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In recent years the concept of fully adaptive multiscale finite volume schemes
for conservation laws has been developed and analytically investigated. Here
the grid adaptation is performed by means of a multiscale analysis. So far, all
cells are evolved in time using the same time step size. In the present work
this concept is extended incorporating locally varying time stepping. A general
strategy is presented for explicit as well as implicit time discretization. The effi-
ciency and the accuracy of the proposed concept is verified numerically.

KEY WORDS: Multiscale techniques; local grid refinement; locally varying
time stepping; finite volume schemes; conservation laws.

1. INTRODUCTION

The solution of hyperbolic conservation laws typically exhibits locally
steep gradients and large regions where it is smooth. To account for the
highly nonuniform spatial behavior, we need numerical schemes that ade-
quately resolve the different scales, i.e., use a high resolution only near
sharp transition regions and singularities but a moderate resolution in
regions with smooth, slowly varying behavior of the solution.

For this purpose, numerical schemes have been discussed or are under
current investigation that aim at adapting the spatial grid to the local
behavior of the flow field. A standard strategy is to base local mesh
refinements on local indicators which are typically related to gradients in
the flow field (see [9, 11]), or local residuals (see [31, 42, 43]). Although
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these concepts turn out to be very efficient in practice they offer no
reliable error control. For this purpose, a posteriori error estimates have
been derived which aim at equilibrating local errors (see [33]).

In the early 1990s Harten [28] proposed to use multiresolution tech-
niques in the context of hyperbolic conservation laws. He employed these
techniques to transform the arrays of cell averages associated with any
given finite volume discretization into a different format that reveals
insight into the local behavior of the solution. The cell averages on a given
highest level of resolution (reference mesh) are represented as cell averages
on some coarse level where the fine scale information is encoded in arrays
of detail coefficients of ascending resolution. By means of the multiresolu-
tion analysis the flux evaluation is controlled, i.e., cheap finite differences
are employed in regions where the solution is smooth. By this strategy the
computation is accelerated and the solution remains within the same accu-
racy as the reference scheme, i.e., the scheme on the finest computational
mesh that uses the expensive flux evaluation throughout the entire domain.
However, since one works still on a uniform mesh the computational com-
plexity stays proportional to the number of cells on the finest grid. So far,
Harten’s concept has been successfully implemented for two-dimensional
Cartesian meshes [12, 13, 18, 19, 40], curvilinear meshes [23], and unstruc-
tured meshes [1, 14, 20].

Parallel to Harten’s original idea a modified approach has been devel-
oped by Müller and co-authors [21, 27, 37] that is aiming at reduc-
ing the computational costs with regard to both computational time and
memory requirements but still maintaining the accuracy of the reference
scheme. In contrast to this, the detail coefficients will be used here to
create locally refined meshes on which the discretization is performed. Of
course, the crux in this context is to arrange this procedure in such a way
that at no stage of the computation there is ever made use of the fully
refined uniform mesh. A central mathematical problem is then to show
that the solution on the adapted mesh is of the same accuracy as the solu-
tion on the reference mesh. By now the fully adaptive multiscale concept
has been applied by several groups with great success to different real-
world applications, e.g., 2D/3D–steady state computations of compress-
ible fluid flow around air wings modeled by the Euler and Navier–Stokes
equations, respectively, as well as fluid-structure interactions on block-
structured curvilinear grid patches [15, 16], nonstationary wave interac-
tions in two-phase fluids on 2D Cartesian grids for Euler equations [2,
3, 24, 37], backward–facing step on 2D triangulations [22] and simulation
of a flame ball modeled by reaction–diffusion equations on 3D Cartesian
grids [41].
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A short-coming of this approach is the lack of temporal adaptivity,
i.e., all cell averages are evolved in time by the same time step size τ .
For reasons of stability we are therefore obliged to choose τ such that the
CFL condition for the cells on the finest mesh is satisfied. However, for
cells corresponding to a coarser discretization we may use a larger time
step to meet the local CFL condition. Therefore, it is natural to use locally
varying time stepping.

First results on local time stepping have been published by Osher and
Sanders [39] for one-dimensional scalar conservation laws. Here the space
discretization is fixed but nonuniform. Each element is evolved in time
either by an entire time step or a fixed number of smaller time steps. They
thoroughly analyzed a first-order spatial discretization with a local for-
ward Euler time stepping scheme. This work has been extended in [25]
where a maximum principle was proven for a local forward Euler method
when limited slopes are included. Moreover, they showed that the main
ideas may be extended to second-order in time by TVD Runge–Kutta
methods. Recently, similar ideas were considered in [44] for hyperbolic
conservation laws where the solution increment is projected at each local
time step.

About the same time, Berger and Oliger [11] proposed the by now
classical Adaptive Mesh Refinement (AMR) technique. Here refined grids
are laid over regions of the coarse mesh. In particular, the grids need not
to be nested but can have a different orientation than the coarse grid.
This allows for a local alignment of the grid with anisotropic effects such
as shocks. Each refinement level is propagated with its own time step.
Information is passed between the grids using injection and interpolation
techniques. This approach has been investigated in a series of papers and
applied to multidimensional hyperbolic systems of conservation laws (see
[6–10]).

In the present work, we are now concerned with the modification
of the adaptive multiscale scheme such that we may evolve cell averages
on level l by its own level-dependent time step size τl . After one time
step, the new data then correspond to different times. This procedure is
adequate for steady-state problems. Due to this nonuniformity of the tem-
poral propagation front this is no longer admissible for instationary prob-
lems because this would result in wrong shock positions. In this case, we
have to synchronize the coarse and fine grid solution to obtain an over-
all conservative scheme. This subject was intensively investigated by Berger
et al. in several papers (see [7, 8, 11]). In the context of adaptive multi-
scale finite volume scheme this has to be adjusted to the requirement that
the resulting scheme provides a spatial accuracy that is comparable to the
spatial accuracy of the reference mesh. This point of view is similar to the
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method presented in [45] for second-order partial differential equations,
which exhibit a smooth solution.

Opposite to the AMR framework (cf. [11]), we will successively prop-
agate the data in time starting on the finest refinement level instead of
the coarsest. The synchronization then takes place after having performed
one time step on the coarsest level which is referred to as the macro time
step. If we use a high number of refinement levels, a shock may have a
large range of influence within one macro time step. To resolve the shock
adequately we either have to refine a priorly a large region on the fin-
est level or we have to perform grid refinement on sublevels to track the
shock position within one macro time step. The latter strategy is prefera-
ble because the overhead for the grid adaptation on the intermediate time
levels is by far compensated by the reduced number of flux evaluations on
the finest grid.

Since the underlying fully adaptive multiscale concept can be applied
to multidimensional scalar and systems of conservation laws based on an
explicit or implicit reference finite volume scheme, the strategy of incorpo-
rating locally varying time stepping can be applied to all of these problems
as well. This makes our strategy a general concept.

The outline of the paper is as follows. In Sec. 2, we start with a
summary of the standard fully adaptive multiscale concept recalling its
core ingredients, namely, the multiscale analysis and the local grid adap-
tation. In Sec. 3, we then outline the concept for incorporating locally
varying time stepping. Here we first consider an explicit time integration.
The main ingredients are (i) a conservation–preserving flux evaluation near
interface points, (ii) the computation of appropriate prediction values on
coarser levels, (iii) the synchronization of the time evolution, and (iv) the
local grid refinement on the intermediate time levels to track appropri-
ately the movement of discontinuities. These ideas are then extended to
an implicit time integration. Numerical results verify the efficiency and the
accuracy of our method (see Sec. 4). Note that all concepts are presented
for one-dimensional problems only to simplify the presentation. However,
the concepts also work for multidimensional problems as has been verified
for 2D Euler and shallow water computations (cf. [34, 35, 38]). We con-
clude with some remarks on open questions and future work.

2. FULLY ADAPTIVE MULTISCALE SCHEMES

We briefly summarize the fully adaptive multiscale finite volume
scheme for conservation laws. To simplify the presentation of the basic
ideas we confine to the 1D case. The multidimensional case is presented
in detail in [37]. For this purpose we consider a scalar conservation law
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ut (t, x)+ (f (u(t, x)))x =0, t >0, x ∈R, (1)

which is governed by the initial data

u(0, x)=u0(x), x ∈R. (2)

Note that in case of a bounded computational domain we additionally
have to supply boundary conditions as well. Since these will cause no con-
ceptual limitation in the design of the multiscale scheme we confine to
initial value problems. A conservative finite volume discretization of this
problem can be written in the form

vn+1
k + θ λBn+1

k =vnk − (1− θ) λBnk , λ := τ/h. (3)

Here space and time are uniformly discretized by h and τ , respectively.
Note that the time discretization is explicit for θ = 0 and implicit for 0<
θ �1. Conservation means that the flux balance Bnk has the form

Bnk :=F
(
vnk−p+1, . . . , v

n
k+p

)
−F

(
vnk−p, . . . , v

n
k+p−1

)
=Fk+1 −Fk, (4)

where the function F(u1, . . . , u2p) is the numerical flux function.
To improve the efficiency of the finite volume scheme without loss

of accuracy we employ multiresolution techniques. For this purpose, we
first recall the basic ideas of the underlying multiscale concept. This is
employed to construct a locally refined grid on which finally the time evo-
lution is performed. In Sec. 3, we will see that some steps of the grid
adaptation procedure have to be adapted to the needs of locally varying
time stepping.

