising for simulating
Einstein’s equations.
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In principle, modulo the tedious but straightforward symbolic manip-
ulation algebra needed to construct high order difference operators satis-
fying SBP, one can systematically generate in this way stable multi-block
schemes of arbitrary high order. However, it turns out that high-order
operators satisfying SBP are highly non-unique, the higher their order the
higher their non-uniqueness. There is great variation among the proper-
ties of these operators, and for reasons that we discuss below, much care
has to be taken in choosing the stencils if explicit time integration schemes
are used. One approach could involve choosing operators with minimum
bandwidth (as in [17]), since they reduce the number of operations. Unfor-
tunately, in some cases the resulting operator leads to an amplification
matrix with a very large spectral radius (which has already been pointed
out in [16] and [18]); when using explicit schemes to integrate in time,
this translates into a very small Courant limit. One can do much better
by attempting to minimize the spectral radius of the complete operator,
rather than its bandwidth [16,18]. This in some cases leads to a Cou-
rant limit two orders of magnitude larger as compared to the minimum
bandwidth case, as discussed below. One can sometimes do even better:
another feature to take into account is the amplitude of the truncation
errors at and close to boundaries. As we will show, in some cases one
can decrease them by orders of magnitude while keeping the spectral radius
small. What we have just briefly discussed is one of the goals of this paper,
namely to explicitly construct efficient and accurate high order SBP differ-
ence operators, and compare the above different criteria that can be used
in their construction. We consider both diagonal and restricted full (non-
diagonal) norm based operators; in the first (second) case up to order ten
(eight) in the interior.

In many cases of interest, particularly in non-linear ones, one might
want to add a small amount of artificial dissipation to the problem. In
order not to spoil the available energy estimates, the dissipation opera-
tor has to be negative semi-definite with respect to the SBP scalar prod-
uct. This is not just a technical detail. As we will discuss below, in certain
cases of interest the use of simple dissipation operators that do not sat-
isfy this property (e.g., standard Kreiss–Oliger dissipation in the interior
and no dissipation near boundaries, a choice commonly used in some
applications) cannot get rid of some instabilities, while better dissipa-
tion operators do. Even if there are no instabilities, a dissipation oper-
ator that is non-zero close to boundaries is very useful if one wants
to smooth out aspects of the solution propagating through the multi-
block interfaces. Mattsson et al. [19] have recently presented a way of
constructing dissipation operators that are indeed negative semi-definite
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for arbitrary SBP scalar products, and which extend all the way up to
the boundaries. Following this prescription one can construct, for any
difference operator of arbitrary high order satisfying SBP, an associ-
ated dissipation up to the very boundary points in a systematic way. In
this paper, we do so explicitly, for each of the efficient and accurate
high-order derivatives that we present. This is the second goal of our
paper.

The third and final goal is to test these derivative and dissipa-
tion operators in three-dimensional (3D) multi-block simulations, mak-
ing use of the penalty method to handle interfaces, as described in [10,
11]. Because of the challenge involved in achieving stability for very high-
order schemes in the presence of interfaces, multi-block domains present
an ideal setting for testing the new derivative and dissipation operators
that we construct here. While black hole excision is one of our main
motivations for using multiple blocks, we will report here on simula-
tions on a domain that is useful for scenarios that do not involve black
hole excision, but still need a smooth (e.g., spherical) outer boundary.
This grid structure should be useful for studies of wave phenomena at
large distances from the source, gravitational collapse, or Friedrich’s con-
formal approach, where the spacetime is compactified, and null infin-
ity is brought to a finite computational distance (see, e.g., [20]). In
order to isolate testing numerical stability, accuracy, and efficiency of the
new high-order derivative and dissipation operators from gauge problems
and continuum instabilities typically found in many formulations of the
Einstein equations, we perform the tests in this paper using a simpler 3D
system—a massless scalar field— and we will report on evolutions of the
Einstein equations elsewhere.

This paper is organized as follows. In Sect. 2, we introduce our nota-
tion, review shortly the penalty method, discuss the relative merits of SBP
finite differencing operators based on diagonal and on non-diagonal
norms, and summarize the construction of dissipation operators of Matts-
son et al. [19]. In Sect. 3, we explain the different strategies that we use in
constructing the derivative operators, namely their bandwidth, their spec-
tral radius, and their truncation error. We introduce our example system
of evolution equations in Sect. 4, where we also describe the type of 3D
multi-block domain that we use to test the difference and dissipation oper-
ators. We describe the operators corresponding to diagonal and restricted
full norms in Sect. 5, discussing their properties and comparing their accu-
racies in numerical tests. Finally, Sect. 6 closes with some remarks about
possible future research directions.
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2. SBP DERIVATIVE AND DISSIPATION OPERATORS WITH A
HIGH ORDER OF ACCURACY

2.1. SBP and Penalties

In this subsection, we briefly summarize Sect. 2 of [16]. We do so
essentially to fix our notation, for more details see that reference. Consider
a computational domain [a, b] and a discrete grid consisting of points
i = 1 . . . n and grid spacing h. A difference operator D is said to satisfy
SBP on that domain with respect to a positive definite scalar product Σ

(defined by its coefficients σij )

〈u, v〉=h

n∑

i,j=1

uivjσij (1)

if the property

〈u,Dv〉+〈v,Du〉= (uv) |ba (2)

holds for all grid functions u and v. Similar definitions can be introduced
for two (and higher) dimensional domains. The scalar product or norm is
said to be diagonal if

σij =σiiδij (3)

that is, if σij is diagonal. It is called restricted full if

σibj =σibib δibj (4)

that is, if σij is diagonal on the boundary, but may be non-diagonal (full)
in the interior. ib ∈{1, n} denote boundary point indices.

We now briefly highlight through a simple example the main features
of the penalty method for multi-block evolutions, for more details see [10,
11]. We assume that the norm is either diagonal or restricted full, since
these are the cases we actually consider later in this paper.

The simple example we wish to consider is the advection equation,

∂tu=Λ∂xu

in the spatial interval (−∞,+∞) with appropriate fall-off conditions at
infinity, and two grids: a left grid covering (−∞,0], and a right grid cov-
ering [0,+∞). We refer to the grid function u on each grid by ul and ur ,
corresponding to the left and right grids, respectively. The problem is dis-
cretized using grid spacings hl, hr on the left and right grids—not neces-
sarily equal— and difference operators Dl,Dr satisfying SBP with respect
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to scalar products given by the weights σ l, σ r on their individual grids.
That is, these scalar products are defined through

〈ul, vl〉=hl
0∑

i,j=−∞
σ l

ij u
l
iv

l
j , 〈ur, vr 〉=hr

+∞∑

i,j=0

σ r
ij u

r
i v

r
j . (5)

The semi-discrete equations are written as

∂tu
l
i = ΛDlul

i +
δi,0S

l

hlσ l
00

(ur
0 −ul

0) , (6)

∂tu
r
i = ΛDrur

i + δi,0S
r

hrσ r
00

(ul
0 −ur

0) . (7)

In the fully non-diagonal case the treatment is slightly more complicated,
therefore we consider here only the diagonal and the restricted full cases.

