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The M1 radiative transfer model is considered in the present work in order to
simulate the radiative fields and their interactions with the matter. The model is
governed by an hyperbolic system of conservation laws supplemented by relax-
ation source terms. Several difficulties arise when approximating the solutions
of the model; namely the positiveness of the energy, the flux limitation and and
the limit diffusion behavior have to be satisfied. An HLLC scheme is exhib-
ited and it is shown to satisfy all the required properties. A particular atten-
tion is payed concerning the approximate extreme waves. These approximations
are crucial to obtain an accurate scheme. The extension to the full 2D prob-
lem is proposed. It satisfies, once again, all the expected properties. Numeri-
cal experiments are proposed. They show that the considered scheme is actually
less diffusive than the currently used numerical methods.

KEY WORDS: Radiative transfer; M1 model; Asymptotic preserving; HLLC
scheme; Positiveness; Flux limitation.
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1. INTRODUCTION

In many applications involving radiative transfer, solving the full radiative
transfer equation is too expensive. A great effort was devoted in recent
years to derive cheaper relevant models. A new alternative was introduced
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by Dubroca and Feugeas [10]; namely the M1 model. It has been used in a
large literature (for instance see Turpault [25], Charrier et al. [9] or Ripoll
[20, 21]). The M1 model is known to preserve several crucial properties of
the radiative transfer equations such as the positiveness of energy, the flux
limitation, the conservation of the total energy. In addition, it recovers the
asymptotic diffusion regime in the limit of large opacities (see Mihalas and
Mihalas [18] or Pomraning [19]). Another important property satisfied by
this model concerns 2D simulations where the shadow cone is preserved
in transparent regions.

One of the main difficulties to approximate solutions is to derive numerical
schemes preserving all the above properties. In [10], an HLL scheme (see Har-
ten et al. [14] for details) is proposed, which satisfies the positivity of the energy
and the flux limitation property. This first numerical approach is shown to fail
concerning the asymptotic preserving property since it does not yield to rel-
evant numerical approximation in the diffusion limit (for instance, see Audit
et al. [1]). Next, in the work of [6], the authors propose a two step method
based on a relaxation scheme step (see Jin and Xin [16] but also Bouchut [5] or
Berthon [3] for details of the relaxation scheme in several frameworks) and a
well-balanced scheme step (see Bouchut [5], Gosse and Toscani [13] and refer-
ences therein), and the obtained numerical method is shown to satisfy stability
properties for a simplified 1D scattering model. However, in [4], the authors
establish that the scheme proposed in [6] is still too much diffusive and they
detail a new relaxation numerical approach with better accuracy. From the
work [4, 6], the diffusion comes with the choice of the numerical extreme wav-
espeeds. In [6], these wavespeeds are approximated when involving a unique
constant. As announced in [4], in the present work, we propose relevant numer-
ical approximations of each extreme wavespeed in each cell when involving
a suitable approximate Riemann solver. The discrepancy with current works
(see Buet et al. [6, 7, 8] or Gosse and Toscani [13]), stays in the structure of
the approximate Riemann solver. Indeed, in the present work we consider,
roughly speaking, non-symmetric approximate characteristic cone when usual
approaches impose a symmetric wave cone. Such an independent consider-
ation of the approximated wavespeed increases the accuracy of the method.
Let us note from now on that the approximate characteristic cone defined by
the extreme waves is of primary importance to satisfy the asymptotic preserving
property. Now, if the approximate characteristic cone is too large, the numer-
ical diffusion of the scheme increases and then the accuracy of the scheme
is lost. By opposition, the scheme becomes unstable as soon as approximate
characteristic cone is a too much narrow.

Arguing recent works, devoted to simplified one space dimension mod-
els, we develop an HLLC scheme for the M1 model (see Batten et al [2],
Bouchut [5], Toro [22] and Toro et al. [23] to further details concerning the
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HLLC scheme in the framework of the standard gas dynamics). The struc-
ture of the approximate Riemann solver, used to define the HLLC scheme, is
analysed and required stability results are established. To be more precise,
we prove that the scheme satisfies the positiveness of the energy, the flux
limitation property, the conservation of the total energy and the asymptotic
preserving property. Next, a two space dimension extension of the scheme is
proposed. To enforce the asymptotic diffusion behaviors of the 2D model,
we propose to consider a relevant splitting technique of the relaxation source
terms. The 2D final scheme is shown to satisfy all the required stability prop-
erties and it performs relevant numerical approximations when considering
the asymptotic regimes. Moreover, thanks to the correct definition of the
extreme wavespeeds, it preserves the stationary contact discontinuity which
is crucial in some simulations.

The paper is organized as follows. In the next section, the M1 model
is described. The main properties satisfied by the solutions of the model
are given. A special attention is payed on the asymptotic diffusion limit.
In addition, the hyperbolic system is studied when giving the eigenvalues.
The third section is devoted to describe an HLLC scheme to approxi-
mate the solution of the 1D model. A term by term operator splitting
strategy is considered to propose a relevant method of approximation. All
the properties satisfied by the exact solutions are proved to be verified by
the approximate solutions. In the next section, we propose to extend the
numerical scheme in the case of the 2D model. Once again, the obtained
numerical scheme is shown to satisfy all the required properties. In the
section five, numerical experiments are proposed. Specific 2D tests are
performed to illustrate the diffuseless of the scheme. The last section is
devoted to a short conclusion.

2. THE M1 MODEL FOR RADIATIVE TRANSFER

For many applications, solving the radiative transfer equation is too
expensive and cheaper moment systems, such as the M1 model, giving
accurate enough prediction of interaction of radiation and matter are pre-
fered. To derive such systems, we take the first two moments of the radia-
tive transfer equation (see Dubroca and Feugeas [10]), which leads to the
following moment system:

∂tE +∇ ·F = cσ
(
aT 4 −E

)
, (2.1a)

1
c
∂tF + c ∇ ·P = −σ F , (2.1b)

∂t (ρ CvT ) = −cσ
(
aT 4 −E

)
, (2.1c)
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where E is the radiative energy, F the radiative flux vector and P the radiative
pressure tensor. The normalized flux is written as f =F/(cE) and f =||f || and
the radiative temperature TR is defined from the radiative energy as E =aT 4

R .
The radiative equations (2.1a) and (2.1b) are coupled to the mate-

rial energy balance equation that writes in its simplest form (see Gentile
[11] or Pomraning [19]) as Eq. (2.1c) where ρ is the matter specific den-
sity, Cv is the specific heat capacity. In the particular case of the radia-
tiver equilibirum, we have E(T ) = aT 4, F (T ) = 0, P (T ) = aT 4/3Id with
a = 8π5k4/15h3c3 and TR = T where k is the Boltzmann constant and h

the Planck constant. The moments E and F must verify that E � 0 and
that f �1 (flux limitation).

The radiative pressure is given by

P= 1
2

(
(1−χ(f ))I + (3χ(f )−1)

F ⊗F
||F||2

)
E, (2.2)

where

χ(f )= 3+4f 2

5+2ξ
(2.3)

and ξ =
√

4−3f 2. In the present work, the model uses non normalized
variables. However, the normalized model can be easily deduced when set-
ting c=1 and a =1.

Thanks to its construction based on the minimum entropy principle,
we know that this system is hyperbolic symmetrizable (see Levermore [17]).
Concerning the algebra of the hyperbolic system (2.1) the Jacobian matrix
set in the x-direction reads as follows

c

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 0
(2f 2−3f 2

y )(χ−f χ ′)+f 2
y

2f 2 −fxf 2
y

2f 4 θ + fxχ ′
f

f 2
x f 2

y

2f 4 θ − f 2
y χ ′
2f

0

fxfy

2f 2 (3χ −3f χ ′ −1)
f 2

x fy

2f 4 θ + fy

2f 2 (3χ −1)
fxf 2

y

4f 4 θ + fx

2f 2 (3χ −1) 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

,

where we have set θ = 2 + 3f χ ′ − 6χ . The eigenvalues of this matrix are
given by

λ± = c

⎛

⎝fx

ξ
±

√
2
√

(ξ −1)(ξ +2)(2(ξ −1)(ξ +2)+3f 2
y )

√
3ξ(ξ +2)

⎞

⎠ ,

λ0 = c
(2− ξ)fx

f 2
, λstationary =0.

(2.4)
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The eigenvalues of the Jacobian matrix in the y-direction are of the
same form (with fx replaced by fy). We note that the eigenvalue λ0 =c Ax

where Ax is the x-component of the vector A given by,

A = (2− ξ)f
f 2

.

Moreover, we can easily check that the characteristic fields associated
with λ± are genuinely nonlinear while the characteristic field associated
with λ0 is linearly degenerate. In radiative transfer the contact discontinu-
ities play an important role connected with the shadow effect in transpar-
ent medium as we will see in the numerical experiments.

The dimensionless eigenvalues (i.e., λ/c) of the Jacobian matrix are
given on Fig. 1 as functions of fx , respectively, for fy =0 and fy =√

3/2.
At equilibrium, i.e., for fx =fy = 0, the eigenvalues are λ± =±c/

√
3,

λ0 =0, which clearly illustrates the emission isotropy of the photons, which
prevails at this regime. On the other hand, in the case of extreme non-
equilibrium (for instance when fx tends toward 1 and fy =0), both eigen-
values λ± tend toward +c, which describes that all photons move on the
same direction (or that the underlying radiative intensity tends toward a
Dirac which is called the free streaming regime).