2.1. Multiscale Analysis

A finite volume discretization is typically working on a sequence of
cell averages. In order to analyze the local regularity behavior of the
data, we employ the concept of biorthogonal wavelets [17]. This approach
may be seen as a natural generalization of Harten’s discrete framework
[4, 5, 29]. For reasons of simplicity only uniform refinements in one space
dimension are considered here. Note that the framework presented here
is not restricted to this simple configuration but can also be applied to
unstructured grids and irregular grid refinements. Details can be found in
[37].

Grid hierarchy. Let be Gl := {Vl,k}k∈Il , l ∈ N0, Il = Z, a sequence of
different grids corresponding to different resolution levels. These meshes
are composed of the intervals Vl,k = [xl,k, xl,k+1] determined by the grid
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points xl,k=2−l k, k∈Z. We note that with increasing refinement level l the
interval length hl=2−l becomes smaller. Obviously, the resulting grid hier-
archy is nested, i.e., Gl ⊂Gl+1, because of the subdivision condition

Vl,k =Vl+1,2k ∪Vl+1,2k+1, ∀ l ∈N0, k∈Z. (5)

Box function and cell averages. Relative to the partitions Gl we intro-
duce the so-called box function

φ̃l,k(x) := 1
|Vl,k|χVl,k (x)=

{
2l , x ∈Vl,k,
0, x �∈Vl,k (6)

defined as the L1–scaled characteristic function with respect to Vl,k. By |V |
we denote the volume of a cell V . Then the averages of a scalar, integrable
function u∈L1(Ω) can be interpreted as an inner product, i.e.,

ûl,k :=〈u, φ̃l,k〉Ω with 〈u, v〉Ω :=
∫

Ω

uv dx. (7)

Obviously the nestedness of the grids as well as the linearity of integration
imply the two–scale relations

φ̃l,k =
∑

r∈M0
l,k

m
l,0
r,k φ̃l+1,r and ûl,k =

∑

r∈M0
l,k

m
l,0
r,k ûl+1,r , (8)

where the refinement set is defined by M0
l,k := {2k,2k+ 1} ⊂ Il+1 and the

mask coefficients turn out to be ml,0r,k :=|Vl+1,r |/|Vl,k|=0.5.
Wavelets and details. In order to detect singularities of the solution,

we consider the difference of the cell averages corresponding to different
resolution levels. For this purpose, we introduce the wavelet functions ψ̃l,k
as linear combinations of the box functions, i.e.,

ψ̃l,k :=
∑

r∈M1
l,k⊂Il+1

m
l,1
r,k φ̃l+1,r . (9)

The construction of the wavelets is subject to certain constraints, namely,
the wavelet functions Ψl := (ψl,k)k∈Il build a completion of the basis sys-
tem Φl := (φl,k)k∈Il , they are locally supported, provide vanishing moments
and there exists a biorthogonal system. For details, we refer to the concept
of stable completions (see [17]). Then we can perform a change of basis
between Φl ∪Ψl and Φl+1, i.e.,

φ̃l+1,k =
∑

r∈G0
l,k⊂Il

g
l,0
r,k φ̃l,r +

∑

r∈G1
l,k⊂Il

g
l,1
r,k ψ̃l,r . (10)
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By means of the wavelet functions we introduce the detail coefficients

dl,k :=〈u, ψ̃l,k〉Ω. (11)

These coefficients inherit the two-scale relation

dl,k =
∑

r∈M1
l,k

m
l,1
r,k ûl+1,r (12)

from its functional counterpart (9).
Multiscale transformation. The ultimate goal is to transform the array

of cell averages uL := (ûL,k)k∈IL corresponding to a finest uniform discreti-
zation level into a sequence of coarse grid data u0 := (û0,k)k∈I0 and details
d l := (dl,k)k∈Il , l = 0, . . . ,L− 1, representing the successive update from a
coarse resolution to a high resolution. According to (8) and (9), we obtain
two-scale relations for the coefficients inherited from the two-scale rela-
tions of the box functions and the wavelet functions

ûl,k =
∑

r∈M0
l,k

m
l,0
r,k ûl+1,r , dl,k =

∑

r∈M1
l,k

m
l,1
r,k ûl+1,r (13)

and

ûl+1,k =
∑

r∈G0
l,k

g
l,0
r,k ûl,r +

∑

r∈G1
l,k

g
l,1
r,k dl,r . (14)

Applying the relations (13) iteratively the array ûL is successively decom-
posed. We refer to this transformation as multiscale transformation. It is
reversed by the inverse multiscale transformation (14).

Cancellation property. It can be shown that the details become small
with increasing refinement level when the underlying function is smooth

|dl,k|�C 2−l M ‖u(M)‖L∞(Vl,k). (15)

Obviously, the details decay with a rate at least of 2−l M provided the func-
tion u is differentiable and the wavelets have M vanishing moments. This
motivates to neglect all sufficiently small details in order to compress the
original data.

Example Finally we give an example for the above multiscale setting
in case of a dyadic grid refinement of the real axis, i.e., Ω=R and Il =Z

for l = 0, . . . ,L. This simplifies the computation of the wavelets because
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the mask coefficients are independent of the level and the position. Oth-
erwise we have to modify the wavelet construction near boundaries and
ensure that the support is fully contained in the flow field. Following the
wavelet construction with

M=2 s+1 (16)

vanishing moments presented in [36, Secs. 2.5.2 and 3.8], we obtain for the
mask coefficients

g
l,0
k,2j+i =

{
δk,j − (−1)i lk−j+s , k∈{j − s, . . . , j + s},
0, elsewhere,

g
l,1
k,2j+i =

{
(−1)i , k= j,
0, elsewhere,

m
l,0
2j+i,k =

{
0.5, k= j,
0, elsewhere,

m
l,1
2j+i,k =

{
0.5 (lj−k+s + (−1)i δk,j ), l ∈{j − s, . . . , j + s},
0, elsewhere

for k, j ∈ Il and i ∈ {0,1}. The coefficients li , i= 0, . . . , s, are summarized
in Table I. Hence the corresponding index sets of nonvanishing entries are
determined by

M0
l,k ={2k,2k+1}, M1

l,k ={2(k− s), . . . ,2(k+ s)+1}, (17)

G0
l,k ={
k/2�− s, . . . , 
k/2�+ s}, G1

l,k ={
k/2�}. (18)

2.2. Local Grid Adaptation

By means of the details, we now determine a locally refined grid.
Since the grid adaptation tool is supposed to dynamically adapt the mesh
to an underlying flow field, we start with data corresponding to a certain
time step n. At this time step, the locally refined grid is characterized by
the index set GnL,ε ⊂{(l, k) ; k ∈ Il, l= 0, . . . ,L}, i.e., Ω =∪(l,k)∈GnL,ε Vl,k. It

Table I. Coefficients

s l0 l1 l2 l3 l4

0 0
1 −1/8 0 1/8
2 3/128 −11/64 0 11/64 −3/128
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is required that the set GnL,ε has the structure of a graded tree, i.e., neigh-
boring cells differ at most by one level of refinement. The grid is provided
with cell averages {ûnl,k}(l,k)∈GnL,ε . Then the grid adaptation procedure con-
sists of six steps. Note that it can be realized with an optimal complexity,
i.e., the number of floating point operations is proportional to the num-
ber of cells in the adaptive grid. In particular, we never access to the finest
mesh.

Local multiscale transformation. In a first step, we perform a multi-
scale analysis of the data at hand. For this purpose, we proceed level by
level from fine to coarse according to (13). Note that the two-scale trans-
formation is performed locally only for the indices corresponding to the
adaptive grid instead of the full levels. In particular, applying the local
two-scale transformation can be interpreted as a successive coarsening of
the grid where fine-grid cells are agglomerated to a coarse-grid cell and the
difference information is stored by the detail coefficients.

Thresholding. The idea is simply to discard all coefficients dnl,k that fall
in absolute value below a certain threshold. For this purpose, we introduce
the index set

Dn
L,ε :={

(l, k) ; |dnl,k|>εl, k∈ Il, l ∈{0, . . . ,L−1}}

corresponding to what will be referred to as significant details. Here εl =
2l−Lε is a level–dependent threshold value which is smaller on coarser lev-
els. The choice of the threshold parameter ε is discussed in [36].