One can derive an energy estimate and therefore guarantee stability if
two conditions are satisfied. One of them is Λ+Sr −Sl =0. The other one
imposes an additional constraint on the values of Sl and Sr :

• Positive Λ:

Sl =Λ+ δ, Sr = δ with δ �−Λ

2
. (8)

• Negative Λ:

Sr =−Λ+ δ, Sl = δ with δ � Λ

2
. (9)

• Vanishing Λ: this can be seen as the limiting case of any of the above
two.

For the minimum values of δ allowed by the above inequalities the energy
estimate is the same as for a single grid (that is, as if the interface did not
exist), while for larger values of δ there is damping in the energy which is
proportional to the mismatch at the interface.

2.2. Diagonal Versus Non-diagonal Norms

There are several advantages in using one-dimensional (1D) difference
operators satisfying SBP with respect to diagonal norms. One of them is
related to the fact that SBP is guaranteed to hold in several dimensions
by simply applying the 1D operator along each direction [3–5]. Another
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advantage is related to the following: in order to ensure stability through
an energy estimate, in many cases one has to be able to bound the norm
of the commutator between the difference operator and the principal part
of the equations for all resolutions, and this is guaranteed to hold in the
diagonal case. Finally, the expressions of the operators are also somewhat
simpler when compared to non-diagonal ones. The disadvantage, on the
other hand, is that the order of accuracy at and close to boundaries is half
of that in the interior, while in the restricted full case the operators lose
only one order near boundaries [1,2,17].

Although more efficient, schemes based on non-diagonal norms might
have stability problems in the absence of dissipation. First, it is not guar-
anteed that SBP holds in several dimensions if a difference operator sat-
isfying SBP in 1D is applied along each direction. Second, there can be
problems even in one dimension when the system has variable coefficients,
since the boundedness of the commutator discussed above is not guaran-
teed to hold either. This is not a feature inherent to finite difference (FD)-
based schemes: the boundedness of such commutator is, for example, in
general not guaranteed either for pseudo-spectral methods in the absence
of filtering, even in periodic domains, when the system has variable coeffi-
cients [21]. Therefore, both in the case of pseudo-spectral methods and
non-diagonal norm based FD schemes, one is in general unable to guar-
antee stability in more than one dimension, or even in 1D in the variable
coefficient case, without filtering or dissipation (see also [22]). In the prob-
lem at hand, the question then is whether one can stabilize the scheme
through artificial dissipation, without introducing an excessive amount of
it. Below we will address this question in detail, as well as compare diag-
onal based operators to their non-diagonal counterparts.

In the diagonal case, we will consider difference operators of order
two, four, six, eight, and ten in the interior (and therefore order one, two,
three, four, and five, respectively, at and close to boundaries) and denote
them by D2−1,D4−2,D6−3,D8−4,D10−5. In the non-diagonal (restricted
full) case, we will consider operators of order four, six, and eight in the
interior (and therefore order three, five, and seven, respectively, at and
close to boundaries), and denote them by D4−3,D6−5,D8−7. These oper-
ators in general are not unique. For example, in the second order in the
interior case there is a unique operator satisfying SBP, and its norm is
diagonal, the operator being what we called D2−1. With respect to higher
order operators, the following holds for the diagonal norm based ones:
D4−2 is unique, while D6−3, D8−4, and D10−5 comprise a one-, three-, and
ten-parameter family, respectively. In the restricted full case, D4−3, D6−5,
and D8−7 have three, four, and five free parameters, respectively.



116 Diener, Dorband, Schnetter, and Tiglio

2.3. Dissipation Operators

As pointed out in [19], adding artificial dissipation may lead to an
unstable scheme unless the dissipation operator is compatible with the
SBP derivative operator. In that reference, the authors present a prescrip-
tion for constructing such operators, which we follow here. In short, a
compatible dissipation operator, of order 2p in the interior, is constructed
as

A2p =−α h2p Σ−1DT
p BpDp, (10)

where α is a positive constant, Σ is the scalar product used in the con-
struction of the SBP operator, and Dp is a consistent approximation of
dp/dxp with minimal width.4 Bp is the so-called boundary operator. The
boundary operator is positive semi-definite and its role is to allow bound-
ary points to be treated differently from interior points. Bp cannot be cho-
sen freely, but has to follow certain restrictions which we explain below.

For the diagonal norm operators, choosing Bp to be the unit matrix
is sufficient to obtain the required pth order accuracy near the boundary,
which is the same accuracy as the derivative operator.

In the case of restricted full norm operators, the accuracy require-
ment near the boundary is stricter. The dissipation operator should have
order 2p−1 at the boundary and order 2p in the interior, which requires
a different choice of Bp. We again follow [19] and choose Bp to be
a diagonal matrix, where the diagonal is the restriction onto the grid
of a piecewise smooth function. The numerical domain is divided into
three regions in each dimension; an interior part and on either side two
transition regions containing the boundaries. The transition region has
a fixed size that is independent of the resolution. Within the transition
region the function, Bp, increases from O(hp−1) at the outer bound-
ary to a constant value 1 at the boundary with the interior region
in such a way that the derivatives of Bp up to order p − 2 van-
ish at either ends. In the interior region the function has the constant
value 1.

For the D4−3 operator, Bp has the value h at the boundary and
increases linearly to 1 in the transition region. For the D6−5 operator, we
use a cubic polynomial with vanishing derivatives at either end of the tran-
sition region to increase the value of Bp from h2 at the boundary to 1 in
the interior. For the D8−7 operator, the boundary values for the transition
region are h3 and 1, and we use a fifth-order polynomial to make the first
and second derivatives vanish at either end of the transition region.

4“Minimal width” means that the stencil must contain as few points as possible.
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For the constant α we make the choice α = 2−2p, since then the
parameter used to specify the strength of the dissipation has approxi-
mately the same allowed numerical range, independently of the order of
the operator.

Note that in the diagonal case up to order eight in the interior, the
scalar product Σ is independent of the free parameters, so for a given
order the same dissipation operator is used for all the different operators
we construct below, while for the higher order diagonal operators and the
restricted full norm operators a unique dissipation operator has to be con-
structed for each parameter choice.

3. OPTIMIZATION CRITERIA

We start by fixing some notation. If the accuracy of the difference
operator D in the interior is 2p, then there are b points at and near the
boundaries where the order of D is only q. In the diagonal case one has
q =p, and in the restricted full case it is q =2p−1. We call b the bound-
ary width. The difference operator at these b points uses (up to) s points
to compute the derivative. We call s the boundary stencil size.

When expanding D in a Taylor series one has

Du|xi
= du

dx

∣∣∣∣
xi

+ cih
q dq+1u

dxq+1

∣∣∣∣∣
xi

for i =1 . . . b, (11)

where h is the grid spacing and xi = ih. We call ci the error coefficients.
In what follows, we consider three cases for each family of operators

of a given order, denoted by:

• Minimum bandwidth: If there are n free parameters, it is always possi-
ble to set n of the derivative coefficients to zero, thereby minimizing the
computational cost of evaluating the derivatives in the boundary region.