For the sake of simplicity in the sequel, let us introduce the following
useful notations (for the 2D M1 model)

U = (E,Fx/c,Fy/c)
T , F = (Fx, cPxx, cPxy)

T , G = (Fy, cPxy, cPyy)
T .

(2.5)

A one dimension system can be obtained from (2.1) by assuming that
all quantities are independent of y and that Fy = 0. Then the eigenvalues
of this 3×3 system are

-1 -0,5 0 0,5 1

fx
-1

-0,5

0

0,5

1

fy = 0

+/c

– /c

0/c

-0,4 -0,2 0 0,2 0,4

fx

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

fy =
√

3/2
+/c

– /c

0/c

Fig. 1. Dimensionless eigenvalues of the Jacobian matrix.
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λ± = c
f

√
3±2(ξ −1)

ξ
√

3
, λstationary =0, (2.6)

and coincides with the two extreme eigenvalues represented in Fig. 1. With
some abuses in the 1D notations, we set

U = (E,F/c)T , F = (F, cP )T , (2.7)

where we have introduced F =Fx in one space dimension.
It is well known that in the limit of an opaque medium (σ tends to

infinity), the matter temperature can be approximated by the solution of
an asymptotic model called equilibrium diffusion equation (see Mihalas [18]
and Pomraning [19]). An important property of the M1 system is that it
recovers this equilibrium diffusion regime. Indeed, assuming that the opac-
ity is large, we can rescale the M1 system so that the Knudsen number ε

appears in front of the time derivative term (long time approximation) and
in the relaxation term (near equilibrium hypothesis):

ε∂tE + ∇ ·F = σc

ε
(aT 4 −E), (2.8)

ε∂tF + c2∇ ·P =−σc

ε
σF , (2.9)

ε∂t (ρCvT )=−σc

ε
(aT 4 −E). (2.10)

An asymptotic expansion around ε = 0 gives the usual near equilib-
rium behavior. If we set T = T0 + εT1 + ε2T2 + . . . , we get at the leading
order, from Eqs. (2.8) and (2.9), E0 =aT 4

0 and F 0 = 0. At the next order,
using Eq. (2.9) the flux can be written as F 1 =−c/σ∇ ·P 0 =−ac/3σ∇T 4

0 .
Finally, summing Eqs. (2.8) and (2.10) at the following order leads to

∂t (ρCvT0 +aT 4
0 )− ∇ ·

(
4cT 3

0

3σ
∇T0

)

=0, (2.11)

which is the equilibrium diffusion equation [18].
All important properties of the M1 system are summarized in the fol-

lowing result (see Dubroca and Feugeas [10])

Theorem 2.1. The radiative moment model M1 has the following
properties:

1. The radiative energy E remains positive: E �0.
2. The normalized flux is limited: f �1.
3. The set of admissible states A={U = (E,F/c) / E � 0 & f ≤ 1} is a

closed convex cone.
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4. The system is hyperbolic and total energy E +ρCvT is conserved:

∂t (E +ρCvT )+∇ ·F =0.

5. The M1 system recovers the equilibrium diffusion regime as relaxation
limit for large absorption coefficient.

3. AN HLLC APPROXIMATE RIEMANN SOLVER

We propose to approximate the weak solutions of (2.1) when con-
sidering the well-known HLLC approximate Riemann solver (see Toro
[22] Toro et al. [23], Batten et al. [2] or Bouchut [5] to further details).
This scheme is a modification of the initial HLL method, introduced
by Harten et al. [14], to obtain an accurate scheme. Indeed, the HLLC
method exactly captures the stationary contact waves while the pioneer
HLL scheme cannot satisfy such a property.

For the sake of the clarity in the presentation, the HLLC scheme
is first developed in one space dimension. The extension to higher space
dimension will be proposed in the next section. As a consequence, in the
present section, we deal with the following hyperbolic system:

∂tE + ∂xF = cσ (aT 4 −E),

1
c
∂tF + ∂x(cP )=−σF,

∂t (ρCvT )=−cσ (aT 4 −E).

(3.1)

This system turns out to be hyperbolic with relaxation source terms. To
develop an HLLC solver for approximating the weak solutions of (3.1),
we propose a strategy of term by term operator splitting. During the
first step, we evolve in time (3.1), but neglecting the matter tempera-
ture relaxation terms. The prediction is thus governed by the following
system:

∂tE + ∂xF =0,

1
c
∂tF + ∂x(cP )=−σF,

∂t (ρCvT )=0.

(3.2)

The second step is devoted to introduce the matter temperature relax-
ation source terms cσ (aT 4 − E). The resulting HLLC scheme will be
shown to satisfy, at the discrete level, all the properties stated in Theorem
2.1.
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3.1. The First Step (A Prediction)

The weak solutions of the system (3.2) are approximated involving
an HLLC Riemann solver. Following the ideas introduced by Harten
et al. [14] and extended by Toro [22] (see also Batten et al. [2]. Bouchut
[5] and Toro et al. [23]), we propose to put forward an approximate Rie-
mann solver according to system (3.2).

3.1.1. The System to be Approximated

After the recent work of [5] (and reference therein), a relevant inter-
pretation of the relaxation source terms is proposed when introducing the
variable Σ(x) defined as follows:

σ(x)= ∂xΣ(x), (3.3)

to write (3.2) in the following form:

∂tE + ∂xF =0,

1
c
∂tF + ∂x(cP )=−F∂xΣ,

∂t (ρCvT )=0.

(3.4)

Since Σ does not depend on the time variable, the system is completed by

∂tΣ=0. (3.5)

Now, let us note that the system (3.4)–(3.5) can be rewritten in conserva-
tion form.

Indeed, we have: F∂xΣ = ∂x(FΣ) + ∂t (ΣE). Hence, the system (3.4)–
(3.5) rewrites as follows:

∂tE + ∂xF =0,

∂t

(
1
c
F +ΣE

)
+ ∂x(cP +ΣF)=0,

∂t (ρCvT )=0,

∂tΣ=0.

(3.6)

To shorten the notations, the system (3.6) is given in the following form:

∂tV + ∂xH(V)=0, (3.7)

where we have set

V =
(

E,
1
c
F +ΣE,ρCvT ,Σ

)T

and H(V)= t (F, cP +ΣF,0,0)T .
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An HLLC scheme is now considered to approximate the weak solutions
of (3.6).

3.1.2. Definition of the HLLC Approximate Riemann Solver

To approximate the Riemann solution arising with system (3.6), we
turn considering an approximate solver with the following struture (see
also Fig. 2):

V(x, t)=

⎧
⎪⎪⎨

⎪⎪⎩

VL, if x
t
<bL,

V�
L, if bL < x

t
<0,

V�
R, if 0< x

t
<bR,

VR, if x
t
>bR.

The wavespeeds bL <0<bR will be estimated later according to additional
stability conditions.

Let us note from now on that the initial HLLC scheme considers a
middle wave with velocity b� (see Batten et al. [2] or Toro [22]). In the
present work, the middle wave is associated with the trivial contact wave
with a vanished velocity, involved by the equations on ρCvT and Σ. In
this sense, we have imposed b� =0. Now, we have to determine the approx-
imate states V�

L and V�
R in the star region and the corresponding flux func-

tions H̃L and H̃R. To access such an issue, several assumptions will be
done on the choice of the linearizations. As usual, we have set

HL =H(VL) and HR =H(VR),

VL HL VR HR

V�
L H̃L V�

R H̃R

bL bRb� = 0

, ,

,,

Fig. 2. Structure of the approximate Riemann solver.
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but we do not impose H̃L,R = H(V�
L,R). To evaluate V�

L,R and H̃L,R, we
apply the Rankine-Hugoniot conditions (see Batten et al. [2] and Toro
[22]) across each of the waves of speed bL and bR:

H̃L −HL =bL(V�
L −VL), (3.8)

H̃R −HR =bR(V�
R −VR). (3.9)

To complete the system, we impose supplementary conditions on the
approximate Riemann solver. First, let us emphasize that the quantities
F and cP +ΣF are easily shown to be continuous accross the stationary
contact wave involved int he exact Riemann problem associated with (3.6).
As a consequence, we propose to consider the following formulas:

F̃L = F̃R = F̃ , (3.10)

F�
L =F�

R =F�, (3.11)

cP �
L + Σ̃LF̃L = cP �

R + Σ̃RF̃R, (3.12)

cP̃L +Σ�
LF �

L = cP̃R +Σ�
RF �

R. (3.13)

Next, we note that the exact Riemann solution of (3.6) satisfies Σ(x, t)=
ΣL if x < 0 and Σ(x, t) = ΣR if x > 0. Then, we enforce the approximate
Riemann solver to satisfy:

Σ̃L =ΣL and Σ̃R =ΣR. (3.14)

Extending ideas introduced in [6], we impose the following linearization
satisfied by the star-pressure:

P �
L =−bLbR

c2
E�

L and P �
R =−bLbR

c2
E�

R. (3.15)

The HLLC approximate Riemann solver is now fully defined since he unk-
nows V�

L,R and H̃L,R are solutions of the system (3.8)–(3.15).