Prediction of significant details. To perform the evolution step, we
have to determine the adaptive grid on the new time level. Since the cor-
responding averages, respectively, details are not yet available, we have to
predict all details on the new time level n+1 that may become significant
due to the evolution by means of the details on the old time level n. In
order to guarantee, the adaptive scheme to be reliable in the sense that no
significant future feature of the solution is missed, the prediction set D̃n+1

L,ε

has to satisfy

Dn
L,ε ∪Dn+1

L,ε ⊂ D̃n+1
L,ε , (19)

where, of course Dn+1
L,ε is not known at the old time level. In [28], Harten

suggests a heuristic approach that could not be rigorously verified to sat-
isfy (19). However, in [21], a slight modification of Harten’s prediction
strategy has been shown to lead to a reliable prediction strategy in the
sense of (19).

Grading. In order to perform the grid adaptation procedure level by
level we need that the index set of significant details corresponds to a
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graded tree, i.e., for any significant detail on level l there are significant
details in the neighborhood but on the next lower level

(l, k)∈DL,ε ⇒ (l−1, r)∈DL,ε ∀r ∈{
k/2�−q, . . . , 
k/2�+q}. (20)

Here the parameter q depends on the number s related to the number of
vanishing moments (16) and on the stencil width p of the numerical flux
(4) (cf. [36, p. 68, 70]). In particular, this implies that the levels of neigh-
boring cells differ at most by one. Since the sets Dn

L,ε and Dn+1
L,ε , respec-

tively, are in general not graded, we have to apply in addition a grading
procedure. This will slightly inflate the index set of significant details but
has so far been observed not to spoil the complexity reduction of floating
point operations in any significant way.

Grid adaptation. Then we exploit the inflated set D̃n+1
L,ε to determine

an associated index set Gn+1
L,ε , which characterizes the adaptive grid at the

new time level. The index set Gn+1
L,ε is initialized by all indices of the coars-

est discretization. Then, traversing through the levels from coarse to fine
we proceed as follows: if (l, k)∈ D̃n+1

L,ε then the cell Vl,k is locally refined,
i.e., the index (l, k) is removed from Gn+1

L,ε and the indices of the subcells
on the finer level are added to Gn+1

L,ε . Finally we obtain the locally adapted
grid which naturally corresponds to the leaves of the graded tree of signifi-
cant details.

Local inverse multiscale transformation By the previous step, the grid
has locally changed due to local refinement and coarsening. In order to
determine the cell averages {ûnl,k}(l,k)∈Gn+1

L,ε
, we employ a local inverse mul-

tiscale transformation according to (14) interrelating the local cell averages
{ûnl,k}(l,k)∈GnL,ε and the significant details {dnl,k}(l,k)∈D̃n+1

L,ε
. Again we proceed

level by level from coarse to fine where we locally replace a cell average on
the coarse scale by the cell averages of its subcells. This is done whenever
there is a significant detail associated to this coarse cell in D̃n+1

L,ε .

2.3. Application to Reference Finite Volume Scheme

Finally we have to present the time evolution on the locally refined
grid. Note that the ultimate goal is to obtain an efficient algorithm that
is as accurate as the reference scheme (3) performed on the uniform finest
grid. Here the crucial point is the flux computation on the adaptive grid.
The basic idea is to apply the multiscale transformation to the reference
scheme.

vn+1
L,k + θ λL Bn+1

L,k =vnL,k − (1− θ) λL BnL,k, λL := τ

hL
, k∈ IL. (21)
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Here vnL,k denote the numerical approximations at time tn. The flux
balances BnL,k are defined according to (4).

Then we introduce the cell averages vnl,k on the coarser scales
l=0, . . . ,L−1

vnl,k :=
∑

r∈M0
l,k

m
l,0
r,k v

n
l+1,r =

1
2

(
vnl+1,2k +vnl+1,2k+1

)
(22)

for an arbitrary time level tn according to (8).
Applying the multiscale transformation (13), we obtain discrete evolu-

tion equations for these cell averages

vn+1
l,k + θ λl Bn+1

l,k =vnl,k − (1− θ) λl Bnl,k, λl := τ

hl
. (23)

Here the local flux balances Bnl,k are recursively defined by

Bnl,k :=
∑

r∈M0
l,k

|Vl,k|
|Vl+1,r |

m
l,0
r,k B

n
l+1,r =

∑

r∈M0
l,k

Bnl+1,r =Fnl,k+1 −Fnl,k, (24)

where we employ (4) and (8). Due to the nestedness of the grids (5) the
numerical fluxes on level l coincide with the numerical fluxes on the higher
scales, i.e.,

Fnl,k =Fnl+1,2k =· · ·=Fn
L,2L−l k ≡F

(
vn
L,2L−l k−p, . . . , v

n
L,2L−l k+p−1

)
. (25)

Since the solution is only available on the adaptive grid, this formula can
not be directly applied for the flux evaluation. For this purpose, the data
on the finest level have to be reconstructed locally from the coarse-scale
information. In case of dyadic grid refinement where the mask coefficients
do not depend on level and position one might compute a priorly con-
stant transfer operators by which the reconstruction can be performed
very efficiently (cf. [20]). For non-dyadic grid refinements or curvilinear
grid patches, this is no longer feasible. Furthermore, formula (25) only
holds in the one-dimensional case. For multidimensional problems, hang-
ing nodes occur in the locally refined grid and the fluxes on different reso-
lution levels do not coincide. Then the local fluxes are defined by the sum
of all fluxes on the higher level whose cell interfaces build a composition
of the local cell interface.

Since the numerical divergence on the coarser levels is recursively
defined by (24) we further conclude

Bnl,k =
2L−l−1∑
i=0

Bn
L,2L−l k+i =FnL,2L−l (k+1)−FnL,2L−l k ≡Fnl,k+1 −Fnl,k, (26)
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i.e., the local numerical divergence is determined by the fluxes on the finest
scale. Then the fully adaptive scheme in 1D reads

vn+1
l,k + θ λl Bn+1

l,k =vnl,k − (1− θ) λl Bnl,k, (l, k)∈Gn+1
L,ε , (27)

where the flux balances Bnl,k are determined by (26) and (25).

3. LOCAL TIME STEPPING

So far no local time stepping is incorporated in the fully adaptive
multiscale scheme as summarized in Sec. 2.3. As we conclude from (23)
all cell averages are evolved in time by the same time step size τ . There-
fore, τ has to be chosen such that the CFL condition for the cells on the
finest mesh holds. Note that for cells on the coarser scales we may use
τl = 2L−l τ, l = 0, . . . ,L− 1, to satisfy locally the CFL condition. In the
sequel, we explain how to modify the adaptive multiscale scheme such that
we may evolve cell averages on level l by its own time step size τl . For this
purpose, we first consider the explicit scheme before extending the ideas to
the implicit scheme.

3.1. Explicit Local Time Stepping

The main issues arising in local time stepping concern (i) the con-
servative flux computation at interface points, i.e., grid points where the
neighboring cells are located on different refinement levels, (ii) the compu-
tation of a prediction value for the flux computation at intermediate time
levels near interface points, (iii) the synchronization of time evolution for
cells on different levels that are propagated with level-dependent time step-
ping, and (iv) the prediction of an appropriate adaptive grid when per-
forming intermediate time steps on higher levels.

3.1.1. Conservation–Preserving Flux Computation

Propagating each cell with its own time step size leads to a non-
synchronization of the flow field. For instationary problems we therefore
have to synchronize the coarse and fine grid solution at certain time levels.
According to the definition of τl the data can be synchronized naturally
at the times corresponding to the coarsest discretization τ0. In the context
of multiscale schemes, the flux synchronization problem is directly related
to the conservation property of the finite volume scheme, i.e., at each
interface point only one flux is computed for both of the adjacent cells.
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For this purpose, we investigate the correlation of the flux balances at
interface points in some detail.

For reasons of simplicity, we consider now only two refinement levels
to outline the basic ideas, i.e., a fine grid (level l+ 1) and a coarse grid
(level l). This situation is sketched in Fig. 1. Then the extension to the
multilevel case can be performed recursively (see Sec. 3.1.3). Let us assume
that we know the data on level l+1 at time tn. We now perform two time
steps according to (23) where we apply our reference scheme on level l+1
for the cells r ∈M0

l,k with time step size τ ≡ τl+1 =2 τl , i.e.,

v
n+1/2
l+1,r = vnl+1,r −λl+1B

n
l+1,r , (28)

vn+1
l+1,r = v

n+1/2
l+1,r −λl+1B

n+1/2
l+1,r (29)

with

λl+1 := τl+1

hl+1
= 0.5 τl

0.5hl
=λl. (30)

Here the flux balances Bn
l+1,r and B

n+1/2
l+1,r are computed according to (26)

by means of the data vn
l+1,r and v

n+1/2
l+1,r corresponding to time tn and

tn+1/2 = tn + τl+1, respectively. These correspond to the numerical fluxes
indicated by ◦ in Fig. 1. We now replace vn+1/2

l+1,r on the right-hand side of
(29) by (28). Hence (29) can be rewritten as

vn+1
l+1,r =vnl+1,r −λl+1

(
B
n+1/2
l+1,r +Bnl+1,r

)
. (31)

Again we apply to (31) the multiscale transformation (13) and obtain the
discrete evolution equations for cell averages on the coarser level

vn+1
l,k =vnl,k −λl Bnl,k, (32)

where the local flux balance B
n

l,k is recursively defined by

B
n

l,k :=
∑

r∈M0
l,k

m
l,0
r,k

(
B
n+1/2
l+1,r +Bnl+1,r

)
=Fnl,k+1 −Fnl,k (33)

with the numerical fluxes

F
n

l,k := 1
2

(
F
n+1/2
l+1,2k +Fnl+1,2k

)
. (34)

Here we use (8) and (26). These fluxes correspond to • in Fig. 1.
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Fig. 1. Two-scale grid in space and time.