• Minimum spectral radius: In this case, we calculate numerically the ei-
genvalues of the amplification matrix for a test problem, and choose the
parameters to minimize the largest eigenvalue.

• Minimum ABTE: We minimize the average boundary truncation error
(ABTE), which we define as

ABTE :=
(

1
b

b∑

i=1

c2
i

)1/2

. (12)

The test problem that we use to compute the spectral radius of the
amplification matrix is the same one that was used in [16]: an advection
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equation propagating in a periodic domain. Periodicity is enforced through
an artificial interface boundary via penalties.5 Since in that reference it
was studied how the spectrum changes with the penalty parameter, here
we use a fixed parameter δ = −1/2 (see Sect. 2), which means that the
semi-discrete energy is strictly preserved, and that the amplification matrix
is anti-Hermitian, and therefore the real part of all eigenvalues is zero.6

Another option [18] would be to compute the spectral radius of the
discrete difference operator itself, which is obviously model-independent.
In this case, the spectrum is in general not purely imaginary, since the
boundary conditions have not been imposed yet. In practice we have
found, though, that both approaches lead to similar operators, in the sense
that a derivative operator with small spectral radius usually also leads to
amplification matrices for the above test problem with small spectral radii
as well. Further, we have also found that in numerical simulations of the
non-linear Einstein’s equations the different operators behave as expected
from the analysis of the above test problem [23].

It is worth pointing out that for the diagonal operator case the band-
width and the ABTE can be globally minimized by analytically choosing
the parameters, since the ABTE is a quadratic function of the parameters
and therefore has a global minimum. This is not the case for the spec-
tral radius. Therefore, when we refer to minimizing the spectral radius, we
perform a numerical minimization and do not claim that we have actually
found a global minimum.

4. EXAMPLE EVOLUTION SYSTEM AND MULTI-BLOCK
DOMAIN SETUP

We test each of the new derivative operators and their associated dis-
sipation operators through 3D multi-block simulations. In these simula-
tions we solve the scalar wave equation

∂ttφ =Δφ (13)

in static, curvilinear coordinates. This equation can be reformulated as

∂tφ = Π, (14)

∂tΠ = γ −1/2Di

(
γ 1/2γ ij dj

)
, (15)

∂tdi = DiΠ , (16)

5Truly periodic domains (that is, without an interface) do not require boundary derivative
operators, and therefore do not constitute a useful test here.

6As a side remark: we actually compute the eigenvalues of the amplification matrix multi-
plied by the grid spacing h.
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where γij is the Euclidean metric in curvilinear coordinates, γ =det γij its
determinant, and γ ij its inverse. Here we use the Einstein summation con-
vention, implicitly summing over repeated indices.

The advantage of this particular form of the equations over other first
order ones is that it defines a strictly stable discretization in the diagonal
case,7 in the sense that one can show by just using SBP (i.e., without need-
ing a discrete Leibniz rule, which in general does not hold) that there is a
semi-discrete energy E which is preserved in time for any difference oper-
ator D satisfying SBP.8 This energy is given by

E = 1
2

∫ (
Π2 +γ ij didj

)
γ 1/2 dV . (17)

The geometry of the computational domain in the 3D simulations that we
show below is the interior of a sphere. In order to avoid the singularities at
the origin and poles that spherical coordinates have, we cover the domain
with seven blocks: surrounding the origin we use a Cartesian, cubic block,
which is matched (at each face) to a set of six blocks which are a defor-
mation of the cubed-sphere coordinates used in [16]. Figure 1 shows an
equatorial cut of our 3D grid structure, for 113 points on each block. The
blocks touch and have one grid point in common at the faces. The grid
lines are continuous across interfaces, but in general not smooth.

Each block uses coordinates a, b, c. For the inner block these are the
standard Cartesian ones: a = x, b = y, c = z, while for the six outer blocks
they are defined as follows. The “radial” coordinate c ∈ [−1,1] is defined
by inverting the relationship

r = 1
2

[r0(1− c)+ r1(1+ c)] (18)

(where r =
√

x2 +y2 + z2). The “angular” coordinates, a, b∈ [−1,1], are in
turn defined through

• Neighborhood of positive x-axis:
x = r/F, y = rb/F, z=ar/F ,

• Neighborhood of positive y-axis:
x =−br/F, y = r/F, z=ar/F ,

7There could be strictly stable second-order discretizations as well.
8That is, the energy is preserved modulo boundary conditions, which can inject or remove
energy from the system. For example, if maximally dissipative boundary conditions are
used, the energy actually decreases as a function of time.
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Fig. 1. An equatorial cut of the 3D multi-block structure used in the simulations of this
paper.

• Neighborhood of negative x-axis:
x =−r/F, y =−rb/F, z=ar/F ,

• Neighborhood of negative y-axis:
x =br/F, y =−r/F, z=ar/F ,

• Neighborhood of positive z-axis:
x =−ar/F, y = rb/F, z= r/F ,

• Neighborhood of negative z-axis:
x =ar/F, y = rb/F, z=−r/F ,

where r is written in terms of c through (18), and

F :=
(

(r1 − r)+ (r − r0)E

r1 − r0

)1/2

(19)

with E = 1 +a2 +b2. The surface c= 1 corresponds to the spherical outer
boundary (of radius r = r1), while c =−1 corresponds to the cubic inter-
face boundary matched to a cube of length 2r0 on each direction. The grid
structure of Fig. 1 corresponds to r0 =1, r1 =3.
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To get an accurate measure of numerical errors, we evolve initial data
for which there exists a simple analytic solution of (14) for all times,
against which we can compare the numerical results. We choose initial
data

φ(t =0) = A cos(2πk ·x), (20)

Π(t =0) = −2πA|k| sin(2πk ·x), (21)

di(t =0) = −2πAki sin(2πk ·x). (22)

The analytic solution for this setup is a plane wave with constant ampli-
tude A traveling through the grid in the direction of the vector k. In all
the simulations that we present below we use A=1.0 and k= (0.2,0.2,0.2),
i.e., the wave is traveling in the direction of the main diagonal. Consistent
and stable outer boundary conditions are imposed through penalty terms
by penalizing the incoming characteristic modes with the difference to the
exact solution, as introduced in [6]. As mentioned above, we set r0 =1 and
r1 =3 in our block system, placing the outer boundary at R =3.

We use resolutions from h=Δa =Δb =Δc = 0.1 (213 grid points per
block) up to h = 0.0125 (1613 grid points per block). Our highest reso-
lution corresponds to about 400 grid points per wave length. (This fig-
ure depends on which part of which block one looks at, since the wave
does not propagate everywhere along grid lines.) We use that many grid
points per wave length—or, equivalently put, we use such a large wave
length—because we are interested in high accuracy. Decreasing the wave
length is resolution-wise equivalent to using fewer grid points per block,
which is a case we study with our coarse resolution. It would be inter-
esting to study the effect of very short length features onto the stability
of the system, i.e., to use a wave length that cannot be well resolved any
more. Discrete stability guarantees in this case that the evolution remains
stable, and we assume that a suitable amount of artificial dissipation can
help in the non-linear case when there is no known energy estimate. The
size of the time step is chosen to be proportional to the minimal grid spac-
ing in local coordinates Δt = λ min(Δa,Δb,Δc) with the Courant factor
λ. Unless otherwise stated, we use λ=0.25. For the penalty terms, we used
δ = 0 everywhere (note that this does not imply that no penalty is added,
since the penalty value used is a combination of the value of δ and the
characteristic speed). For all the runs with dissipation the strength was
chosen to be ε = 0.4 (see Appendix A.2). For the dissipation operators
based on a non-diagonal norm, we choose the transition region to be 30%
of the domain size. Note that except for the D6−5 operator (where dissipa-
tion is essential in order to stabilize the operator) the differences between
results with and without dissipation are so small, that we only show the
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Table I. Properties of theD2−1 operator

Operator Unique

Spectral radius 1.414
ABTE 0.25
c1 0.5

results obtained without dissipation. In all cases we calculate the error
in the numerical solution for φ(x, t) with respect to the exact analytical
solution.