3.1.3. Some Notations

Before, we solve V�
L,R and H̃L,R, let us introduce several notations,

useful in the sequel. First, we set

ΣR −ΣL =σΔx. (3.16)

This notation is in agreement with the exact definition of Σ given by (3.3),
and it will turn out to be useful to clarify the writing of the final numer-
ical scheme.
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Next, we introduce a parameter α defined as follows:

α = bR −bL

bR −bL + cσΔx
. (3.17)

This parameter will play a crucial role since it will define the transport
region:

α →1 as cσ →0, (3.18)

and the asymptotic diffusion limit

α →0 as cσ →+∞. (3.19)

The last notations we introduce are devoted to the standard HLL Rie-
mann solver (see Bouchut [5], Harten et al. [14] and Toro [22]) when con-
sidering the system (3.6) but for an uniform vanishing σ :

∂tE + ∂xF =0,

1
c
∂tF + ∂x(cP )=0,

∂t (ρCvT )=0.

(3.20)

Indeed, in the case of an HLL Riemann solver, the star region is made of
a constant single state defined as follows (see Toro [22] to further details,
and also Fig. 2):

E�,HLL = bRER −bLEL − (FR −FL)

bR −bL

, (3.21)

F�,HLL = bRFR −bLFL − c2(PR −PL)

bR −bL

. (3.22)

The corresponding flux functions read as follows:

F̃ HLL = bRFL −bLFR −bLbR(EL −ER)

bR −bL

, (3.23)

P̃ HLL = bRPL −bLPR −bLbR(FL −FR)

bR −bL

. (3.24)

Once again, let us emphasize that the notations E�,HLL, F�,HLL, F̃ HLL,
and P̃ HLL will not enter the definition of our HLLC scheme but they will
short the formulas involved in the sequel of the paper.
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3.1.4. Characterization of the Approximate Riemann Solver

Involving the above notations, the system (3.8)–(3.15) is solved to
compute the unknowns V�

L,R and H̃L,R The following statement gives this
expected solution and thus the full characterization of the approximate
Riemann solver is achieved:

Lemma 3.1. Let V�
L,R and H̃L,R be solution of the system (3.8)–

(3.15). Let us set

E0
L,R =EL,R − FL,R

bL,R

. (3.25)

Then we have

E�
L,R =αE�,HLL + (1−α)E0

L,R, (3.26)

F� =αF�,HLL, (3.27)

Σ�
L,R =ΣL,R, (3.28)

(ρCvT )�L,R = (ρCvT )L,R (3.29)

and

F̃ =αF̃ HLL, (3.30)

P̃L,R =αP̃ HLL + (1−α)

(
PL,R − bL,R

c2
FL,R

)
. (3.31)

Proof. First, from (3.8) and (3.9), we immediately deduce that

Σ�
L =ΣL and Σ�

R =ΣR, (3.32)

(ρCvT )�L = (ρCvT )L and (ρCvT )�R = (ρCvT )R. (3.33)

Next, we argue (3.8) and (3.9) to write

F̃ −FL =bL(E�
L −EL),

F̃ −FR =bR(E�
R −ER)

and then we obtain

(bR −bL)F̃ −bRFL +bLFR =bLbR(E�
L −E�

R)−bLbR(EL −ER). (3.34)

Moreover, from the linearization (3.15), we deduce

c2P �
L − c2P �

R =−bLbR(E�
L −E�

R). (3.35)
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When involving (3.12), we have

c2P �
L − c2P �

R = c(ΣR −ΣL)F̃ ,

= cσΔxF̃ , (3.36)

to obtain

−bLbR(E�
L −E�

R)= cσΔxF̃ . (3.37)

We substitute this above identity into (3.34) to write

(bR −bL + cσΔx)F̃ =bRFL −bLFR −bLbR(EL −ER).

Involving (3.17) and (3.23), we obtain the expected formula (3.30) to
define F̃ .

As soon as F̃ is known, we can compute V�
L,R. First, we solve

E�
L while E�

R is obtained involving a similar computation. The Rankine–
Hugoniot relation (3.8) gives:

bL(E�
L −EL) = F̃ −FL,

= αF̃ HLL −FL

to obtain

E�
L = α

bL

(F̃ HLL −FL +bLEL)+ (1−α)

(
EL − FL

bL

)
.

In addition, from (3.21) and (3.23), we easily deduce:

bLE�,HLL = F̃ HLL −FL +bLEL

to write

E�
L =αE�,HLL + (1−α)E0

L. (3.38)

Similarly, we have

E�
R =αE�,HLL + (1−α)E0

R. (3.39)

The state vectors V�
L and V�

R will be solved as soon as F� will be deter-
mined. To access such an issue, once again the relations (3.8) and (3.9) are
considered to write:

bL

((
F�

c
+Σ�

LE�
L

)
−
(

FL

c
+ΣLEL

))
=
(
cP̃L + Σ̃LF̃L

)
− (cPL +ΣLFL) ,

bR

((
F�

c
+Σ�

RE�
R

)
−
(

FR

c
+ΣRER

))
=
(
cP̃R + Σ̃RF̃R

)
− (cPR +ΣRFR) .



360 Berthon, Charrier, and Dubroca

Involving (3.11), (3.15) and (3.28), we rewrite these relations as follows:

bL

c
(F � −FL)+bLΣL(E�

L −EL)= c(P̃L −PL)+ΣL(F̃ −FL),

bR

c
(F � −FR)+bRΣR(E�

R −ER)= c(P̃R −PR)+ΣR(F̃ −FR).

(3.40)

Since

bL(E�
L −EL)= F̃ −FL,

bR(E�
R −ER)= F̃ −FR,

(3.41)

we deduce from (3.40) the following identity:

(bR −bL)F � = c2(P̃R − P̃L)− c2(PR −PL)+bRFR −bLFR. (3.42)

We involve (3.13) to write

c2(P̃R − P̃R)=−cσΔxF�

and then we obtain

(bR −bL + cσΔx)F � =bRFR −bLFL − c2(PR −PL).

From (3.22), we obtain the Eq. (3.27) to define F�, and the computations
to estimate V�

L and V�
R are achieved.

Now, to complete the determination of H̃L and H̃R, we have just to
compute P̃L and P̃R. We plug (3.41) into (3.40) to write

P̃L =PL + bL

c2
(F � −FL),

P̃R =PR + bR

c2
(F � −FR).

Involving (3.24), we immediately obtain the expected identity (3.31) and
the proof is thus completed.

3.1.5. Main Properties of the Approximate Riemann Solver

To achieve the analysis of the star region, introduced in the approxi-
mate Riemann solver (see Fig. 2), we exhibit relevant conditions to enforce
stability properties. With the notations introduced in (2.7), we define

U�
L,R =

(
E�

L,R

F �/c

)
.
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We have to enforce that the approximate Riemann solver satisfies U�
L,R ∈A

when A, defined in Theorem 2.1, is the set of the admissible states.
Now, involving the definition of E�

L,R, given by (3.26), and F�, given
by (3.27), we can write

U�
L,R =αU�,HLL + (1−α)U0

L,R,

where

U�,HLL =
(

E�,HLL

F�,HLL/c

)
and U0

L,R =
(

E0
L,R

0

)
.

Since α, defined by (3.17), belongs to [0,1], and since A is a convex set,
we have just to establish that U�,HLL and U0

L,R belong to A in order to
enforce U�

L,R ∈A. In the following result, as long as the velocities bL and
bR satisfy relevant conditions, we show that U�

L,R are in A:

Lemma 3.2. Let us define

fL = FL

cEL

and fR = FR

cER

. (3.43)

Assume

bL �min
(

0, cfL, c
fL −χL

1−fL

, c
fL +χL

1+fL

)
, (3.44)

bR �max
(

0, cfR, c
fR −χR

1−fR

, c
fR +χR

1+fR

)
, (3.45)

where χL,R = χ(fL,R) with the function χ defined by (2.3). Then U�,HLL
L,R

and U0
L,R are in A. As a consequence, U�

L,R ∈A.

Proof. To obtain U0
L,R in A, we have just to enforce:

E0
L =EL − FL

bL

�0 and E0
R =ER − FR

bR

�0.

these conditions are easily see to be verified as long as (3.44) and (3.45)
are satisfied. Concerning U�,HLL, we show that

E�,HLL >0 and − cE�,HLL <F�,HLL <cE�,HLL,

under the conditions (3.44) and (3.45). First, we write

E�,HLL = bR

bR −bL

E0
R + −bL

bR −bL

E0
L.

Since E0
L,R >0, we immediately deduce that E�,HLL >0.
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Now, concerning the flux limitation, we rewrite the condition F�,HLL <

cE�,HLL in the following form:
(

bR

(

FR − c2

bR

PR

)

− cbRER + cFR

)

−
(

bL

(

FL − c2

bL

PL

)

− cbLEL + cFL

)

<0.

It is thus clear that the expected inequality F�,HLL < cE�,HLL holds as
soon as we have

bR

(
FR − c2

bR
PR

)
− cbRER + cFR <0,

bL

(
FL − c2

bL
PL

)
− cbLEL + cFL >0.

Involving (3.43) and (2.2), we rewrite the two above inequalities in the fol-
lowing form:

bR >c
fR −χR

1−fR

and bL <c
fL −χL

1−fL

.

Arguing a similar computation, we ensure that the inequality F�,HLL >

−cE�,HLL holds as long as we have

bR >c
fR +χR

1+fR

and bL <c
fL +χL

1+fL

.