In principle, the multiscale scheme tells us how to determine the flux
balances and numerical fluxes on coarser levels. As we conclude from (33)
and (34) they are determined by the average of their counterparts on the
finer level. This suggests to proceed from fine to coarse when propagating
the cell averages on different scales. At interface points we then have to
compute the flux balances and numerical fluxes by the information already
determined on the higher level. This situation is sketched locally in Fig. 2.

3.1.2. Prediction Value

When computing the numerical flux F
n+1/2
l+1,2k according to (25) we

access to cell averages at the intermediate time tn+1/2. In the literature
different approaches have been investigated to provide some prediction
value for these cells at the intermediate time level.

A naive strategy would be to use the available information on a pre-
vious time level, i.e., for the coarse cells (level l) we use the data of the
old time step tn as a prediction whereas for the finer cells (level l+ 1) we
can already use the new value at the intermediate time tn+1/2 (see Fig. 3).
This approach has been considered as a motivating example by Osher
and Sanders [39]. Recently, Tang and Warnecke [44] verify that this naive
approach is inconsistent at interfaces separating two global domains cor-
responding to two different resolutions. For this purpose, they apply a

Fig. 2. Locally refined grid in space and time.
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Fig. 3. Flux computation on a locally refined grid in space and time with a naive
prediction value.

first-order upwind scheme to a linear advection equation. We also used
this approach. But numerical simulations verified that the mixing of time
scales caused small perturbations at interface points. These are detected by
the multiscale analysis and result in an increase of significant details, i.e.,
the adaptive grid is locally inflated, and, hence, the efficiency of the com-
putation is degraded.

An alternative strategy has been introduced by Berger and Oliger [11].
They are using interpolation techniques, i.e., first the cells on the coarser
level are evolved in time. Then a prediction value is determined at the
intermediate time level evaluating an interpolation formulae computed by
the values of the old and new time. This results in two numerical fluxes at
interface points. To ensure the conservation property of the scheme, a so-
called synchronization step is necessary to compensate for the flux differ-
ence (see also Sec. 3.1.7).

Since we proceed levelwise from fine to coarse we use a predictor-
corrector approach similar to Osher and Sanders [39]. However, we pre-
fer a different representation more suited to an efficient implementation
of the resulting algorithm whereas the predictor–corrector representation
is preferable for analytical investigations. In Sec. 3.1.6, we will address this
in more detail. In the following, we outline the basic ideas by means of
the situation sketched in Fig. 4. First of all, we introduce the index sets
Cj ⊂ Gn+1

L,ε , j = l, l+ 1, of the cells on level j that can be evolved in time
by one time step with step size τj , i.e., these cells are not involved in the
flux computation on level j +1 at the intermediate time level correspond-
ing to τj+1. For this purpose, we consider the local flux function (25) with
L= l+1. Then we perform for each of the data vn

L,2k+r , r=−p, . . . , p−1,
the local multiscale transformation (14). From the supports (18) we then
conclude

Cl ={(l, i) ; i < 
(2k−p)/2�− s}, Cl+1 ={(l+1, i) ; i�2 k}.
Note that on the highest level (l+ 1) no cells are excluded. Further-

more we introduce set of all cells on level j and the complement sets Cj
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Fig. 4. Flux computation on a locally refined grid in space and time with an accurate
prediction value.

of cells on level j not contained in Cj

Ĩj :=
{
(j, k′) ; (j, k′)∈Gn+1

L,ε

}
, Cj := Ĩj\Cj .

For the particular situation considered here they turn out to be

Cl ={(l, k) ; 
(2k−p)/2�− s� i�k−1}, Cl+1 =∅.

Then the time evolution consists of two intermediate steps. In the first
step, we evolve all cells in Cl+1 by a full step with τl+1 and to compute
the prediction values for all cells on level l contained in Cl we perform a
half step also using τl+1, i.e.,

v
n+1/2
l′,k′ =vnl′,k′ −

τl+1

hl′

(
Fnl′,k′+1 −Fnl′,k′

)
, (l′, k′)∈Cl+1 ∪Cl . (35)

In a second step, we then perform a full step on level j = l, l+ 1 for all
cells in the sets Cj with τj and a half step for the prediction values on
level l contained in Cl , i.e.,

vn+1
l′,k′ = v

n+(l′−l)/2
l′,k′ − τl′

hl′

(
F
n+(l′−l)/2
l′,k′+1 −Fn+(l′−l)/2

l′,k′
)
, (l′, k′)∈Cl+1 ∪Cl ,

(36)

vn+1
l,k′ = v

n+1/2
l,k′ − τl+1

hl

(
F
n+1/2
l,k′+1 −Fn+1/2

l,k′
)
, (l, k′)∈Cl .

Here the numerical fluxes are determined by (25) where we use either the
data at time tn or tn+1/2, respectively.

If we plug in (35) into (36) then we may rewrite the time evolution in
one (macro) time step corresponding to τl as

vn+1
l′,k′ =vnl′,k′ −

τl

hl′

(
F
n

l′,k′+1 −Fnl′,k′
)
, (l′, k′)∈Gn+1

L,ε . (37)

For the flux computation F
n

l′,k′ , see also (34), we distinguish three cases:
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(i) at the fine level (l′ = l+1)

F
n

l+1,k′ =
1
2

(
F
n+1/2
l+1,k′ +Fnl+1,k′

)
, (38)

(ii) at the coarse level (l′ = l) away from interface points

F
n

l,k′ =Fnl,k′ , (39)

(iii) at the coarse level (l′ = l) coinciding with an interface point

F
n

l,k′ =
1
2

(
F
n+1/2
l+1,2k′ +Fnl+1,2k′

)
=Fnl+1,2k′ . (40)

Finally we note that (35) can be considered a prediction step and (36) a
correction step.

3.1.3. Synchronization of Time Evolution

In the previous sections, we derived a conservation–preserving and
accurate strategy for the flux evaluation at interface points. Note that due
to the grading of our adaptive grid (see Sec. 2.2), the refinement level of
the adjacent cells differs by at most one. Therefore, it has been sufficient
to outline the local time stepping strategy for a two-level grid only. We
now have to explain how to incorporate this concept into the time evo-
lution of the adaptive grid. The basic idea is to evolve each cell on level l
with the level-dependent time discretization τl=2L−l τL, l=0, . . . ,L. Obvi-
ously, all cell averages correspond to the same integration time after hav-
ing performed 2l time steps with τl , i.e., the cells are synchronized. This
is schematically sketched in Fig. 5. Therefore, one macro time step with
τ0 =2L τL consists of 2L intermediate time steps tn+i 2−L, i=1, . . . ,2L, with
step size τL. At time tn+i 2−L the smallest synchronization level is deter-
mined by

li :=min{l ; 0� l�L, i mod 2L−l =0},

i.e., in this step we have to evolve all cells sitting on the levels l= li , . . . ,L
to ensure the synchronization of the time evolution.

According to the multiscale analysis the time evolution is performed
first for the cells on the highest level and then successively for the coarser
levels. By this procedure we ensure that the fluxes at the intermediate time
level have already been computed when determining the fluxes (40) at the
interface points on the coarser level.
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Fig. 5. Synchronization on multilevel grid.

The details of the synchronized time evolution is summarized in the
following Algorithms. First of all, we have to initialize the index sets Cl , l=
0, . . . ,L and the index set of the numerical fluxes F .

Algorithm 1 (Initialization on levels l=0, . . . ,L)
For each macro time step we first have to initialize

(a) the index sets Cl , l = 0, . . . ,L, of cells on level l that can be
evolved in time by one time step with step size τl , i.e.,

CL :=
{
(L, k) ; (L, k)∈ G̃n+1

L,ε

}
,

Cl :=
{
(l, k)∈ G̃n+1

L,ε ; � ∃ (l+1, r)∈ G̃n+1
L,ε : k∈Σr

}
, l <L

with the range of dependence Σr determined by the stencil of the
flux computation (25) and the local inverse multiscale transfor-
mation (14) as

Σr :={
(r−p)/2�− s, . . . , 
(r+p)/2�+ s};

these cells are not involved in the flux computation on level l+1
at the intermediate time level corresponding to τl+1;

(b) the complement sets, i.e.,

Cl := Ĩl\Cl , Ĩl :=
{
(l, k) ; (l, k)∈Gn+1

L,ε

}
;

(c) the index set F of all numerical fluxes to be computed for the
current adaptive grid, i.e.,

F :=
{
(l, k) ; (l, k)∈ G̃n+1

L,ε or (l, k+1)∈ G̃n+1
L,ε

}
.