We have implemented our code in the Cactus framework [24,25] using
the Carpet infrastructure [26,27]. An overview of our computational infra-
structure is given in [28].

5. OPERATORS

5.1. Operators Based on Diagonal Norms

5.1.1. Operator Properties

We consider first operators that are based on a diagonal norm, since
this is the easier case. We examine here the operators D6−3, D8−4, and
D10−5. These operators have 6, 8, and 11 boundary points, respectively,
and their maximum stencil sizes are 9, 12, and 16 points, respectively.9

The operators D2−1 and D4−2 are also based on a diagonal norm. They
are unique and have been examined in [16]. For completeness we list their
properties here as well.

The D2−1 operator formally has two boundary points and a maxi-
mal stencil size of three points. However, the stencil for the second bound-
ary point is the same as the interior centered stencil, so in practice it has
only one boundary point with a stencil size of two points. The spectral
radius and error coefficient are listed in Table I. The D4−2 operator has
four boundary points and a maximal stencil size of six points. We list its
properties in Table II.

The family of D6−3 operators has one free parameter. The resulting
norm is positive definite, and is independent of this parameter, hence the
parameter can be freely chosen. For this operator there are very small
numerical differences in the spectral radius and in the truncation error
coefficients between the three different cases where the bandwidth, the

9We expected the D10−5 operator to have 10 boundary points and a maximum stencil size of
15 points, but this did not result in a positive definite norm.
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Table II. Properties of theD4−2 operator.

Operator Unique

Spectral radius 1.936
ABTE 0.2276
c1 −0.4215
c2 0.1666
c3 −0.0193
c4 −0.037

Table III. Properties of the diagonal norm D6−3 operators

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 2.1287 2.1077 2.1082
ABTE 0.2716 0.2563 0.2558
c1 0.5008 0.5436 0.5374
c2 −0.1854 −0.2340 −0.2270
c3 −0.2144 0.0012 −0.0300
c4 0.3067 0.1977 0.2135
c5 −0.1288 −0.0546 −0.0654
c6 −0.0286 −0.0419 −0.0400

spectral radius and the average boundary truncation error are respectively,
minimized, as can be seen in Table III.

Based on those small differences one would expect that there should
not be much of a difference in terms of accuracy among these three differ-
ent cases in practical simulations. However, it turns out that the minimum
bandwidth operator in practice leads to very different solution errors com-
pared to the minimum ABTE operator, and that the latter is to be pre-
ferred. We did not implement the minimum spectral radius operator, since
the difference in spectral radius is minimal.

The family of D8−4 operators has three free parameters; as in
the previous case, the norm is positive definite and independent of the
parameters, which can therefore be freely chosen. We again investigate the
properties of the operators obtained by minimizing the bandwidth, the
spectral radius, and the ABTE. Interestingly, we find out that there is a
one parameter family of operators that minimizes the ABTE. Therefore, in
the minimum ABTE case we make use of this freedom and also decrease
the spectral radius as much as possible. The results are shown in Table IV.
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Table IV. Properties of the diagonal norm D8−4 operators

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 16.0376 2.229 2.231
ABTE 1.2241 0.3993 0.3474
c1 −0.5878 −0.8277 −0.8086
c2 0.1068 0.3682 0.3439
c3 3.1427 −0.3819 0.0228
c4 −0.7918 −0.2186 −0.3086
c5 0.9886 −0.3412 0.0225
c6 0.3304 0.3619 0.2970
c7 −0.1995 −0.1097 −0.0823
c8 −0.0211 −0.0465 −0.0497

In this case, the minimum bandwidth operator is quite unacceptable
due to its large spectral radius. (For this reason we did not even imple-
ment it.) The error coefficients are also quite large compared to the two
other cases. The differences in error coefficients between the minimum
spectral radius operator and the minimum ABTE operator might appear
quite small, but as demonstrated in Fig. 5 below, there is almost of factor
of two in the magnitude of the error in our numerical tests (see below).

The family of D10−5 operators turns out to be different from the
lower order cases.10 The conditions the SBP property impose on the norm
do not yield a positive definite solution with a boundary width of 10
points. When using a boundary width of 11 points instead, there is a
free parameter, y, in the norm, which for a very narrow range of values
y ∈ [1.004740,1.010221]11 does allow it to be positive definite. We chose
this parameter for an initial investigation to have the value y =1.01. With
the larger boundary width, there are 10 free parameters in the difference
operator. Fixing these to give a minimal bandwidth operator results in an
operator with a large ABTE (20.534) and very large spectral radius (995.9)
that is not of practical use. Minimizing the spectral radius in the full 10
dimensional parameter space turned out to be very difficult because the
largest imaginary eigenvalue does not vary smoothly with the parameters.
Instead we attempted to minimize the average magnitude of all the eigen-
values, however the resulting operator turned out to have a slightly larger
spectral radius than the minimum ABTE operator considered next and

10It also seems that this is the first time those operators are constructed.
11The limits for the allowed range are known as exact fractions and are

1531320223/1524096000 and 369521837/365783040.
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were therefore not implemented and tested. Minimizing the ABTE instead
fixes four of the ten parameters and the remaining six can then be used
to minimize the spectral radius. This results in an operator with a ABTE
of 0.7661 and spectral radius of 2.240. When used in practice, it turns
out that this operator at moderate resolutions has rather large errors com-
pared to the corresponding D8−4 case. This is probably not a surprise,
since the ABTE associated with the D10−5 operator is approximately twice
that one corresponding to the D8−4 case. These errors can be reduced
by a factor of about 3 by adding artificial dissipation of strength ε =
1.0 (see Appendix A.2), indicating that the errors, though not growing in
time, are dominated by high-frequency noise from the boundary derivative
operators.

Investigating the importance of the value of y, it turns out that the
minimal ABTE varies from 0.6187 to 0.7715 in the allowed range, indi-
cating that there is some room for improvement. Choosing y = 1.004741
(close to the lowest allowed value) yields an operator giving errors that
are a factor of 2 smaller than the y = 1.01 case, though still signifi-
cantly larger compared to the best D8−4 operator at the same resolution.
In this case, however, the norm is almost singular and the result is a
compatible dissipation operator with very large spectral radius, requiring
extremely small timesteps. A test at the lowest resolution (using a time-
step that is 40 times smaller than usual) shows that this operator when
combined with dissipation gives results comparable to the D8−4 opera-
tor. Whether a value of y can be found that results in a useful com-
bination of derivative and dissipation operators is still unclear and will
require further investigation. What is clear now, is that the D10−5 opera-
tors will not be useful unless dissipation is used as well in order to sup-
press the high frequency noise coming from the boundary region.