The proof is thus achieved.

3.1.6. The HLLC Scheme

The above approximate Riemann solver is used to propose a relevant
numerical scheme for approximating the weak solutions of (3.4). We con-
sider a structured mesh defined by the cells Ii = [x

i− 1
2
, x

i+ 1
2
) with

x
i+ 1

2
=xi + Δx

2
, i ∈Z,

where Δx is the spatial cell width. Under the CFL like condition:

Δt

Δx
max
i∈Z

(
|bi+ 1

2
L |, bi− 1

2
R

)
� 1

2
, (3.46)

we set, at each cell interface x
i+ 1

2
, the approximate Riemann solver where VL

and VR are substituted by Vn
i and Vn

i+1.
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The CFL condition ensures that all the Riemann solvers do not inter-
act (see Fig. 3) where the two extreme wavespeeds are estimated involv-
ing the exact eigenvalues (2.6). After the work of Batten et al. [2] (see also
Toro [22], Toro et al. [23] and Bouchut [5]), we propose to consider:

b
i+ 1

2
L �min

(
0, cf n

i , c
f n

i −χn
i

1−f n
i

, c
f n

i +χn
i

1+f n
i

, λ−(Un
i )

)
, (3.47)

b
i− 1

2
R �max

(
0, cf n

i , c
f n

i −χn
i

1−f n
i

, c
f n

i +χn
i

1+f n
i

, λ+(Un
i )

)
(3.48)

with

f n
i = Fn

i

cEn
i

and χn
i =χ(f n

i ).

We set Vh(x, tn + Δt) the approximate solution at time tn + Δt ,
made of the juxtaposition of the non-interacting approximate Riemann
solvers.

Next, the projection of these solutions on the piecewise constant func-
tions gives:

⎛

⎝
En+1

i

F n+1
i /c

(ρCvT )n+1
i

⎞

⎠= 1
Δx

∫ x
i+ 1

2

x
i− 1

2

⎛

⎝
Eh(x, tn +Δt)

Fh(x, tn +Δt)/c

(ρCvT )h(x, tn +Δt)

⎞

⎠dx. (3.49)

After an usual and easy computation, we obtain

Vn
i– 1 Vn

i Vn
i+1

V�
R,i– 1

2
V�

L,i+ 1
2

b
i– 1

2
L b

i– 1
2

R b
i+ 1

2
L b

i+ 1
2

R

xi– 1
2

xi+1
2

Fig. 3. HLLC scheme: Stucture of the approximate Riemann solver set on a cell (x
i− 1

2
, x

i+ 1
2
).
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En+1
i = En

i − Δt

Δx

(
α

i+ 1
2
F̃ HLL

i+ 1
2

−α
i− 1

2
F̃ HLL

i− 1
2

)
, (3.50a)

Fn+1
i = Fn

i − Δt

Δx
c2
(

α
i+ 1

2
P̃ HLL

i+ 1
2

−α
i− 1

2
P̃ HLL

i− 1
2

+ (α
i− 1

2
−α

i+ 1
2
)P n

i

)

+ Δt

Δx

(
(1−α

i+ 1
2
)b

i+ 1
2

L − (1−α
i− 1

2
)b

i− 1
2

R

)
Fn

i , (3.50b)

(ρCvT )n+1
i = (ρCvT )ni (3.50c)

At this level of the scheme, we have proposed a predictor step which will
be seen to preserve the positiveness of the energy En+1

i and the flux limi-
tation (see Sect. 3.3).

3.2. The Second Step (A Correction)

The above numerical scheme (3.50) must be corrected to propose a
suitable discrete form of the matter temperature relaxation source terms
cσ (aT 4 − E). To access such an issue, we propose to modify the star
region states, V�

L,R, introduced in the approximate Riemann solver (see
Fig. 2), according to the relaxation source terms. Put in other words, the
state vectors V�

L,R and the corresponding flux function H̃L,R must be cor-
rected to satisfy a suitable approximation of

∂tE = cσ (aT 4 −E),

∂tF =0,

∂t (ρCvT )=−cσ (aT 4 −E).

The corrected results will be denoted V�,HLLC
L,R and H̃HLLC

L,R . They will be
defined as follows:

E
�,HLLC
L,R −E�

L,R = (1−α)

(
a
(
T

�,HLLC
L,R

)4 −E0
L,R

)
,

F
�,HLLC
L,R −F� =0,

ρCv

(
T

�,HLLC
L,R −T �

L,R

)
=−(1−α)

(
a
(
T

�,HLLC
L,R

)4 −E0
L,R

)
,

where α is defined by (3.17), E�
L,R is given by (3.26), F� is given by (3.27)

and E0
L,R is given by (3.25). We easily deduce the following corrected

approximation for E and F :

E
�,HLLC
L,R =αE�,HLL + (1−α)a

(
T

�,HLLC
L,R

)4
, (3.51)

F
�,HLLC
L,R =αF�,HLL. (3.52)
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Arguing the definition (2.7), we write for short

U�,HLLC
L,R =αU�,HLL + (1−α)Ua

L,R, (3.53)

where Ua
L,R corresponds to the asymptotic state and it is defined as fol-

lows:

Ua
L,R =

(
a
(
T

�,HLLC
L,R

)4

0

)

, (3.54)

with T
�,HLLC
L,R defined in the following result:

Lemma 3.3. The matter temperature T
�,HLLC
L,R is the unique solution

of the following equation:

ρCvT
�,HLLC
L,R + (1−α)a(T

�,HLLC
L,R )4 =ρCvTL,R + (1−α)E0

L,R. (3.55)

In addition, T
�,HLLC
L,R is positive.

The proof of this result turns out to be obvious and it is omitted.
Now, we can establish that the corrected states U�,HLLC

L,R belong to A.

Lemma 3.4. Let us consider the assumptions stated in Lemma 3.2.
Then, U�,HLLC

L,R , defined by (3.53), belongs to A.

Proof. From Lemma 3.2, we have U�,HLL ∈A. In addition, after the
positiveness of T

�,HLLC
L,R , we easily deduce that

(
a
(
T

�,HLLC
L,R

)4

0

)

∈A.

Now, applying the convex property of A, we immediately obtain the
expected result.

To conclude the determination of the corrected states, V�,HLLC
L,R ,

we specify the asymptotic behavior of the approximate Riemann solver.
Indeed, let us assume that cσ goes to zero (or equivalently, α tends to
1). In this case, we typically enter the regime of pure transport equations.
From (3.51), (3.52) and (3.55), we have for such a limit:

E
�,HLLC
L,R →E�,HLL,

F
�,HLLC
L,R →F�,HLL,

T
�,HLLC
L,R →TL,R.
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As expected, the approximate Riemann solver coincides with the standard
Riemann solver involved when considering an HLLC scheme to approxi-
mate solutions of (3.20).

Now, we turn considering the asymptotic behavior as long as cσ goes
to infinity, or equivalently assume that α tends to 0. In this case, we obtain
the following limit:

E
�,HLLC
L,R →a

(
T

�,HLLC
L,R

)4
,

F
�,HLLC
L,R →0

to coincide with the asymptotic diffusion regime.
To complete the determination of the star region, we have to solve

the resulting flux function H̃HLLC
L,R . It will be done as soon as F̃ HLLC

L,R and
P̃ HLLC

L,R should be evaluated. To access such an issue, once again, we con-
sider the Rankine–Hugoniot relations (3.8) and (3.9). First, we have

F̃ HLLC
L,R =FL,R +bL,R

(
E

�,HLLC
L,R −EL,R

)
.

Involving (3.51), we obtain

F̃ HLLC
L,R =αF̃ HLL + (1−α)bL,R

(
a
(
T

�,HLLC
L,R

)4 −E0
L,R

)
. (3.56)

Similarly, from (3.8) and (3.9), we deduce

c2P̃ HLLC
L,R = c2PL,R +bL,R

(
F

�,HLLC
L,R −FL,R

)
,

to write when considering (3.52):

c2P̃ HLLC
L,R =αc2P̃ HLL + (1−α)

(
c2PL,R −bL,RFL,R

)
. (3.57)

To conclude the description of the approximate Riemann solver, let
us note that the corresponding flux function F̃HLLC

L,R , associated with
U�,HLLC

L,R , reads as follows:

F̃HLLC
L,R =αF̃HLL + (1−α)Sa

L,R, (3.58)

where Sa
L,R is given by

Sa
L,R =bL,R

(
Ua

L,R −U0
L,R

)
, (3.59)

U0
L,R =UL,R − 1

bL,R

FL,R. (3.60)



An HLLC Scheme to Solve M1 Model 367

Of course, in a practical point of view, the equivalent formulas (3.56) and
(3.57) are preferred. In fact, (3.58) and (3.59) will play a useful role for the
2D extension of the scheme. In addition, we note from now on that F̃HLL

will participate to the discretization of the transport part while the discrete
form of the relaxation source terms inherit from Sa

L,R. We add that the
jump relations applied to the matter temperature reads

ST
L,R = bL,RρCv

(
T

�,HLLC
L,R −TL,R

)
,

= −bL,R(1−α)

(
a
(
T

�,HLLC
L,R

)4 −E0
L,R

)
. (3.61)

Actually, this relation play a central role in the discrete form of source
terms involved in the matter temperature evolution equation (see Eq.
(3.62)).