After having initialized these sets we may perform the time evolution for
each of the intermediate time steps i=1, . . . ,2L.
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Algorithm 2 (Synchronized time evolution for time step tn+i 2−L )
For each intermediate time step we have to perform the following steps:

(1) Flux computation:

(a) For the levels l= li−1, . . . ,L we determine the numeri-
cal fluxes with respect to the data of the previous inter-
mediate time step corresponding to tn+(i−1)2−L , i.e.,

(i) no interface point ((l+1,2k) �∈F)

F
n+(i−1)2−L
l,k =F

(
v
n+(i−1)2−L
L,2L−l k−p , . . . , v

n+(i−1)2−L
L,2L−l k+p−1

)
,

(ii) interface point ((l+1,2k)∈F)

F
n+(i−1)2−L
l,k =Fn+(i−1)2−L

l+1,2k ;

this procedure has to be performed from fine to coarse;
(b) For level l= li−1 − 1 we have to update the numerical

fluxes at the interface points to maintain the conserva-
tion property, i.e.,

F
n+(i−1)2−L
li−1−1,k =Fn+(i−1)2−L

li−1,2k
;

(c) For the levels l=0, . . . , li−1 −1 the numerical fluxes are
unchanged except for the interface points on level li−1
(see step 1b), since the cell averages on these levels have
not changed in the previous intermediate time step, i.e.,

F
n+(i−1)2−L
l,k =Fn+(i−2)2−L

l,k ;

(2) Time Evolution:

(a) For the levels l= li , . . . ,L we perform a full time step
with τl for the cells (l, k)∈Cl , i.e.,

vn+i 2−L
l,k =vn+(i−1)2−L

l,k − τl

hl

(
F
n+(i−1)2−L
l,k+1 −Fn+(i−1)2−L

l,k

)
;

(b) For the levels l= li − 1, . . . ,L we perform a half time
step with τl+1 = τl/2 for the cells (l, k)∈Cl , i.e.,

vn+i 2−L
l,k =vn+(i−1)2−L

l,k −τl+1

hl

(
F
n+(i−1)2−L
l,k+1 −Fn+(i−1)2−L

l,k

)
;
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(c) For the levels l = 0, . . . , li − 1 the cell averages are
unchanged except for the cells on level li−1 contained
in Cli−1 (see step 2b), i.e.,

vn+i 2−L
l,k =vn+(i−1)2−L

l,k .

3.1.4. Prediction of Details

So far we only considered the correct flux treatment at interfaces of
two different discretizations. This affects the correct transport of informa-
tion and the stability of the approximation. In addition to this, we have
to be concerned with the quality of the approximation. According to the
fully adaptive multiscale concept presented in Sec. 2.3, we are still aim-
ing at the accuracy provided by the reference scheme (21) on the finest
uniform discretization. In particular, after one macro-time step using the
local time stepping procedure with τ0 = 2LτL we would like to have as
good an approximation as having performed 2L time steps with the refer-
ence scheme using the step size τL. Therefore, we have to make sure that
the solution is adequately resolved at the old time tn and the new time
step tn+1 = tn+2LτL= tn+τ0. For the original fully adaptive scheme this is
ensured by the prediction step of the grid adaption (see Sec. 2.2). The pre-
diction of the details ensures that a significant information can only move
by at most one cell on the finest level. However, employing the same strat-
egy for the local time stepping strategy this information could move up to
one cell on the coarsest mesh. This would result in a completely under-
resolution of discontinuities on the new time level. To account for this we
have to modify the prediction step of the details (19) such that the predic-
tion set D̃n+1

L,ε satisfies the modified reliability condition

2L⋃
i=0

Dn+i 2−L
L,ε ⊂ D̃n+1

L,ε , (41)

where the sets Dn+i 2−L
L,ε correspond to the significant details of the solution

at times tn+i 2−L = tn+ i τL, i=0, . . . ,2L.
One option could be to resolve the whole range of influence character-

ized by the maximal and minimal characteristic speeds, respectively. This
can be realized by refining 2l cells (to the left and the right) in a neighbor-
hood of a significant detail on level l instead of only one cell. Hence, we
take into account that an information can move by one coarse cell instead
of one fine cell only. Unfortunately, this results in a tremendous overhead
of work on the higher levels as can be concluded from Fig. 6. There, we
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Fig. 6. Influence of different prediction strategies.

sketch the influence of the modified prediction strategy in comparison to
the old one after having performed the grading step. Here we consider one
significant detail denoted by × on level l=3. Then we mark by • the cells
corresponding to the old strategy. The additional cells ◦ characterize the
inflation due to the modification. We note that the graded tree is much
more inflated, in particular, on the higher levels. Obviously, this strategy
ensures that all effects are properly resolved on the new time level after
having performed the macro-time step. However, the efficiency degrades
significantly.

To optimize the efficiency we suggest an alternative approach. The
idea is to perform additional grid adaptation steps according to Sec. 2.2
after each synchronization. In particular, after having propagated the data
on levels l= li , . . . ,L, which correspond to 2l time steps with τl , we apply
the grid adaptation on this part of the grid only instead of the whole
adaptive grid. By this procedure it is possible to track, for instance, the
shock position on the intermediate time levels instead of a priori refining
the whole range of influence. In other words, we make sure that a signifi-
cant information on level l can only propagate by at most one cell on this
level when performing the evolution step with τl . To realize this we only
have to perform minor changes in the grid adaptation algorithms where
we replace the coarsest level 0 by the current synchronization level li , i.e.,
level li is considered to be the coarsest level. The data and the cells on the
coarser levels 0, . . . , li −1 are not affected. Moreover, we replace the index
sets GL,ε and DL,ε by Gli ,L,ε and Dli ,L,ε , respectively, to indicate that these
sets only correspond to the levels li , . . . ,L. Note that in practice we do
not need additional data structures but can work on the same data struc-
tures as before. The modified grid adaptation strategy is summarized in
the following algorithm.
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Algorithm 3 (Partial grid adaptation on levels li , . . . ,L at time tn+i 2−L )

(1) Local multiscale transformation performing the loop over l from
L down to li +1;

(2) Thresholding performing the loop over l from li to L−1;
(3) Prediction of significant details performing the loop over all

(l, k)∈Dn+i 2−L
li ,L,ε

;
(4) Grading performing the loop over l from L down to li +1;
(5) Grid adaptation performing the loop over l from li to L − 1

where the grid Gn+(i+1)2−L
li ,L,ε

for the new time step is initialized by

the cells of the old grid Gn+i 2−L
L,ε corresponding to the coarser

levels 0, . . . , li −1;
(6) Local inverse multiscale transformation performing the loop over

l from li to L−1.

When performing this partial grid adaptation on the levels li , . . . ,L, we
have to make sure that a cell on level li that is adjacent to a cell of level
li − 1 is not refined. Otherwise there will be a level-2-transition in the
adaptive grid that does not fit the assumptions of the algorithms realiz-
ing the multiscale transformation (see Sec. 2.1). This can be avoided by
increasing the grading parameter by 1 (see Sec. 2.2).

3.1.5. Algorithm

Finally we have to combine the time evolution at the intermediate
time steps tn+i 2−L and the partial grid adaptation at the synchronization
levels l= li , . . . ,L. For this purpose, we have to combine appropriately the
Algorithms 2 and 3. The complete macro-time step is summarized in the
following algorithm:

Algorithm 4 (Explicit local time stepping)

(1) Initialization:

(a) Grid adaptation:
Perform grid adaptation according to Algorithm 3 on
the levels 0, . . . ,L providing the grid G̃n+2−L

L,ε and the
corresponding cell averages vnl,k at time tn;

(b) Index sets:
Determine the index sets Cl ,Cl , l = 0, . . . ,L and the
index set of the numerical fluxes F according to Algo-
rithm 1.
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For each intermediate time step i=1, . . . ,2L we then perform the follow-
ing steps:

(2) Synchronization:
The time evolution at time tn+i 2−L is performed according to
Algorithm 2;

(3) Partial grid adaptation:
After having synchronized the data on levels l = li , . . . ,L, we
adapt the grid on these levels to the new data according to Algo-
rithm 3;
due to the grid adaptation the redistribution of cells makes it
necessary to reinitialize the sets Cl ,Cl , l = li − 1, . . . ,L and the
index set F on the levels l= li , . . . ,L according to Algorithm 1.