Only at the highest resolution considered in the tests of this paper is
there currently an advantage in using the D10−5 operators. We therefore do
not pursue them further in this paper, though we might consider their use
in other applications if we need higher resolutions and/or higher order.

For completeness we list the properties of the minimum bandwidth
and ABTE D10−5 operators (for y =1.01 and y =1.004741) in Table V.

5.1.2. Numerical Tests

In the diagonal case we do not need to add dissipation to the equa-
tions which we solve here, since our semi-discrete discretization is strictly
stable, as discussed in Sect. 4. This means that the errors cannot grow as
a function of time at a fixed resolution (i.e., at the semi-discrete level).
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Table V. Properties of the diagonal norm D10−5 operators

Minimum Minimum
Minimum ABTE ABTE

Operator bandwidth y =1.01 y =1.004741

Spectral radius 995.9 2.240 2.285
ABTE 20.534 0.7661 0.6187
c1 0.7270 2.0379 1.6780
c2 0.3034 −0.8545 −0.7035
c3 −10.5442 −0.0898 −0.0019
c4 0.2690 0.7250 0.5766
c5 4.8373 0.2889 0.00002
c6 −62.3907 −0.0154 −0.4582
c7 −1.3649 −0.6429 −0.3663
c8 24.6628 0.0293 0.1041
c9 0.1045 0.7073 0.4412
c10 −0.4197 −0.1411 −0.1127
c11 −0.0243 −0.1469 −0.0715

However, following [19] we have constructed corresponding dissipation
operators for these derivatives for use in non-linear problems [23].

5.1.2.1. The operator D6−3. Figure 2 shows the results of convergence
tests in the L∞ norm for the D6−3 case, for both the minimum bandwidth
and the minimum ABTE operators. We define the convergence exponent
m as

m =
log E1

E2

log h1
h2

, (23)

where E1 and E2 are solution errors and h1 and h2 the corresponding res-
olutions. In the minimum bandwidth case the convergence exponent gets
close to three as resolution is increased, i.e., the order is being dominated
by boundary (outer, interface, or both) effects. On the other hand, one
can see from the figure that in the minimum ABTE case we do get a
global convergence exponent that gets quite close to four when resolution
is increased. Figure 3 shows an accuracy comparison between these two
operators, for the coarsest and highest resolutions used in the previous
plots, displaying the errors with respect to the exact solution in the L∞
norm. The improvement is quite impressive: for the highest resolution that
we used the error with the minimum ABTE operator is around two orders
of magnitude smaller.
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Fig. 2. Convergence exponents for the minimum bandwidth (top) and the minimum ABTE
(bottom) D6−3 operators.

We conjecture that this is caused by larger truncation errors for this
operator near boundaries. This is unfortunately not immediately evident
when looking at the boundary error coefficients ci or the ABTE. However,
three of the inner four error coefficients have absolute values less than 0.1
for the optimized operator, whereas this is the case for only 1 error coeffi-
cient for the standard operator. The fact that the accuracy is also higher
with the optimized operator also points to the fact that the standard oper-
ator introduces somehow a much larger error.

As a summary, the minimum ABTE operator is the preferred choice
in this case, the minimum bandwidth D6−3 operator does not have a large
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Fig. 3. Accuracy comparison between the D6−3 operators of the previous figure. For the
highest resolution that we used, the errors with the minimum average boundary truncation
error operator are around two orders of magnitude smaller than those obtained with the min-
imum bandwidth one.

spectral radius in comparison, but it does have much larger truncation
error coefficients.

5.1.2.2. The operator D8−4. Figure 4 shows the results of similar conver-
gence tests, also in the L∞ norm, for the D8−4 operators. As discussed
in the previous Section, in this case the minimum bandwidth operator
has both very large spectral radius and truncation error coefficients, so
large that it is actually not worthwhile presenting here details of simula-
tions using it (they actually crash unless a very small Courant factor is
used, as expected). In references [16] and [18] two different sets of param-
eters were found, both of which reduced the spectral radius by around
one order of magnitude, when compared to the minimum bandwidth one.
Here we concentrate on comparing an operator constructed in a similar
way (with slightly smaller spectral radius than the ones of [16,18])—that
is, minimizing the spectral radius—with the minimum ABTE operator. We
see that in both cases we find a global convergence exponent close to five.
Figure 5 shows at fixed resolution (with the highest resolution that we
used for the convergence tests) a comparison between these two opera-
tors, by displaying the errors with respect to the exact solution, in the L∞
norm. There is an improvement of a factor of two in the minimum ABTE
case (as mentioned, the differences with the minimum bandwidth case are
much larger). Notice also that even though not at round-off level, the
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Fig. 4. Convergence exponents for the minimum spectral radius (top) and the minimum
ABTE (bottom) D8−4 operators.

errors in our simulations are quite small, of the order of 10−7 in the L∞
norm (in the L2 norm they are almost an order of magnitude smaller).

5.2. Operators Based on a Restricted Full Norm

5.2.1. Operator Properties

Let us now consider operators that are based on a restricted full
norm (see Sect. 2.1). In this case the norm always depends on the free
parameters, and it is not necessarily positive definite for all values of them.
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Fig. 5. Comparison of the accuracy of the two D8−4 operator types shown in the previous
figure in the L∞ norm. Although both operators have quite similar error coefficients, there is
up to a factor of two difference in the errors seen in the actual runs.

Therefore these free parameters are subject to the constraint of defining a
positive definite norm.

We examine here the operators D4−3, D6−5, and D8−7. These oper-
ators have five, seven, and nine boundary points, respectively, and their
maximum stencil size are seven, ten, and thirteen points, respectively.

The family of D4−3 operators has three independent parameters, and
as mentioned above, they have to be chosen so that the corresponding
norm is positive definite.

We constructed operators by minimizing their bandwidth, their spec-
tral radius, and their average boundary truncation error. In minimizing the
bandwidth there is some arbitrariness in the choice as to which coefficients
in the stencils are set to zero. Here we follow [17] and set the coefficients
q1,5, q2,7, and q3,7 to zero, where the first index labels the stencil starting
with 1 from the boundary and the second index labels the point in the
stencil. This results in two solutions, but only one of them corresponds to
a positive definite norm.

A comparison of the spectral radius, ABTE, and error coefficients is
listed in Table VI.