Now, involving the corrected approximate Riemann solver, defined
by (3.51), (3.52) and (3.55), we describe the expected HLLC scheme to
approximate the solutions of system (3.1). We consider the same strategy
as used in the prediction step (see Fig. 4).

We adopt the CFL restriction (3.46). The approximate Riemann solver, at
time tn +Δt , is projected on the piecewise constant functions following (3.49).
After the computations, the achieved scheme reads as follows:

En+1
i = En

i − Δt

Δx

(
α

i+ 1
2
F̃ HLL

i+ 1
2

−α
i− 1

2
F̃ HLL

i− 1
2

)

− Δt

Δx

⎛

⎝
(

1−α
i+ 1

2

)
b

i+ 1
2

L

⎛

⎝a

(
T

�,HLLC
L,i+ 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i+ 1

2
L

⎞

⎠

⎞

⎠

−
(

1−α
i− 1

2

)
b

i− 1
2

R

⎛

⎝a

(
T

�,HLLC
R,i− 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i− 1

2
R

⎞

⎠

⎞

⎠

⎞

⎠ ,(3.62a)

Vn
i–1 Vn

i Vn
i+1

V�,HLLC

R,i– 1
2

V�,HLLC

L,i+ 1
2

b
i– 1

2
L b

i– 1
2

R b
i+ 1

2
L b

i+ 1
2

R

xi– 1
2

xi+1
2

Fig. 4. Structure of the approximate Riemann solver for the corrected HLLC scheme.
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Fn+1
i = Fn

i − Δt

Δx
c2
(

α
i+ 1

2
P̃ HLL

i+ 1
2

−α
i− 1

2
P̃ HLL

i− 1
2

+
(
α

i− 1
2
−α

i+ 1
2

)
P n

i

)

+ Δt

Δx

((
1−α

i+ 1
2

)
b

i+ 1
2

L −
(

1−α
i− 1

2

)
b

i− 1
2

R

)
Fn

i , (3.62b)

(ρCvT )n+1
i

= (ρCvT )ni + Δt

Δx

⎛

⎝
(

1−α
i+ 1

2

)
b

i+ 1
2

L

⎛

⎝a

(
T

�,HLLC
L,i+ 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i+ 1

2
L

⎞

⎠

⎞

⎠

−
(

1−α
i− 1

2

)
b

i− 1
2

R

⎛

⎝a

(
T

�,HLLC
R,i− 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i− 1

2
R

⎞

⎠

⎞

⎠

⎞

⎠ . (3.62c)

3.3. The Main Properties

We turn establishing the main properties satisfied by the approximate solu-
tions. These properties will emphasize that the scheme is relevant. We give the
discrete version of Theorem 2.1. In a first result, the positiveness of the radi-
ative energy, the flux limitation and the conservation of the total energy are
proved. Next, a second statement shows that the considered scheme satisfies
the expected asymptotic limit as long as the parameter cσ goes to infinity.

Theorem 3.5. Let Un
i be in A and T n

i be positive. Assume the CFL

restriction (3.46) where the wavespeeds b
i+ 1

2
L and b

i− 1
2

R are given by (3.47)–
(3.48). The updated approximate solution Un+1

i , defined by (3.62), satisfies
the following properties:

1. the radiative energy En+1
i remains positive,

2. the normalized flux is limited: |f n+1
i |�1,

3. the total energy (E +ρCvT )n+1
i is conserved.

Proof. The two first properties are proved when establishing that
Un+1

i belongs to A. By definition of the scheme (3.62b), Un+1
i is obtained

after considering the projection (3.49) of the approximate Riemann solver
on the piecewise constant function:

Un+1
i = 1

Δx

∫ x
i+ 1

2

x
i− 1

2

Uh(x, t+Δt)dx,

= b
i− 1

2
R

Δt

Δx
U�,HLLC

R,i− 1
2

+
(

1−
(

b
i− 1

2
R −b

i+ 1
2

L

)
Δt

Δx

)
Un

i −b
i+ 1

2
L

Δt

Δx
U

�,HLLC
L,i+ 1

2
.
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Under the CFL like condition (3.46), Un
i is a convex sum of the states

Un
i , U�,HLLC

R,i− 1
2

and U�,HLLC
L,i+ 1

2
. The definitions (3.47)–(3.48) allow to apply

Lemma 3.4 and thus U�,HLLC
R,i− 1

2
and U�,HLLC

L,i+ 1
2

are in A. Since Un
i ∈A, involv-

ing the convex property of A, we obtain Un+1
i ∈A.

The conservation of the total energy (E + ρCvT )n+1
i is a direct con-

sequence of (3.62) since we have

(E +ρCvT )n+1
i = (E +ρCvT )ni − Δt

Δx

(
α

i+ 1
2
F̃ HLL

i+ 1
2

−α
i− 1

2
F̃ HLL

i− 1
2

)
. (3.63)

The proof is completed.

We conclude the present section when establishing that the considered
scheme (3.62) is asymptotic preserving. We show that the standard diffu-
sion regime is recovered in the relaxation limit. Following the rescaling
introduced into the system (2.8), we consider the Knudsen number ε which
appears in front of the time derivative terms and in the relaxation terms.
Involving such a rescaling, the scheme (3.62) rewrites as follows:

ε
En+1

i −En
i

Δt
+ 1

Δx

(
α

i+ 1
2
F̃ HLL

i+ 1
2

−α
i− 1

2
F̃ HLL

i− 1
2

)

=−
⎛

⎝
1−α

i+ 1
2

Δx
b

i+ 1
2

L

⎛

⎝a

(
T

�,HLLC
L,i+ 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i+ 1

2
L

⎞

⎠

⎞

⎠

−
1−α

i− 1
2

Δx
b

i− 1
2

R

⎛

⎝a

(
T

�,HLLC
R,i− 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i− 1

2
R

⎞

⎠

⎞

⎠

⎞

⎠ , (3.64a)

ε
Fn+1

i −Fn
i

Δt
+ c2

Δx

(
α

i+ 1
2
P̃ HLL

i+ 1
2

−α
i− 1

2
P̃ HLL

i− 1
2

+
(
α

i− 1
2
−α

i+ 1
2

)
P n

i

)

=−
(

1−α
i+ 1

2

Δx
b

i+ 1
2

L −
1−α

i− 1
2

Δx
b

i− 1
2

R

)

Fn
i , (3.64b)

ε
(ρCvT )n+1

i − (ρCvT )ni

Δt
=

1−α
i+ 1

2

Δx
b

i+ 1
2

L

⎛

⎝a

(
T

�,HLLC
L,i+ 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i+ 1

2
L

⎞

⎠

−
1−α

i− 1
2

Δx
b

i− 1
2

R

⎛

⎝a

(
T

�,HLLC
R,i− 1

2

)4

−
⎛

⎝En
i − Fn

i

b
i− 1

2
R

⎞

⎠

⎞

⎠

⎞

⎠ , (3.64c)
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where the definition of α
i+ 1

2
becomes

α
i+ 1

2
=

ε

(
b

i+ 1
2

R −b
i+ 1

2
L

)

ε

(
b

i+ 1
2

R −b
i+ 1

2
L

)
+ cσ

i+ 1
2
Δx

. (3.65)

The behavior of the rescaled scheme in the limit of ε to zero is given
in the following result which is nothing but the discrete Version of 5) in
theorem 2.1:

Theorem 3.6. Assume the wavespeed b
i+ 1

2
L,R to be given by

b
i+ 1

2
L =min

(
0, cf n

i , c
f n

i −χn
i

1−f n
i

, c
f n

i +χn
i

1+f n
i

, λ−(Un
i )

)
, (3.66)

b
i− 1

2
R =max

(
0, cf n

i , c
f n

i −χn
i

1−f n
i

, c
f n

i +χn
i

1+f n
i

, λ+(Un
i )

)
(3.67)

so that the conditions (3.47) and (3.48) are satisfied. With ε small, the
diffusion limit of the scheme (3.64) and (3.65) is given by

En
i =a(T n

i )4,

F n
i =0,

(E +ρCvT )n+1
i − (E +ρCvT )ni

Δt

= c

3Δx2

(
1

σ
i+ 1

2

(En
i+1 −En

i )+ 1
σ

i− 1
2

(En
i−1 −En

i )

)
.

(3.68)

Proof. From (3.65), we immediately deduce that

lim
ε→0

α
i+ 1

2
=0.

Now, when considering (3.64b), we obtain the following asymptotic behav-
ior:

Fn
i =0.

Similarly, the relation (3.64a) rewrites

b
i− 1

2
R

(

a

(
T

�,HLLC
R,i− 1

2

)4

−En
i

)

−b
i+ 1

2
L

(

a

(
T

�,HLLC
L,i+ 1

2

)4

−En
i

)

=0. (3.69)
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In addition, the Eq. (3.55) governing the matter temperature T
�,HLLC
L,R

reads in the asymptotic regime

ρCvT
�,HLLC
L,R +a

(
T

�,HLLC
L,R

)4 =ρCvTL,R +EL,R

to obtain

a

(
T

�,HLLC
R,i− 1

2

)4

−En
i =ρCv

(
T n

i −T
�,HLLC
R,i− 1

2

)
, (3.70)

a

(
T

�,HLLC
L,i+ 1

2

)4

−En
i =ρCv

(
T n

i −T
�,HLLC
L,i+ 1

2

)
. (3.71)

By solving (3.69), (3.70) and (3.71), we have

T
�,HLLC
R,i− 1

2
=T

�,HLLC
L,i+ 1

2
=T n

i and En
i =a(T n

i )4

The proof will be concluded when establishing the diffusion equation

(3.68). First, we emphasize the behavior of the wavespeeds b
i+ 1

2
L and b

i+ 1
2

R .