3.1.6. Remarks on the strategy of Osher and Sanders

Assume that the locally adapted grid Gn+1
L,ε is static for all intermedi-

ate time steps of the time evolution described in Algorithm 2. Then we
may rewrite the algorithm using the predictor–corrector representation by
Osher and Sanders [39]. For this purpose, we introduce the notation M :=
2L, σj := 2−L, j = 1, . . . ,M − 1, nj := ∑j

i=1 σi = j 2−L, and λ̃l := τ0/hl . In
addition, we introduce the set

Ci :={(l, k)∈Gn+1
L,ε \Cli−1 ; 0� l� li −1}, i=1, . . . ,M.

Then for each i=1, . . . ,M−1 the predictor is defined by

v
n+ni
l,k =



v
n+ni−1
l,k , (l, k)∈Ci ,
v
n+ni−1
l,k − λ̃l

∑i−1
j=0 σj+1

(
F
n+nj−1
l,k+1 −Fn+nj−1

l,k

)
, (l, k) �∈Ci

and the corrector is

vn+1
l,k =vnl,k − λ̃l

M−1∑
j=0

σj+1

(
F
n+nj−1
l,k+1 −Fn+nj−1

l,k

)
≡vnl,k − τl

hl

(
F
n

l,k+1 −Fnl,k
)
.

For an example, see the two-level scheme in Sec. 3.1.2.

3.1.7. Remarks on AMR

In [11], the classical AMR strategy has been originally introduced. In
this context, local time stepping and flux synchronization has been inves-
tigated by Berger [7, 8]. In the following, we would like to point out the
main differences of the concept proposed in this work.
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In the AMR setting the propagation of the cells is performed lev-
elwise where first the cells on the coarse level are evolved and then the
one on the finer levels. This results in two numerical fluxes at the inter-
face (see Fig. 2), namely F

n

l,k for the cell Vl,k−1 and Fn
l+1,2k,F

n+1/2
l+1,2k for the

cell Vl+1,k, respectively. To ensure the conservation property of the scheme,
a so-called synchronization step is necessary to compensate for the differ-
ence

F
n

l,k − 1
2

(
Fnl+1,2k +Fn+1/2

l+1,2k

)

in the coarse cell Vl,k−1. In the present setting, this synchronization step is
superfluous because we proceed levelwise from fine to coarse and compute
F
n

l,k by the already computed information on the higher level (see (34)).
Furthermore, we perform a half step to determine a prediction in the

coarse cell Vl,k−1 for the computation of the flux Fn+1/2
l+1,2k (see Fig. 6). This

is different in the AMR setting. There a prediction value vn+1/2
l,k−1 is com-

puted by means of some interpolation between the data vn
l,k−1 and vn+1

l,k−1.
In order to reduce the number of interfaces where a flux synchroniza-

tion is needed the AMR setting typically works on grid patches composed of
cells corresponding to one level. Hence, the fluxes have to be synchronized
only at the boundaries of the patches. This also simplifies the implemen-
tation. However, the size of the patches has to be chosen such that, for
instance, a shock is not leaving this patch when performing the macro-time
step. Otherwise the shock could be underresolved on a coarser grid patch.
To realize this either the patches have to be large or the macro-time step has
to be sufficiently small. Therefore, the number of refinement levels is typi-
cally moderate in practice. Since, we perform grid adaptation as well on the
intermediate time steps we are able to track the shock successively without
a priorly refining the whole domain of influence of the shock. Therefore, we
also can handle a large number of refinement levels that corresponds to a
large macro-time step without inflating the adaptive grid too much.

Finally, we note that the grid patches on which AMR is typically
working need not to be nested but can have a different orientation than
the coarse grid. This allows for a local alignment of the grid with aniso-
tropic effects such as shocks. In contrast to this, the multiscale setting is
based on a nested grid hierarchy.

3.2. Implicit Local Time Stepping

So far we considered only explicit local time stepping schemes. Note
that for implicit schemes time restrictions also occur due to nonlinear
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stability (TVD properties), convergence of the Newton scheme (initial
guess) and relaxation schemes for solving linear problems, relaxation pro-
cesses due to nonequilibrium effects, anisotropies in the grid, etc. There-
fore, a local time stepping may also be helpful for implicit schemes in case
of instationary problems. In analogy to the explicit case, we first confine
ourselves to two refinement levels, i.e., a fine grid (level l+1) and a coarse
grid (level l). Let us assume that we know the data on level l+ 1 at time
step tn. We now perform two time steps where we apply our implicit ref-
erence scheme on level l+1 with time step size τ ≡ τl+1 =2−1 τl according
to (23), i.e.,

v
n+1/2
l+1,r + θ λl+1B

n+1/2
l+1,r = vnl+1,r − (1− θ) λl+1B

n
l+1,r , (42)

vn+1
l+1,r + θ λl+1B

n+1
l+1,r = v

n+1/2
l+1,r − (1− θ) λl+1B

n+1/2
l+1,r , (43)

where λl+1 is defined by (30).
Here the flux balances are computed according to (26) by means of

the data vn
l+1,r , v

n+1/2
l+1,r and vn+1

l+1,r corresponding to the times tn, tn+1/2 = tn+
τl+1 and tn+1 = tn+2 τl+1, respectively. We now replace vn+1/2

l+1,r on the right-
hand side of (43) by (42). Then we obtain

vn+1
l+1,r + θ λl+1

(
Bn+1
l+1,r +Bn+1/2

l+1,r

)
=vnl+1,r − (1− θ) λl+1

(
B
n+1/2
l+1,r +Bnl+1,r

)
.

(44)

Note that (44) is only a nonlinear problem for the data vn+1
l+1,r provided

that the data on the intermediate time level tn+1/2 are known. Applying
the multiscale transformation (13)–(44) again yields the discrete evolution
equations for cell averages on the coarser level

vn+1
l,k + θ λl Bn+1

l,k =vnl,k − (1− θ) λl Bnl,k, λl := τl

hl
=λl+1. (45)

In analogy to (33) the local flux balances and numerical fluxes are recur-
sively defined by

B
n+i
l,k :=

∑

r∈M0
l,k

ml.0r,k

(
B
n+(i+1)/2
l+1,r +Bn+i/2

l+1,r

)
=Fn+il,k+1 −Fn+il,k , (46)

F
n+i
l,k := 1

2

(
F
n+(i+1)/2
l+1,2k +Fn+i/2

l+1,2k

)
(47)

with i= 0,1. Again the multiscale scheme determines the computation of
the flux balances and the numerical fluxes on coarser levels proceeding
from fine to coarse. In particular, we note that the computation of F

n+i
l,k is
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in agreement with (34). As for the explicit case (see Sec. 3.1.1), we have to
provide some prediction value ṽn+1/2

l,k to compute the numerical flux Fn+i/2
l+1,2k

at interface points in (47).

3.2.1. Prediction Value

For the implicit case we have to reconsider the strategies to determine
appropriate prediction values for computing the numerical flux F

n+1/2
l+1,2k

near interface points. According to (42), a nonlinear problem has to be
solved to determine vn+1/2

l+1,r . Proceeding this way we cannot gain in com-
putational efficiency using locally varying time stepping. To overcome this
bottleneck we use some heuristics. In principle, we proceed as in the
explicit case (see Sec. 3.1.2). However, the full steps in (35) and (36),
respectively, are replaced by solving a nonlinear problem for each level
separately. For the prediction value we then use the information of the
previous time step instead of performing a half step. For the situation
sketched in Fig. 2, we hence proceed as follows: in the first step, we evolve
all cells on level l+1 by a full step with τl+1, i.e., we solve the nonlinear
problem

v
n+1/2
l′,k′ + θ λl+1B

n+1/2
l′,k′ =vnl′,k′ − (1− θ) λl+1B

n
l′,k′ , (l

′, k′)∈ Ĩl+1,

where at interface points we use the prediction

v
n+1/2
l′,k′ =vnl′,k′ , (l′, k′)∈Cl .

In a second step, we determine the data on the new time level tn+1. For
this purpose, we solve two nonlinear problems for the cells on level l and
l+1, separately for each level, i.e.,

vn+1
l′,k′ + θ λl+1B

n+1
l′,k′ = v

n+1/2
l′,k′ − (1− θ) λl+1B

n+1/2
l′,k′ , (l′, k′)∈ Ĩl+1,

(48)

vn+1
l′,k′ + θ λl Bn+1

l′,k′ = vnl′,k′ − (1− θ) λl Bnl′,k′ , (l′, k′)∈ Ĩl .
Again the solution process is from fine to coarse. In our computations
the nonlinear problems are solved approximately by applying the Newton
scheme. As initial guess, we use the data of the previous (intermediate)
time step. Note that we never solve a nonlinear problem for both levels
at a time. A coupling of the systems in (48) only exists via the flux com-
putation at interface points according to (47) and (25). Furthermore, if we
choose θ =0 then the resulting explicit scheme does not coincide with the
explicit local time stepping scheme in Sec. 3.1.2. In this case, the predic-
tion corresponds to the naive strategy discussed above.
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Finally, we like to remark that the above strategy is some heuristic
approach to compute a prediction value at grid interface points. There
might be other strategies that work as well, for instance, one might think
of solving the coupled system (48) for both levels l and l + 1. However,
fully decoupling the nonlinear systems will result in smaller problems to be
solved iteratively. This will be preferable in case of multidimensional sys-
tems where the nonlinear problems might become huge. There we can save
both in computational time and memory.