We find in our simulations (see below) that the minimum bandwidth
and the minimum ABTE D4−3 operators have very similar properties. The
latter, however, has slightly smaller errors, enough to offset the slightly
smaller time steps required for stability. The operator with a minimum
spectral radius unfortunately has very large errors; in fact, we have not
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Table VI. Properties of the restricted full norm D4−3 operators

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 2.428 1.322 2.758
ABTE 0.1281 0.5824 0.0230
c1 0.2500 1.2359 −0.0100
c2 −0.1333 −0.2378 −0.0409
c3 0.0201 −0.3166 0.0251
c4 0.0366 0.1053 −0.0086
c5 −0.0065 0.0279 −0.0129

Table VII. Properties of the restricted full norm D6−5 operators

Minimum Minimum Minimum
Operator bandwidth spectral radius ABTE

Spectral radius 2.940 1.458 3.194
ABTE 0.0986 0.5380 0.0648
c1 0.1667 1.3692 −0.0154
c2 −0.1558 −0.2682 −0.0507
c3 0.0672 −0.2118 0.1336
c4 0.0953 0.0097 0.0532
c5 −0.0433 0.0702 −0.0733
c6 0.0141 0.1434 0.0187
c7 −0.0163 −0.0972 −0.0123

been able to stabilize the system with any amount of artificial dissipation
when we used this operator for equations with non-constant coefficients in
3D.

The family of D6−5 operators has four independent parameters that
again have to be chosen so that the norm is positive definite. For the
minimal bandwidth operator we choose to zero the coefficients q1,7, q2,9,
q2,10, and q3,10. The resulting equations cannot be solved analytically, but
numerically we find eight solutions, of which four are complex. From
the remaining real solutions only one of them results in a positive defi-
nite norm. A comparison between the properties of the minimal band-
width, minimal spectral radius and minimal ABTE operators is listed in
Table VII.

As in the D4−3 case, the minimum spectral radius operator has a
much smaller spectral radius than the other ones but, again, we did not
manage to stabilize it with dissipation (at least, with reasonable amounts
of it) in the 3D case with non-constant coefficients. The errors for the
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minimum ABTE operator are significantly smaller than the minimum
bandwidth one, which is reflected in practice by smaller errors; in addition,
the operator could be stabilized with significantly less artificial dissipation.

It should be noted at this point that we did not manage to stabilize
the D6−5 operator with a naive adapted Kreiss–Oliger like dissipation pre-
scription. We tried applying Kreiss–Oliger dissipation in the interior of the
domain, and applying no dissipation near the boundary where the cen-
tered stencils cannot be applied. This failed. Presumably this was caused
by the fact that the dissipation operator that we applied is not nega-
tive semi-definite with respect to the SBP norm. Furthermore, instabilities
could still be present even if one constructed a negative semi-definite oper-
ator, if the latter is zero near boundaries, since some of these instabilities
are caused by the fact that in the full norm case the Jacobian (associated
with the variable coefficients case) in general does not commute with the
difference operator at boundaries. Only after constructing boundary dissi-
pation operators following the approach of [19], did we arrive at a stable
scheme involving the D6−5 operator.

The family of D8−7 operators has five independent parameters.12

When attempting to obtain minimum bandwidth operators by setting the
coefficients q1,9, q2,11, q2,12, q2,13, and q3,13 to zero, we numerically find
24 solutions, of which 16 are complex and 8 are real. However, none
of these solutions yields a positive definite norm. The minimum spectral
radius operator has so large error coefficients that we could not stabilize
it with reasonable amounts of dissipation in the 3D non-constant coeffi-
cient case. The minimum ABTE operator has a spectral radius larger than
60000 and so would require very small time steps when explicit time evo-
lution is used.

Since none of the operators considered so far was usable in prac-
tice, we experimented with several other ways of choosing the parameters.
First, we tried to minimize a weighted average of the spectral radius and
ABTE for different weight values, but none of these operators turned out
to be useful, even though their properties were much improved. By mini-
mizing the sum of the squares of the difference between error coefficients
in neighboring boundary points, we next attempted to reduce the noise
produced in the boundary region. Even when weighted with the spectral
radius, these operators proved not to be an improvement. Finally, based
on the observation that some choices of parameters lead to very large
values in the inverse of the norm, which directly affects the dissipation
operator near the boundary (see Eq. (10)), we speculated that for some
parameter sets the dissipation operator might make things worse near the

12As with the D10−5 case, it seems that these operators have not been constructed before.
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boundary, and experimented with choosing parameters that would mini-
mize the condition number of the norm in combination with any of the
previously mentioned properties.

However, even though we were able to find parameter sets that looked
reasonable with respect to spectral radius, error coefficients and properties
of the norm, none of the operators that we constructed could be stabi-
lized with any amount of dissipation in the 3D non-constant coefficient
case. This is presumably related to some important properties not holding
in the non-diagonal case, as discussed in Sect. 2.2. Of course, it could still
happen that usable D8−7 operators do exist, using some other criteria to
choose parameters.

5.2.2. Numerical Tests

For the restricted full operators we usually have to add dissipation.
There are several causes for this, which are well understood; we have
reviewed them in Sect. 2.

5.2.2.1. The operator D4−3. One main driving point behind using opera-
tors based on non-diagonal norms is that their order of accuracy near the
boundary is higher. Our operators based on restricted full norms drop one
order of accuracy near the boundary, which means that the global conver-
gence order is, in theory, not affected. (See the standard D6−3 operator,
described in Sect. 5.1.2.1, and shown in Fig. 2, for an example where this
is false in practice.)

Figure 6 shows the results of convergence tests in the L∞ norm for
D4−3 operators, for both the minimum bandwidth and the new, optimized,
minimum ABTE operator. In both cases the global convergence expo-
nent is very close to four. Different from the operators based on diagonal
norms, the convergence order is also almost constant in time. This may be
so because the boundary is here not the main cause of discretization error,
so that the resulting accuracy is here independent of what kind of feature
of the solution is currently propagating through the boundary.

Figure 7 compares the two D4−3 operators at a fixed, high resolution.
The two operators lead to very similar L∞ norms of the solution error.
This difference in accuracy is much smaller than it was for the operators
based on diagonal norms. Altogether, the optimization leads to no prac-
tical advantage. For the equations we solve here (even though they have
non-constant coefficients in the curvilinear coordinates used) we did not
need to apply dissipation in order to stabilize the D4−3 operators. We did
check that the dissipation operators we constructed to be compatible with
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Fig. 6. Convergence exponents for the minimum bandwidth (top) and the minimum ABTE
(bottom) D4−3 operators.

the D4−3 operators behaved as expected and did not influence the conver-
gence order of the scheme.

5.2.2.2. The operator D6−5. The operator D6−5 is expected to have the
highest global order of accuracy of all the operators discussed in this
paper (since we were not able to stabilize the D8−7 operator with dissi-
pation). We do in fact see sixth-order convergence, but only when using
a sufficiently accurate time integration scheme. Figure 8 shows the results
of convergence tests in the L∞ norm for the new, optimized D6−5 opera-
tor with dissipation with ε =2.0, using a Courant factor λ=0.25, for both



Optimized High-Order Derivative and Dissipation Operators 135

0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

0 2 4 6 8  10

er
ro

r 
(L

∞
)

Time

4-3 operators

dx=0.0125 (min. bandwidth)
dx=0.0125 (min. ABTE)

Fig. 7. Accuracy comparison of the two types of D4−3 operators shown in the previous fig-
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fourth and sixth order accurate Runge–Kutta time integrators (RK4 and
RK6).