Indeed, involving the definition of b
i+ 1

2
L,R , given by (3.66) and (3.67), and

the wavespeed limitations (3.44) and (3.45), with Fn
i =0 we obtain

b
i+ 1

2
L =− c√

3
and b

i+ 1
2

R = c√
3
. (3.72)

Now, the standard HLL flux function F̃ HLL, defined by (3.23), reads in
the asymptotic regime

F̃ HLL
i+ 1

2
=− c

2
√

3
(En

i+1 −En
i ).

As a consequence, (3.64a) and (3.64c) rewrite in the following form:

ε
(E +ρCvT )n+1

i − (E +ρCvT )ni

Δt

= c

2
√

3Δx

(
α

i+ 1
2
(En

i+1 −En
i )+α

i− 1
2
(En

i−1 −En
i )
)

. (3.73)

Involving (3.72), the parameter α
i+ 1

2
reads as follows:

α
i+ 1

2
= 2ε

2ε +√
3Δxσ

i+ 1
2

.
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Hence, from (3.73) we deduce

(E +ρCvT )n+1
i − (E +ρCvT )ni

Δt
= c

2εΔx
√

3+3σ
i+ 1

2
Δx2

(En
i+1 −En

i )

+ c

2εΔx
√

3+3σ
i− 1

2
Δx2

(En
i−1 −En

i ).

The expected diffusion equation (3.68) is thus obtained as soon as ε tends
to zero. The proof is achieved.

4. THE TWO DIMENSIONAL EXTENSION

The above HLLC scheme is now extended to the full space dimension
M1 model given by (2.1). A Cartesian grid is considered to approximate the
solution. Let us note that extensions involving other grid generation meth-
ods (unstrutured Godlewsky and Raviart [12], Cartesian cut cell Ingram et al.
[15]) can be obtained. We propose to adopt a dimensional operator splitting
strategy. In a first step, we approximate the following 1D system:

∂tE + ∂xFx =βcσ(aT 4 −E),

1
c
∂tFx + c∂xPxx =−βσFx,

1
c
∂tFy + c∂xPxy =−βσFy,

∂t (ρCvT )=−βcσ(aT 4 −E),

(4.1)

while, into the second step, the following system will be considered:

∂tE + ∂yFy = (1−β)cσ(aT 4 −E),

1
c
∂tFx + c∂yPxy =−(1−β)σFx,

1
c
∂tFy + c∂yPyy =−(1−β)σFy,

∂t (ρCvT )=−(1−β)cσ(aT 4 −E),

(4.2)

where β is a given parameter in [0,1]. The main idea of the present split-
ting lies on the choice of the source terms. Indeed, the relaxation terms
are split over each step involving a parameter β. To ensure consistancy of
the splitting, this parameter β will belong to [0,1]. A relevant choice will
be proposed in the next section devoted to the numerical experiments.

In the present section, we will just describe the first step since the sec-
ond one is analogous reversing the role played by each dimension compo-
nent (Fx,Pxx,Pxy) and (Fy,Pxy,Pyy). Following the ideas introduced to
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approximate the 1D model, we propose to consider an approximate Rie-
mann solver and thus define an HLLC type scheme. One of the main
difference with the 1D model lies on the source terms which is now mul-
tiply by β (respectively, 1 − β). We impose to preserve the same discrete
form of the source terms. Such a choice is crucial to enforce the rele-
vant asymptotic behavior of the scheme; namely the asymptotic preserving
property.

After (3.58) and (3.59), the flux function involved in the Riemann
solver has to satisfy:

F̃HLLC
L,R =αF̃HLL + (1−α)Sa

L,R,

Sa
L,R =βbL,R

(Ua
L,R −UL,R

)
,

where α is once again defined by (3.17) and

U = t

(
E,

Fx

c
,
Fy

c

)
and F = t

(
Fx, cPxx, cPxy

)
. (4.3)

Following (3.54), the states Ua
L,R are given by

Ua
L,R =

⎛

⎝
a(T �

L,R)4

0
0

⎞

⎠ , (4.4)

where T �
L,R is solution of the following equation (see (3.55)):

ρCvT
�
L,R + (1−α)a(T �

L,R)4 =ρCvTL,R + (1−α)

(
EL,R − (Fx)L,R

bL,R

)
. (4.5)

As usual (see Harten et al. [14] and Toro [22] or the Equations (3.23)–
(3.24)), we have set

F̃HLL = 1
bR −bL

(bRFL −bLFR −bLbR(UL −UR)) .

Now, we characterize the star region states U�,HLLC
L,R . To access such an

issue, we involve the Rankine–Hugoniot relations, which reads:

bL,R

(
U�,HLLC

L,R −UL,R

)
= F̃HLLC

L,R −FL,R

to immediately deduce

U�,HLLC
L,R =αU�,HLL + (1−α)U�,a

L,R, (4.6)
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where

U�,a
L,R =βUa

L,R + (1−β)U0
L,R,

U0
L,R =UL,R − 1

bL,R

FL,R.

The state U�,HLL is defined as the usual HLL star region state (see Harten
et al. [14] and Toro [22] and Eq. (3.21) and (3.22)):

U�,HLL = 1
bR −bL

(bRUR −bLUL − (FR −FL)) .

Now, the approximate Riemann solver is achieved as soon as the matter
temperature T

�,HLLC
L,R is defined. Once again, we enforce the same discret-

ization of the source terms. Involving (3.61), we impose

ST
L,R =−βbL,R(1−α)

(
a(T �

L,R)4 −E0
L,R

)
,

which coincides with (3.61) detailed in the 1D model when multiplyed by
β. Since we have

ST
L,R =bL,RρCv

(
T

�,HLLC
L,R −TL,R

)
,

we immediately deduce

ρCvT
�,HLLC
L,R = ρCvTL,R −β(1−α)

(
a(T �

L,R)4 −E0
L,R

)
,

= βρCvT
�
L,R + (1−β)ρCvTL,R. (4.7)

Let us note that

ST
L,R = (1−α)SE,a

L,R, (4.8)

where SE,a
L,R is the first component of Sa

L,R. This remark will be useful
when establishing the conservation of the approximate total energy.

Now, we turn establishing that the star states, involved in the approx-
imate Riemann solver, remain in A while the matter temperature is posi-
tive.

Lemma 4.1. Assume bL <0 and bR >0. Let us assume that U0
L,R are

in A. Then, the vectors U�,HLLC
L,R , defined by (4.6), belong in A. In addi-

tion, the matter temperature is positive: T
�,HLLC
L,R >0.
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Let us emphasize that the assumption U0
L,R ∈A turns out to be con-

ditions to be satisfied by the velocities bL and bR. These conditions are
nothing but the 2D extension of (3.44) and (3.45). They are specified in
the following result:

Lemma 4.2. Let U be in A and, with b 
=0, U0 be defined as follows:

U0 =U − 1
b
F .

Define b± by

b±(U)= c
fx −fxχx −fyχy ±√

δ

1−f 2
x −f 2

y

, (4.9)

δ = (fx −fxχx −fyχy)
2 − (1−f 2

x −f 2
y )(f 2

x −χ2
x −χ2

y )>0,

where we have set

fx =Fx/(cE), fy =Fy/(cE),

χx =Pxx/E, χy =Pxy/E.
(4.10)

Assume that

b≥max(b+(U), b−(U)) or b�min(b+(U), b−(U)) (4.11)

and

b2 � cfxb, (4.12)

then U0 belongs to A.

Before, we establish this lemma, let us emphasize the consequence
implies by such a result. Indeed, the vectors UL,R and U0

L,R satisfy the
assumptions stated Lemma 4.2. Then, we have U0

L,R in A as soon as bL,R

satisfies (4.11) and (4.12). Next, the assumptions of Lemma 4.1 are satis-
fied. First, we establish Lemma 4.2.

Proof. By definition, we have

U0 =
⎛

⎝
E −Fx/b

Fx − c2Pxx/b

Fy − c2Pxy/b

⎞

⎠ ,

which must satisfy both positiveness and flux limitation properties. The
positiveness is established as soon as we have

E − Fx

b
=E

(
1− c

b
fx

)
>0.
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This inequality is satisfied when involving (4.12). Now, we turn consider-
ing the flux limitation, which reads as follows:

(
Fx − c2 Pxx

b

)2

+
(

Fy − c2 Pxy

b

)2

<c2
(

E − Fx

b

)2

.

Involving the notations (4.10), we rewrite
(

b

c
fx −χx

)2

+
(

b

c
fy −χy

)2

<

(
b

c
−fx

)2

.

After usual computations, we obtain
(

1−f 2
x −f 2

y

) (
b−b−) (b−b+)>0,

and the proof is completed.

Now, we turn proving Lemma 4.1.

Proof. First, let us note that the assumption U0
L,R ∈ A implies

U�,HLL ∈A. Indeed, we have

U�,HLL = bR

bR −bL

U0
R + −bL

bR −bL

U0
L.