3.2.2. Synchronization of Time Evolution

The synchronization of the time evolution in the multilevel case is
similar to the explicit case as described in Sec. 3.1.3. In principle, we may
apply the Algorithms 1 and 2 where we remove any operation on the sets
Cl and perform all operations on Cl for the sets Ĩl . First of all, we have to
initialize the index sets Ĩl , l= 0, . . . ,L and the index set of the numerical
fluxes F according to Algorithm 1. Then we may perform the time evolu-
tion for each of the intermediate time steps i=1, . . . ,2L.

Algorithm 5 (Synchronized time evolution for time step tn+i 2−L )
For each intermediate time step we have to perform the following steps for
the levels l= li , . . . ,L proceeding from fine to coarse:

(1) Flux computation:

(a) For the levels li � l � L we determine the numerical
fluxes with respect to the data of the previous interme-
diate time step corresponding to tn+(i−1)2−L , i.e.,

(i) no interface point ((l+1,2k) �∈F)

F
n+(i−1)2−L
l,k =F

(
v
n+(i−1)2−L
L,2L−l k−p , . . . , v

n+(i−1)2−L
L,2L−l k+p−1

)
,

(ii) interface point ((l+1,2k)∈F)

F
n+(i−1)2−L
l,k =Fn+(i−1)2−L

l+1,2k ;

(b) For the levels 0 � l < li the numerical fluxes are
unchanged, since the cell averages on these levels have
not changed in the previous intermediate time step,
i.e.,

F
n+(i−1)2−L
l,k =Fn+(i−2)2−L

l,k ;
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(2) Time Evolution:

(a) For the levels li� l�L we perform a full time step with
τl for the cells (l, k)∈ Ĩl solving the nonlinear problem

vn+i 2−L
l,k +θ λl Bn+i 2−L

l,k =vn+(i−1)2−L
l,k −(1−θ)λlBn+(i−1)2−L

l,k ;
(b) For the levels 0� l < li the cell averages are unchanged,

i.e.,

vn+i 2−L
l,k =vn+(i−1)2−L

l,k .

3.2.3. Algorithm

As in the explicit case, we combine the time evolution at the interme-
diate time steps tn+i 2−L and the partial grid adaptation at the synchroni-
zation levels l= li , . . . ,L. For the prediction of the significant details, we
use the same strategy as for the explicit case (see Sec. 3.1.4). Therefore,
the algorithm for one macro-time step using implicit local time stepping
is similar to Algorithm 4. Only minor changes are necessary, namely, (i)
in steps, 1b and 3, we initialize the sets Ĩl instead of the sets Cl and (ii)
in step 2, we replace Algorithm 2 for the explicit time stepping algorithm
by Algorithm 5.

4. NUMERICAL RESULTS

The benefits of the proposed concept are verified by several numerical
investigations. For this purpose, we perform several parameter studies for
the inviscid Burger equation in 1D where we investigate the efficiency in
terms of CPU time and the accuracy by comparisons with the exact solu-
tion. Here, we consider an instationary problem and a quasi-steady state
problem, respectively, applying an explicit and implicit time discretization
as well. Note that all computations have been performed on a PC with an
Intel Pentium IV processor and 2.8 GHz.

4.1. Reference Scheme

To verify the efficiency and the accuracy of the proposed local time
stepping strategy we perform several numerical simulations for the invis-
cid Burger equation, i.e., f (u)= 0.5u2 in (1). For the reference scheme
(3) we consider a first and second-order finite volume scheme, respectively.
The numerical flux is chosen to be the Engquist–Osher (EO) flux (see
[26]),
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FEO(vL, vR)= 1
2

(
f (vL)+f (vR)−

∫ vR

vL

|f ′(u)|du
)
. (49)

For the first-order scheme the states vL and vR are determined by the cell
data at the interface. To improve spatial and temporal accuracy we employ
a piecewise linear ENO reconstruction according to [30]. For a non-equi-
distant grid this reads

vL =
{
w−1, First-order,
w−1 +m (

∆w0,∆w−1
)
(h−1/2− τ f ′(w−1)), Second-order,

(50)

vR =
{
w0, First-order,
w0 −m(∆w1,∆w0) (h0/2+ τ f ′(w0)), Second-order

with the divided differences ∆wi and the function m defined by

∆wi := wi −wi−1

hi +hi−1
, m(a, b) :=

{
a , |a|� |b|,
b , |a|> |b|.

Here the stencil is determined by the values wi and the corresponding dis-
cretization lengths hi, i=−2, . . . ,1. Note that the term corresponding to the
time discretization τ guarantees second-order in time for the explicit scheme.
For an implicit scheme the time derivative is discretized applying the sec-
ond-order Crank–Nicholson scheme. Therefore, this term is suppressed. For
the computation of the local numerical fluxes we employ an unstructured
flux computation, i.e., we do not access to the data of the finest level but to
the p next neighbors to the left and the right of a cell Vl,k corresponding
to the adaptive grid. In practice, this in general does not affect the accuracy
but preserves the computational complexity (see [21]).

For the implicit time discretization scheme we choose θ = 0.5 in (3),
i.e., second-order time discretization. In each time step, the nonlinear sys-
tem is solved iteratively by the Newton scheme which is initialized by
the data of the previous (intermediate) time step. In each Newton step,
we solve a linear problem. The matrix is determined by computing the
Jacobian of the EO flux (49). Note that in the case of the second-order
scheme we do not take into account the derivative of the ENO reconstruc-
tion. Therefore each row of the Jacobian has at most three nonvanishing
entries. Enumerating the unknowns from left to right results in a tridiag-
onal matrix. This system can be efficiently solved by an exact solver. For
multidimensional problems this is no longer feasible. In this case, we have
to choose some iterative solver and an appropriate preconditioner to avoid
time restrictions due to the linear problem. The Newton iteration termi-
nates when the error has dropped below a certain tolerance value. For the
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local time stepping strategy, we choose a level-dependent tolerance deter-
mined by the threshold value, i.e., tol= εl , to solve the nonlinear problem
on level l. Otherwise we put tol = εL because the nonlinear problem is to
be solved for all refinement levels simultaneously. The number of Newton
steps is limited by 15 that is never reached in our computations.

To investigate the performance of the proposed concept we consider
an unsteady problem and a quasi-steady state problem, respectively.

4.2. Wave Interaction

The first test configuration is determined by the piecewise constant
initial data

u(x,0)=




3, x <0.1,
−2, 0.1�x <0.5,

5, 0.5�x <0.9,
−5, x�0.9.

(51)

The exact solution to this problem is composed of a right-running shock
wave (left) and a stationary shock wave (right) separated by a rarefaction
wave. These waves start to interact. In the end there is only one moving
shock.

We apply the explicit (implicit) adaptive multiscale scheme with and
without locally varying time stepping to this problem. The computations
are distinguished by EXP (IMP) and EXP-LTS (IMP-LTS). The computa-
tional domain is Ω= [0,1] and the integration time is T =0.5 s. The coars-
est discretization is h0 = 0.05. The time discretization is fixed determined
by the CFL number. For EXP we choose CFLL= 0.5 = 2−LCFL0 on the
finest discretization level and CFL0 =0.5=2−LCFLL for EXP-LTS on the
coarsest level. This implies that for EXP we have to perform 2L time steps
with τ =τL. This corresponds to one macro-time step with EXP-LTS using
τ = τ0 =2L τL. For the grid adaptation we choose wavelets with three van-
ishing moments. The threshold value is fixed by ε=0.001.

In Fig. 7, the solution is shown exemplarily for some characteristic
times recorded in Table II. The right figures show the exact solution and
an approximate solution with EXP-LTS using L=10 refinement levels. The
corresponding adaptive grids are presented in the figures on the left. Here
we plot the cell center with respect to the refinement level l

In Table III, we summarize the CPU times for different computations
with first and second-order EXP and EXP-LTS where we vary the num-
ber of refinement levels L. We note that EXP-LTS becomes much faster
with increasing number of refinement levels in comparison to EXP. Speed-
up rates up to a factor of about 8 have been obtained. Similar results
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Fig. 7. Test configuration 1: Adaptive grid (left), exact and approximate solution (right) at
time T =0.00, 0.04, 0.08, 0.20, and 0.48.
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Table II. Characteristic times (s) for test configuration 1

T0 =0.00 Initial data

T1 =0.04 Before interaction
T2 =0.08 After interaction of rarefaction wave with right shock wave
T3 =0.20 After interaction of rarefaction wave with left shock wave
T4 =0.48 Single shock

Table III. CPU time (s) for explicit discretization

First-order scheme Second-order scheme

L EXP EXP-LTS EXP EXP-LTS

5 3.58 0.94 4.01 1.14
6 8.47 1.87 9.28 2.21
7 20.24 3.61 22.00 4.40
8 47.09 7.67 51.87 8.78
9 111.35 14.95 119.67 17.68

10 251.49 31.50 272.78 36.11

are obtained for the implicit discretization (see Table IV). Because of the
instationary behavior of the solution the CFL number is bounded by at
most 1 for an explicit as well as an implicit time discretization. There-
fore, all computations with an explicit scheme are faster than using the
implicit analog. However, there are applications in engineering such as the
shock buffet case where the flow field is instationary because the shock
is oscillating at moderate speed due to fluid–structure interactions. More-
over, if there is some “stiffness” encountered in the problem, for instance,
some relaxation process due to chemical reactions, then the time restric-
tion comes from the relaxation time. In this case, an implicit discretization
will relax this time restriction significantly.