When RK4 is used, the convergence exponent drops from about 6 to
close to 5 for our highest resolution. This effect is not present when we
use RK6, indicating that it is the time integrator’s lower convergence order
that actually poisons the results when resolution is increased. Instead of
using a higher order time integrator, it would also have been possible
to reduce the time step size. Especially in complicated geometries, an
adaptive step size control is very convenient; this lets one specify the
desired time integration error, and the step size is automatically adjusted
accordingly.

With the dissipation strength used above (ε =2), the lower resolution
run (dx =0.1) appears to be long-term stable (we evolved it at least up to
T =1000). At a resolution of dx =0.05, however, an instability sets in after
around T = 50. Increasing the dissipation strength to ε = 3 the evolution
proceeded stably at least until T > 300. We did not attempt to evolve for
longer times in this paper, but very long and high resolution 1D simula-
tions of the fully non-linear Einstein’s equations using the dissipation and
difference operators constructed in this paper are presented in [23].

As a side comment, the values of the dissipation parameter ε used
here cannot be directly compared to “standard” ones associated with Kre-
iss–Oliger dissipation, since the operators constructed here do not coincide
with the latter (not even in the interior) due to their different scaling with
the grid spacing h.
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Fig. 8. Convergence for the optimized D6−5 operator with dissipation and Runge–Kutta
time integrators of order four (top) and six (bottom), respectively. We see a slightly lower
convergence order for the highest resolution when RK4 is used. This effect is not present
with the RK6 integrator. The lower convergence order indicates that the accuracy of the spa-
tial finite differencing operators is high enough, so that the overall error is dominated by the
accuracy of the time integrator.

5.3. Comparison between Operators

5.3.1. Comparison of Accuracy

We now compare the operators based on a diagonal and on a
restricted full norm that we described and examined above. Figure 9
shows, for two different resolutions, the solution errors (L∞) for all our
new operators. As one can see, our best performing operators are D8−4
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Fig. 9. Comparison of the L∞ errors for all the new, optimized, differencing operators con-
structed in this paper. The top (bottom) plot shows a comparison of all the unique and opti-
mized operators at low (high) resolutions. The most successful operators are the optimized
D6−5, D4−3, and D8−4.

and D6−5 . One can also see that, for the highest resolution shown there,
which corresponds to 1613 grid points per block, there is a difference of
five orders of magnitude between the errors of D6−5 and D2−1. This dem-
onstrates nicely the superiority of our new high-order operators when a
high accuracy is desired.

Even for the lowest resolution shown here, which uses only 213 grid
points per block, the difference is still more than one order of magnitude,
indicating that D6−5 or D4−3 would be fine choices there.
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Fig. 10. Comparison of the errors at t =4.4 for all resolutions. The top (bottom) plot shows
the L∞ (L2) errors.

Figure 10 shows the L∞ and L2 errors at all resolutions at a fixed
time t =4.4. As can be seen, the operators behave in very similar ways in
the two norms, with the errors up to a magnitude smaller in the L2 norm.
The main difference is that in the L∞ norm the D4−3 operator has smaller
errors than the D6−3 operator, while in the L2 norm the D6−3 errors are
smaller than the D4−3 errors at high resolution. This can be understood
from the fact that the ABTE is smaller for D4−3 compared to D6−3 so the
boundary errors are dominating both norms at low resolutions, while at
higher resolutions there is some advantage in having higher order in the
interior.
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5.3.2. Comparison of Cost

Higher order operators allow higher accuracy with the same num-
ber of grid points, but they also require more operations per grid point
and thus have a higher cost. Table VIII compares actual run times per
time integrator step for runs with 1613 grid points per block. These mea-
sured costs include not only calculating the right hand side, which requires
taking the derivatives, but also applying the boundary conditions, which
requires decomposing the system into its characteristic modes, and also
some inter-processor communication. The time spent in the time integra-
tion itself is negligible.

Larger stencils increase the cost slightly. This increase in cost is more
than made up by the increase in accuracy, as shown above. For operators
based on diagonal norms, adding dissipation to the system increases the
cost only marginally. The dissipation operators for derivatives based on
non-diagonal norms are more complex to calculate and increase the run
time noticeably. All numbers were obtained from a straightforward legible
implementation in Fortran, without spending much effort on optimizing
the code for performance.

The effect of higher order operators on the overall run time is not
very pronounced. As they do not increase the storage requirements either,
the only reason speaking against using them (for smooth problems) seems
to be the effort one has to spend constructing and implementing them.

6. CONCLUSION

Let us summarize the main points of this paper. We have explicitly
constructed accurate, high-order finite differencing operators which satisfy
summation by parts. This construction is not unique, and it is necessary to
specify some free parameters. We have considered several optimization cri-
teria to define these parameters; namely, (a) a minimum bandwidth, (b) a
minimum of the truncation error on the boundary points, (c) a minimum
spectral radius, and a combination of these.

We examined in detail a set of operators that are up to tenth order
accurate. We found that minimum bandwidth operators may have a large
spectral radius or truncation error near the boundary. Optimizing for these
two criteria can, surprisingly, reduce the operators’ spectral radius by three
orders and their accuracy near the boundary by two orders of magnitude.

Some of the finite differencing operators require artificial dissipation.
We have therefore also constructed high-order dissipation operators, com-
patible with the above finite differencing operators, and also semi-definite
with respect to the SBP scalar product.
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We tested the stability and accuracy of these operators by evolving
a scalar wave equation on a spherical domain. Our domain is split into
seven blocks, each discretized with a structured grid. These blocks are con-
nected through penalty boundary conditions. We demonstrated that the
optimized finite differencing operators have also far superior properties in
practice. The most accurate operators are D8−4 and D6−5; the latter is
in our setup five orders of magnitude more accurate than a simple D2−1
operator. Non-linear simulations of the Einstein’s equations in spherically
symmetry [23] confirm the main conclusions of this paper in a different
setting, while in [28] we present 3D multi-block evolutions of the Einstein’s
equations.

APPENDIX A: OPERATOR COEFFICIENTS

We provide, for the reader’s convenience, the coefficients for the deriv-
ative and dissipation operators that we constructed above. Since the values
of these coefficients themselves are only of limited interest, and since there
is a large danger of introducing errors when typesetting these coefficients,
we make them available electronically instead. We also make a Cactus [25]
thorn SummationByParts available via anonymous CVS. This thorn imple-
ments the derivative and dissipation operators. Our web pages [40] contain
instructions for accessing these. For the sake of continuity, we will also
make the coefficients available on www.arxiv.org together with this article.

We distribute the coefficients as a set of files, where each file defines
on operator. The content of the file is written in a Fortran-like pseudo lan-
guage that defines the coefficients in declarations like

a(1) = 0.5,
q(2,3) = 42.0

and sometimes makes use of additional constants, as in

x1 = 3,
a(2) = x1 + 4.

We write here a(1) as a1 and q(2,3) as q23.

A.1. Derivative Operators

The derivative operators D2−1, D4−2, D6−3, D8−4, D4−3, and D6−5
are defined via coefficients ai and qij . In the interior of the domain it is

Dijuj = 1
h

s∑

j=1

aj

(
ui+j −ui−j

)
(A1)
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and near the left boundary it is (i.e., i =1, b)

Dijuj = 1
h

s∑

j=1

qjiuj . (A2)

At the right boundary the same coefficients are used in opposite order and
with opposite sign.