Since A is a convex set, we immediately deduce that U�,HLL ∈A.
Now, involving (4.6) and the convex property of A, we have just to

prove that U�,a
L,R ∈A to ensure that U�,HLLC

L,R belongs to A. Let us recall that
U�,a

L,R =βUa
L,R + (1−β)U0

L,R. As a consequence, the result is established as
soon as we have Ua

L,R ∈ A. When Ua
L,R being defined by (4.4), the result

arises as soon as T �
L,R is shown to be positive. Sine T �

L,R is solution of
(4.5), we can apply Lemma 3.3 and thus to obtain T �

L,R >0. The proof is
thus completed.

We have describe an approximate Riemann solver corresponding to
the system (4.1). The same analysis yields to an approximate Riemann
solver but for the system (4.2). Both approximate Riemann solvers are
now used to integrate a 2D numerical scheme on a Cartesian grid. To sim-
plify, the mesh size Δx and Δy will be uniform. The time increment is
evaluated according with the following CFL like conditions:

Δt

Δx
max
i∈Z

(
|bx,i− 1

2
L |, bx,i+ 1

2
R

)
� 1

2
,

Δt

Δy
max
i∈Z

(
|by,j− 1

2
L |, by,j+ 1

2
R

)
� 1

2
,

(4.13)
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where the wavespeeds are evaluated involving the exact 2D eigenvalues
given by (2.4).

These velocities have to be restricted according to Lemma 4.1. The
following formulas are proposed:

b
x,i+ 1

2
L =min

(
0, cf n

x,i , b
+(Un

ij ), b
−(Un

ij ), λ
−(Un

ij )
)

, (4.14)

b
x,i− 1

2
R =max

(
0, cf n

x,i , b
+(Un

ij ), b
−(Un

ij ), λ
+(Un

ij )
)

, (4.15)

where b± are defined by (4.9). Concerning b
y,j+ 1

2
L,R , similar formulas have

to be considered when reversing the role of fx and fy .
After computations, the scheme reads as follows:

En+1
i,j = En

i,j − Δt

Δx

((
F̃ HLLC

x,L

)

i+ 1
2 ,j

−
(
F̃ HLLC

x,R

)

i− 1
2 ,j

)

− Δt

Δy

((
F̃ HLLC

y,L

)

i,j+ 1
2

−
(
F̃ HLLC

y,R

)

i,j− 1
2

)
, (4.16a)

(Fx)
n+1
i,j

c
=

(Fx)
n
i,j

c
− Δt

Δx
c

((
P̃ HLLC

xx,L

)

i+ 1
2 ,j

−
(
P̃ HLLC

xx,R

)

i− 1
2 ,j

)

− Δt

Δy
c

((
P̃ HLLC

xy,L

)

i,j+ 1
2

−
(
P̃ HLLC

xy,R

)

i,j− 1
2

)
, (4.16b)

(Fy)
n+1
i,j

c
=

(Fy)
n
i,j

c
− Δt

Δx
c

((
P̃ HLLC

xy,L

)

i+ 1
2 ,j

−
(
P̃ HLLC

xy,R

)

i− 1
2 ,j

)

− Δt

Δy
c

((
P̃ HLLC

yy,L

)

i,j+ 1
2

−
(
P̃ HLLC

yy,R

)

i,j− 1
2

)
, (4.16c)

ρCvT
n+1
i,j = ρCvT

n
i,j + Δt

Δx

((
ST

x,L

)

i+ 1
2 ,j

−
(
ST

x,R

)

i− 1
2 ,j

)

+ Δt

Δy

((
ST

y,L

)

i,j+ 1
2

−
(
ST

y,R

)

i,j− 1
2

)
. (4.16d)

Let us conclude when giving the main properties satisfied by the approxi-
mate solution.

Theorem 4.3. Let Un
i,j be in A and T n

i,j be positive. Assume the CFL
restriction (4.13) where the wavespeeds in each direction are restricted
according to Lemma 4.1. Then, we have Un+1

i,j in A, T n+1
i,j positive and the

total energy is conserved.
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We omit the proof of the above result. Indeed, the proof is analo-
gous to the proof of Theorem 3.5. Just, let us emphasize that Un+1

i,j ∈A is
a direct consequence of Lemma 4.1. Concerning the conservation of the
total energy, the result is implied by the relation (4.8).

The last point, we develop concerns the asymptotic preserving prop-
erty of the scheme. We do not detail the computations and the reader is
referred to the section devoted to the 1D model. However, after introduc-
ing the rescaling based on the Knudsen number ε, the 2D version of The-
orem 3.6 holds true:

Theorem 4.4. Assume that the wavespeeds are given by (4.14) and
(4.15). With ε small, the diffusion limit behavior of the scheme (4.16) is
as follows:

En
i,j =a(T n

i,j )
4,

F n
i,j =0,

(E +ρCvT )n+1
i,j − (E +ρCvT )ni,j

Δt

= c

3Δx2

(
1

σ
i+ 1

2 ,j

(En
i+1,j −En

i,j )+ 1
σ

i− 1
2 ,j

(En
i−1,j −En

i,j )

)

+ c

3Δy2

(
1

σ
i,j+ 1

2

(En
i,j+1 −En

i,j )+ 1
σ

i,j− 1
2

(En
i,j−1 −En

i,j )

)

.

5. NUMERICAL EXPERIMENTS

Now, we turn considering numerical applications to illustrate the
interest of the present method in both one and two space dimensions.

Two main numerical aspects will be considered in this section. The
first will be devoted to the influence of the numerical wavepeeds bL and
bR, which enclose the Riemann problem in HLLC schemes. These waves-
peeds will be taken either as in (3.66) and (3.67) or as bR = −bL = c to
enforce the maximal stability. The first choice will be denoted HLLC-var
scheme and the second HLLC-c scheme.

The second aspect concerns the influence of the asymptotic preserv-
ing modification of the HLLC scheme introduced in 3. The scheme with
or without this modification will be denoted AP-HLLC or HLLC scheme,
leading to four variants (HLLC-c, HLLC-var, AP-HLLC-c, AP-HLLC-
var) that will be compared. All the numerical experiments are performed
using an Intel Pentium Centrino with 1.7 GHz clock frequency. The 2D
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computations given in Sect. 5.4 need about one minute CPU time to be
completed.

5.1. Marshak Wave

The fisrt problem comes from [24]. This test problem consists of a
slab of material with opacity σ = 100, and ρCv = 10−4, extending from
x =0 to x =0.1. A temperature source with T =1000, on the left side gen-
erates a thermal wave into the initialy cold medium, which is at equilib-
rium with an initial temperature T =300. In this test case we use a mesh
with ten cells.

Comparison of M1 solution computed using the AP-HLLC-var sch-
eme with M1 solution computed using the HLLC-var scheme and a refer-
ence solution obtained by full transport calculation (see [24]) is shown in
Fig. 5 at three times (t1 =1.33∗10−9, t2 =1.33∗10−8, t3 =1.33∗10−7).

In this computation the cell size Δx =0.01 does not sample the mean
free path λ=1/σ =0.01. As we expected the M1 solution computed using
the HLLC-c scheme clearly overestimates the radiative energy, mostly in
early times whereas the M1 solution computed using the AP-HLLC-var
scheme gives a much better agreement with the reference solution.

The influence of the choice of the numerical wavespeeds bL and
bR is shown in Fig. 6. We compare, on the same test case, at time
t3, the four variants of our scheme (HLLC-c, HLLE-var, AP-HLLC-c,

0 0,02 0,04 0,06 0,08 0,1

X

300

400

500
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T

Non asymptotic scheme
Asymptotic preserving scheme
Reference solution

t = t1

t = t2

t = t3

Fig. 5. Radiation temperature for t1 = 1.33 ∗ 10−9, t2 = 1.33 ∗ 10−8, and t3 = 1.33 ∗ 10−7.
Results from the HLLC-var and AP-HLLC-var schemes are compared with the kinetic ref-
erence solution obtained in [24].
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Fig. 6. Radiation temperature for t = 1.33 ∗ 10−7 obtained thanks to the HLLC-c and
HLLC-var, AP-HLLC-c and AP-HLLC-var are compared from the X-Skinetic reference
solution obtained in [24].

AP-HLLC-var) with the reference solution. Obviously, taking too large
numerical wavespeeds (bL = −c and bR = +c) brings a too large amount
of numerical diffusion. Improving the HLLC-c scheme by using sharper
wavespeeds estimates or by using the asymptotic preserving modification
gives roughly the same improvement of accuracy and, as expected, the
best result is obtained with the AP-HLLC-var variant combining the two
modifications.

5.2. Opaque Materials

We now examine two problems, which involve opaque materials and
where we are able to compute the exact steady state solution of the equi-
librium diffusium model.

The first problem comes from [11]. This test problem consists of a
slab of material with opacity σ =100 and ρCv =1, extending from x =0 to
x =10. A temperature source with T =1, on the left side generates a ther-
mal wave into the initially cold slab, which is at equilibrium and has an
initial temperature of T =10−3. A vacuum boundary condition is imposed
at x = 10. The units are chosen such that c = a = 1. Two simulations are
performed with two different meshes of, respectively, 20 and 100 cells, so
that the mean free path is not resolved.

Figure 7 shows the radiation temperature at steady state for a sim-
ulation run with the AP-HLLC-var scheme on the two different meshes.
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Fig. 7. Steady radiation temperature obtained thanks to the HLLC-var and AP-HLLC-var
schemes on two different meshes are compared with the exact solution. A material opacity
σ =100 is used.