Furthermore, we note that the speed-up rates crucially depend on the
distribution of the cells over the refinement levels. If the bulk of cells is
sitting on the higher levels the number of flux computations is not sig-
nificantly reduced and the gain in CPU time is moderate. In general, the
number of flux computations for global time stepping FNLTS and local
time stepping FLTS are approximately related by
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Table IV. CPU time (s) for implicit discretization

First-order scheme Second-order scheme

L IMP IMP-LTS IMP IMP-LTS

5 25.94 4.63 27.53 5.76
6 67.83 8.98 73.20 10.12
7 107.09 17.23 107.25 19.44
8 258.19 35.81 279.77 40.45
9 756.11 87.76 753.91 89.68

10 1853.15 202.65 2160.50 193.97

FLTS ≈FNLTS

L∑
l=0

2l−L αl,

where we neglect the fluxes at the boundary. Here αl = Ñl/Ñ is the ratio
of cells on level l and the number of all cells in the adaptive grid, i.e.,
Ñ = ∑L

l=0 Ñl . In particular, for Cartesian grid hierarchies this relation is
independent of the spatial dimension. Obviously, the approximate speed-

up factor
(∑L

l=0 2l−L αl
)−1

approaches 1 if the bulk of cells is sitting on

the higher scales whereas it becomes large (at most: 2L) if the cells on
lower scales are dominating. This is in agreement with Jameson’s observa-
tion that adaptive mesh refinement methods can be effective provided that
“roughly no more than one-third of the domain should be at the finest
grid spacing” (see [32]).

Besides the efficiency we are interested in the accuracy of the local
time stepping scheme. Therefore, we investigate the error between the exact
solution, û, and the numerical approximations, v. Since the ultimate goal
is to maintain the accuracy of the reference scheme we compute the error
on the uniform finest refinement level. For this purpose, we map the
numerical solution corresponding to the adaptive grid to the reference grid
where we apply the full inverse multiscale transformation and use a value
of zero for all nonsignificant details. The error is measured in the weighted
l1-norm, i.e.,

‖vn− û
n‖ :=

∑
k∈IL

hL |vnL,k − ûnL,k|.

In Tables V (explicit) and VI (implicit) the error is exemplarily recorded
for the computation with L=10 refinement levels. The results correspond
to the four times T1, T2, T3, and T4 given in Table II. We note that the
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Table V. Error in weighted l1-norm for explicit discretization, L=10

First-order scheme Second-order scheme

Time EXP EXP-LTS EXP EXP-LTS

T1 1.30×10−2 4.70×10−3 1.25×10−2 3.00×10−3

T2 2.42×10−2 6.43×10−3 2.32×10−2 4.07×10−3

T3 2.85×10−2 6.64×10−3 2.71×10−2 5.38×10−3

T4 2.30×10−5 1.9×10−5 3.30×10−5 2.30×10−5

Table VI. Error in weighted l1-norm for implicit discretization, L=10

First-order scheme Second-order scheme

Time IMP IMP-LTS IMP IMP-LTS

T1 1.39×10−2 1.01×10−2 1.27×10−2 8.64×10−3

T2 2.80×10−2 1.62×10−2 2.22×10−2 1.49×10−2

T3 3.14×10−2 1.83×10−2 2.53×10−2 1.79×10−2

T4 4.00×10−5 1.22×10−2 3.90×10−5 1.19×10−2

error of the computations with local time stepping are in general smaller,
except for IMP-LTS at time T4 where the solution exhibits only two con-
stant states separated by a shock. Since we perform less time steps for
coarser cells we locally reduce the number of grid adaptation steps. In par-
ticular, the number of threshold steps is reduced in these cells. Therefore,
the accumulative threshold error over all time steps is smaller. Moreover,
the schemes with locally varying time stepping exhibit also less numerical
diffusion.

Altogether we conclude for the local time stepping scheme that we
can significantly improve the efficiency of the adaptive multiscale scheme
and we even gain in accuracy.

4.3. Slowly Moving Shock Wave

A second test configuration is determined by the initial data

u(x,0)=
{

1, x <0.5,
−0.99, x�0.5. (52)

The exact solution is a slowly mowing shock wave propagating at shock
speed s= (ul +ur)/2 =0.005. This configuration is well suited to underline
the benefits of an implicit discretization.
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Fig. 8. Test configuration 2: Adaptive grid (left), approximate solution (right) at time T =10.

The computational domain is Ω = [0,1] and the integration time is
T = 10 s. The coarsest discretization is h0 = 0.05. For the explicit scheme
the time discretization is determined by the CFL number. For EXP we
choose CFLL=0.64 on the finest discretization level and CFL0 =0.64 for
EXP-LTS on the coarsest level. Since the maximum characteristic speed
maxx∈Ω{|f ′(u0(x))|}=1 is much larger than the shock speed we may use a
higher CFL number for the implicit discretization. Here we use CFLL=4
(IMP) and CFL0 = 4 (IMP-LTS), respectively. Note that the shock wave
will not move by more than one cell although the CFL number is larger
than 1. Therefore, the prediction strategy in Sec. 2.2 has not to be adjusted
to the higher CFL number. For the grid adaptation we again choose
wavelets with three vanishing moments. The threshold value is fixed by
ε=0.001.

In Fig. 8, the solution is shown at time T =10. The right figure shows
the approximate solution with the second-order IMP-LTS using L = 10
refinement levels. The figures on the left show the corresponding adap-
tive grid. Here we again plot the cell center with respect to the refinement
level l.

From Tables VII and VIII, we conclude for the explicit and implicit
scheme a similar performance of the speed-up rates as for test case 1 in
Sec. 4.2. However, the implicit computation is faster due to the higher
CFL number. This indicates that the implicit strategy might be useful for
steady state problems arising, for instance, in fluid flow around airplane
wings. Here the question remains open how to control automatically the
CFL number.

5. CONCLUSION AND OUTLOOK

We have developed a general concept to incorporate local time step-
ping into fully adaptive multiscale finite volume schemes. In particular, we
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Table VII. CPU time (s) for explicit scheme

First-order scheme Second-order scheme

L EXP EXP-LTS EXP EXP-LTS

5 6.75 1.29 9.68 1.63
6 15.43 2.61 22.19 2.68
7 35.75 5.41 51.34 6.55
8 79.90 10.82 113.34 13.15
9 175.93 21.60 253.44 25.28

10 388.62 43.48 467.75 52.60

Table VIII. CPU time (s) for implicit scheme

First-order scheme Second-order scheme

L IMP IMP-LTS IMP IMP-LTS

5 3.01 0.84 3.60 0.89
6 7.32 1.53 8.51 1.69
7 16.57 3.20 19.85 3.44
8 40.40 6.38 46.27 6.78
9 92.72 12.74 105.92 13.60

10 211.01 26.18 239.85 26.30

are able to track the position of discontinuities on the intermediate time
levels where we apply the grid adaptation strategy on a subrange of all
available refinement levels. Numerical investigations for one-dimensional
scalar conservation laws verify the efficiency and the accuracy of the pro-
posed concept. First 2D Euler computations using an explicit time discret-
ization show the benefits of the concept also for multidimensional systems
(see [38]). More details on the extension of the concept to higher dimen-
sional problems and their efficient implementation can be found in [35].

The analytical justification is still open. In analogy to previous work
in the context of AMR [7, 8, 11] and the predictor–corrector approach
[25, 39, 44] stability and consistency have to be investigated. In addition,
we have to verify the reliability of the strategy for predicting significant
details. This issue is important to bound uniformly the perturbation error
introduced by the thresholding. For the global time stepping scheme this
was done in [21, 37]. In particular, we have to analyze the connection
between the details and the time derivatives of the solution. This might
also be helpful in the design of an automatic time step control for steady
state problems.
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In the future, we will incorporate the presented local time stepping
strategy into the flow solver QUADFLOW [16] that is being developed
for large scale computations of compressible fluid flow and fluid–structure
interaction. In particular, this will enable us to investigate the above strat-
egy for multidimensional systems using an implicit time discretization.
First results on moving grids employing multiscale space and time adap-
tivity can be found in [34].
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