A.2. Dissipation Operators

A.2.1. Dissipation Operators Based on Diagonal Norms

The dissipation operators corresponding to D2−1, D4−2, D6−3, and
D8−4 are defined via coefficients aij and qi .

In the interior of the domain it is

Aijuj = ε

22p

⎡

⎣q0ui +
s∑

j=1

qj

(
ui−j +ui+j

)
⎤

⎦ (A3)

and near the boundary it is

Aijuj = ε

22p

s∑

j=1

ajiuj , (A4)

where ε ≥0 selects the amount of dissipation and is usually of order unity.

A.2.2. Dissipation Operators Based on Non-diagonal Norms

The dissipation operators corresponding to D4−3 and D6−5 . . . are
more complicated, since they depend on the user parameters specifying the
number of grid points, N , and the size of the transition region (i.e., the
region where Bp is different from 1).

The dissipation operators are then constructed according to Eq. (10)

A2p =− ε

22p
h2p Σ−1DT

p BpDp. (A5)

The coefficients for the inverse of the norm, Σ−1, are provided in the
boundary region only. In the files this inverse is denoted by sigma(i,j).
In the interior the norm (and its inverse) is diagonal with value 1.
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In the D4−3 case, the N ×N matrix D2 defining the consistent approx-
imation of d2/dx2 is given by

D2 = 1
h2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0
1 −2 1 0
0 1 −2 1

. . .

1 −2 1 0
0 1 −2 1
0 1 −2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

while the diagonal matrix B2 has the value h at either boundary and
increases linearly to the value 1 across the user defined transition region.

In the D6−5 case the matrix defining the consistent approximation of
d3/dx3 near the left boundary Dl

3 is

Dl
3 = 1

h3

⎛

⎜⎜⎜⎜⎝

−1 3 −3 1 0
−1 3 −3 1 0
−1 3 −3 1 0

0 −1 3 −3 1
. . .

⎞

⎟⎟⎟⎟⎠
(A7)

while at the right boundary Dr
3 is

Dr
3 = 1

h3

⎛

⎜⎜⎜⎜⎝

. . .

−1 3 −3 1 0
0 −1 3 −3 1
0 −1 3 −3 1
0 −1 3 −3 1

⎞

⎟⎟⎟⎟⎠
. (A8)

Since the values on the diagonal in the interior of Dl
3 and Dr

3 are −3
and 3, respectively, it is impossible to construct a single matrix D3 to
cover the whole domain. However, since both matrix products (Dl

3)
T Dl

3
and (Dr

3)
T Dr

3 result in the same interior operator, dissipation operators
can be constructed in the left and right domain separately and then com-
bined into a global operator. The diagonal matrix B3 has the values h2 at
the boundary and and 1 in the interior, and a third order polynomial with
zero derivative at either end of the transition region is used to smoothly
connect the boundary with the interior.
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and Magnus Svärd for numerous helpful discussions and suggestions.
We also thank Luis Lehner, Harald Pfeiffer, Jorge Pullin, and Olivier
Sarbach for discussions, suggestions and comments on the manuscript,
and Cornell University and the Albert Einstein Institute for hospitality
at different stages of this work. As always, our numerical calculations
would have been impossible without the large number of people who
made their work available to the public: we used the Cactus com-
putational toolkit [24,25] with a number of locally developed thorns,
the LAPACK [29] and BLAS [30] libraries from the Netlib Reposi-
tory [31], and the LAM [32–34] and MPICH [35–37] MPI [38] imple-
mentations. E. Schnetter acknowledges funding from the DFG’s spe-
cial research centre TR-7 “Gravitational Wave Astronomy” [39]. This
research was supported in part by the NSF under Grant PHY0505761
and NASA under Grant NASA-NAG5-1430 to Louisiana State Univer-
sity, by the NSF under Grants PHY0354631 and PHY0312072 to Cor-
nell University, by the National Center for Supercomputer Applications
under grant MCA02N014 and utilized Cobalt and Tungsten, it used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098, and it employed the
resources of the Center for Computation and Technology at Louisiana
State University, which is supported by funding from the Louisiana leg-
islature’s Information Technology Initiative.

REFERENCES

1. Kreiss, H. O., and Scherer, G., (1974). Finite element and finite difference methods for
hyperbolic partial differential equations. In Boor C. D. (ed.), Mathematical Aspects of
Finite Elements in Partial Differential Equations, Academica Press, New York.

2. Kreiss, H. O., and Scherer, G. (1977). Tech. Rep., Dept. of Scientific Computing, Uppsala
University Sweden.

3. Olsson, P. (1995). Summation by Parts, Projections, and Stability I. Math. Comp. 64, 1035.
4. Olsson, P. (1995). Supplement to “Summation by parts, projections, and stability, I”

Math. Comp. 64, S23.
5. Olsson, P. (1995). Summation by Parts, Projections, and Stability II. Math. Comp. 64,

1473.
6. Carpenter, M., Gottlieb, D., and Abarbanel, S. (1994). Time-Stable boundary conditions

for finite-difference schemes solving hyperbolic systems. Methodology and application to
high-order compact schemes. J. Comput. Phys. 111, 220.



144 Diener, Dorband, Schnetter, and Tiglio

7. Gustafsson, B. (1998). On the implementation of boundary conditions for the method of
lines. BIT 38, 293.

8. Mattsson, K. (2003). Boundary procedures for summation by parts operators. J. Sci.
Comput. 18, 133.

9. Strand, B. (1996). Ph.D. thesis, Uppsala University, Department of Scientific Computing,
Uppsala University. Uppsala, Sweden.

10. Carpenter, M., Nordström, J., and Gottlieb, D. (1999). A Stable and Conservative Inter-
face Treatment of Arbitrary Spatial Accuracy. J. Comput. Phys. 148, 341.

11. Nordström, J., and Carpenter, M. (2001). High-order finite difference methods, multidi-
mensional linear problems and curvilinear coordinates. J. Comput. Phys. 173, 149.

12. Reula, O. (1998). Living Rev. Rel. 1, 3. URL http://relativity.livingreviews.org/Articles/ lrr-
1998-3/index.html.

13. Rauch, J. (1985). Symmetric positive systems with boundary characteristics of constant
multiplicity. Trans. Am. Math. Soc. 291, 167

14. Secchi, P. (1996). The initial boundary value problem for linear symmetric hyperbolic sys-
tems with characteristic boundary of constant multiplicity. Differential Integral Equations
9, 671.

15. Secchi, P. (1996). Well-posedness of characteristic symmetric hyperbolic systems. Arch.
Rat. Mech. Anal. 134, 155.

16. Lehner, L., Reula, O., and Tiglio, M. (2005). Multi-block simulations in general relativ-
ity: high order discretizations, numerical stability, and applications. Class. Quantum Grav.
22 gr-qc/0507004.

17. Strand, B. (1994). Summation by parts for finite differencing approximations for d/dx. J.
Comput. Phys. 110, 47.
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