The two computations produced almost identical results, both very closed
to the exact steady solution of the equilibrium diffusion model.

For the second problem we keep the same parameters except the
opacity. We introduce a low-opacity region with σ = 100 which extend
from x = 0 to x = 5 and a high-opacity region with σ = 200 which extend
from x =5 to x =10.

Figure 8 shows the radiation temperature for a simulation run with
the AP-HLLC-var scheme on the two meshes. A good agreement with the
exact solution of the equilibrium diffusion model can be found again.

Figure 9 shows the influence of the asymptotic preserving modifica-
tion. We use here the finest mesh with 100 cells. The HLLC-var scheme
and the AP-HLLC-var are compared. Again, the solution of HLLC-var
scheme is far away from the exact solution. On the other hand, in
both cases the boundary conditions are satisfied. The upwind HLLC-var
scheme is too dissipative and is not able to see the transition area between
the low-and high-opacity regions.

5.3. Hybrid Case: Transparent to Opaque Transition

For this case, an hybrid problem for checking the transition between
transparent and opaque regions is considered. This test problem consists
of a slab with a region of transparent material with opacity σ = 0.1,
extending from x = 0 to x = 5 and a region of opaque material with σ =
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Fig. 8. Steady radiation temperature obtained thanks to the HLLC-var and AP-HLLC-var
schemes on two different meshes are compared with the exact solution. The material opaci-
ties σ =100 for x <5 and σ =200 for x >5 are used.
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Fig. 9. Steady radiation temperature obtained thanks to the HLLC-var and AP-HLLC-var
schemes are compared with the exact solution. The material opacities σ = 100 for x < 5 and
σ =200 for x >5 are used.

100, extending from x =5 to x =10. A temperature source with T =1, on
theleft side generates a thermal wave into the initially cold medium, which
is at equilibrium and has an initial temperature of T = 10−3. A vacuum
boundary condition is imposed at x = 10. The units are chosen such that
c=a =1.
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Fig. 10. Steady radiation temperature obtained thanks to the HLLC-var and AP-HLLC-
var are compared with the exact solution. The material opacities σ = 0.1 for x < 5 and σ =
100 for x >5 are used.

Figure 10 shows the steady radiation temperature obtained from the
AP-HLLC-var scheme, which was run with 100 cells compared with the
exact steady solution of the equilibrium diffusion model. A good agree-
ment can be observed. The AP-HLLC-var scheme proves to be able to
handle the wave crossing the interface between the transparent and opaque
regions.

This conclusion is enforced by the Fig. 11 where the material and
radiative temperatures are plotted at five different times. The last time is
taken sufficiently high to be close to the steady state. The phenomena in
the opaque material is a Marshak wave except of a small preheating area
where the material temperature is not the same as the radiative tempera-
ture. In this area, the transport is dominant, and the diffusion assumption
is not verified.

5.4. Two Dimensionnal Case

The fourth problem is a two dimensional problem developed to focus
on purely two dimensional effects. A Cartesian mesh made of 80×40 cells
is used. In this problem, we consider free streaming beam adjacent to
some section of dense, opaque material. The opaque region extends from
x = 0 to x = 0.5 and from y = 0 to y = 0.5. Outside, we consider a trans-
parent region which extends from x = 0 to x = 2 and from y = 0 to y = 2.
In the dense material ρCv =8.6×104, σ =2×105. The outside material is
purely transparent, i.e. σ =0. The geometry is summarized on Fig. 12.
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Fig. 11. Radiation and material temperatures for t = 100, t = 1000, t = 2000, t = 3000, and
for the steady state are obtained thanks to the AP-HLLC-var scheme.

A radiative temperature T = 5,802,000 (=5keV ) is applied on the
left-side of the transparent material from y = 0.5 to y = 1 (see Fig. 12).
Vacuum boundary condition are applied at all other boundaries. The ini-
tial temperature is T =50,000 in the dense material and T =300 elsewhere.
All the computations are run on a cartesian mesh of 80×40 cells and the
parameter β, introduced in (4.1), is defined as follows:

1

0

0.5

0.5 2

s = 2 × 105

σ = 0

Fig. 12. Geometry for the two dimensional case.



An HLLC Scheme to Solve M1 Model 385

β =
⎧
⎨

⎩

(
f .n
f

)2
, if f 
=0,

1
2 , if f =0,

where n is the outward normal of the cell interface. The simulation is
stopped at the time t =5×10−8.

The expected solution is very simple. In the upper part, from y = 0.5 to
y = 1 the solution is a translation of the left boundary condition, the radia-
tive temperature is T = 58,02,000 and the photons remains in free streaming
(f ≈1). In the lower part, from y =0 to y =0.5 the solution is constant in time
because there is no photons which are entering in this area. The line y =0.5 is
a stanionary contact discontinuity for the M1 system.

In the Figs. (13–15), we examine the ability of the various variants of
our scheme to capture this solution. The Fig. 13 shows the radiative tem-
perature, the Fig. 14 shows the material temperature in the obstacle, and
the Fig. 15 shows the anisotropy factor f , for each variant of the scheme.

Figure 13 shows the influence of the numerical wavespeeds bL and
bR. We compare the -c and the -var versions of both HLLC and AP-
HLLC schemes. The numerical dissipation of the -c variant, espacially in
the y-direction, does not allow this schemes to preserve the contact dis-
continuity and we observe a lot of photons penetrating the lower part of
the domain. On the other hand the contact discontinuity is nearly exactly
preserved in the -var versions of the two schemes. More precisely, at a
point y = 0.5, x > 0.5 on a cell interface in y-direction, in the “left” cell

0.0125 1 1.988
0.0125

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9875
Non asymptotic HLLC-c

2e+06

3e+06

3e+06

3e+06

3e+06

4e+06

4e+06 4e+06
4e+06

4e+06 4e+06

5e+06

5e+06

5e+
06

5e+065e+06

0.0125 1 1.988
0.0125

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9875
Asymptotic HLLC-var

1e+06 +
3e+06 3e+064e+06 4e+06 65e+06 5e+06 5e+062e+061e+06 2e+06

1e
4e+05e+06

2e+061e+06
3e+064e+062e+06

0.0125 1 1.988
0.0125

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9875
Non asymptotic HLLC-var

1e+06 1e+06 1e+2e+063e+064e+06 4e+06 4e+065e+06 5e+06 5e+06 5e+06
2e+061e+06

3e+062e+064e+062e+06 3e+06

0.0125 1 1.988
0.0125

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9875
Asymptotic HLLC-c

1e+06

1e+06

2e+06

2e+06
2e+06

3e+06
3e+06

3e+

4e+064e+06
4e+06

4e+064e+064e+06

5e+06 5e+06 5e+06

5e+06
5e+06

5e+06
5e+06

4e+06
5e+062e+061e+063e+06

Fig. 13. Radiation temperature at t =5∗10−8 obtained thanks to the HLLC-c and HLLC-var,
AP-HLLC-c and AP-HLLC-var schemes.
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Fig. 14. Material temperature at t = 5 ∗ 10−8 obtained thanks to the HLLC-c and HLLC-var,
AP-HLLC-c and AP-HLLC-var schemes.

fx =fy ≈0 and in the “right” cell fx ≈1, fy ≈0, and for the -var scheme
bL = −c/

√
3, bR ≈ 0 (3.66) and (3.67); the -c version (and every scheme

using symmetric wavespeeds, bL =−bR) introduces there a numerical diffu-
sion responsible for (nonphysical) penetration of photons in the lower part
of the domain. The necessity of using sharp numerical wavespeeds esti-
mates is clearly proved.

Figure 14 shows the improvement brought by the asymptotic pre-
serving modification. Indeed for both HLLC-c and HLLC-var schemes
the heating of the opaque medium is much more important without the
asymptotic preserving modification. When using the HLLC-c scheme a
large amount of photons penetrates the the lower opaque region (wrong
wavespeeds), which is too much heated (wrong behavior in the diffusion
regime), and the material temperature raises and the medium emits ener-
getic photons which perturb the solution in transparent regions.
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Fig. 15. Anisotropy factor at t = 5 ∗ 10−8 obtained thanks to the the HLLC-c and HLLC-var,
AP-HLLC-c and AP-HLLC-var schemes.

Finally, it appears that we need to use sharp numerical wavespeeds
estimates and asymptotic preserving modification, i.e. the AP-HLLC-var
scheme, to capture with accuracy the solution of this problem.

6. CONCLUSION

In the present work, we have exhibited a new numerical method to
approximate the solutions of the M1 model of radiative transfer. This
procedure is based on predictor-corrector scheme and it uses an HLLC
scheme. A particular attention has been payed to satisfy the positiveness of
the energy and the flux limitation property. As a consequence, the scheme
has been proved to be robust. In addition, we have established the asymp-
totic preserving property of the scheme. The accuracy of the method has
been ensured when considering approximate Riemann solver with a char-
acteristic cone which is not necessary symmetric. Such an independent
choice of the extreme approximate wavespeeds gives accurate numerical
results into the simulations. Indeed, when simulations involving a shadow
cone are performed, a scheme using an approximate Riemann solver with
a symmetric characteristic cone involves very large numerical diffusion
while our proposed scheme produces results in very good agreement with
the physics.
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