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In many numerical procedures one wishes to improve the basic approach either
to improve efficiency or else to improve accuracy. Frequently this is based
on an analysis of the properties of the discrete system being solved. Using
a linear algebra approach one then improves the algorithm. We review meth-
ods that instead use a continuous analysis and properties of the differential
equation rather than the algebraic system. We shall see that frequently one
wishes to develop methods that destroy the physical significance of intermediate
results. We present cases where this procedure works and others where it fails.
Finally we present the opposite case where the physical intuition can be used to
develop improved algorithms.
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1. INTRODUCTION

We consider preconditioning and regularization methods for improving the
numerical solution to both hyperbolic and elliptic partial differential equa-
tions. The purpose of these techniques is to improve either the conver-
gence rate of an iterative method or else to improve the accuracy of the
numerical approximation. Frequently preconditioners are devised by uti-
lizing the structure of the algebraic system, e.g., ADI, ILU, Krylov space
methods etc. This approach uses no knowledge of the physical problem
other than basic algebraic properties like symmetry and positivity. As an
alternative we present two different preconditioners for approximations to
the Helmholtz equation that use properties of the differential equation.

Such an approach has both advantages and disadvantages compared
to a strictly algebraic approach. One immediate disadvantage is that the
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analysis needs to be re-done for different equations. Furthermore, even for
a given equation the general properties may depend on other factors, e.g.,
whether it is an interior or exterior problem. One advantage of such an
approach is that it does not depend on the discretization used. Thus, for
example, the low speed preconditioner for the compressible fluid dynamic
equations, to be presented, has been successfully used on both structured
and unstructured grids, for explicit and implicit time algorithms and both
centered and upwind spatial discretizations. The Jacobi preconditioner is
usually viewed as a discrete preconditioner. However, it can also be viewed
as a matrix time step.

The preconditioner for the fluid dynamic equations destroys the inter-
mediate physical meaning of the iterative procedure. However, by achiev-
ing new eigenvalues and eigenvectors for the iteration matrix one vastly
improves both the convergence rate and the accuracy of the scheme for
low speed flow. This is valid for steady state problems. For time depen-
dent problems we discretize the physical time by an implicit scheme. This
results in a “pseudo-steady” problem for the solution at the next time step.
This is solved by techniques similar to the steady state problem includ-
ing preconditioning. This is referred to as dual time-stepping. Another
approach to change the characteristics of the equations is to introduce a
lower order regularization term. There are some free parameters and one
is tempted to choose them to allow lower speeds and so larger time steps
and a faster convergence rate. For a scalar equation it is well known that
the subcharacteristic condition says that this does not work. We shall ana-
lyze a new regularization geared specifically for the Euler equations. We
shall show that even though it can be written as a symmetric hyperbolic
system nevertheless a subcharacteristic condition states that one can not
choose larger time steps. Hence, “cheating” nature works nicely for the low
speed preconditioning (though there are still robustness questions) how-
ever, it does not work for regularization techniques.

In summary, there are occasions when preconditioners are based on
the physical properties of the system and on other occasions the precondi-
tioners are chosen to overcome physical properties of the system. In both
cases we use properties of the continuous system, i.e., the “physics” of the
problem rather than algebraic properties of the discretization.

2. LOW SPEED PRECONDITIONING

Consider the hyperbolic system of the unsteady Euler equations
appended with pseudo-time derivatives. Let t denote the physical time,
while τ denotes the pseudo-time used to drive each physical time step to



Numerical Methods and Nature 551

a pseudo-steady state. In quasilinear form we have

∂w

∂τ
+ ξ

∂w

∂t
+A

∂w

∂x
+B

∂w

∂y
+C

∂w

∂z
=0 (1)

w = (ρ, ρu,ρv, ρw,ρE). The flux Jacobian matrices A,B,C are simulta-
neously symmetrizable. We are interested in τ →∞. For physically steady
state problems ξ =0, while for time dependent problems ξ =1. Thus, when
ξ =1 we advance the solution to the next physical time step with an
implicit scheme. This results in a nonlinear set of equations which can
be solved in the same manner as the steady state fluid equations. This is
known as dual time stepping since we have both a physical and an artifi-
cial time step. We discretize the physical time derivative with a backward
difference formula (BDF)

∂w

∂t
∼ ctw

n+1 −E(wn,wn−1, . . . )

∆t
(2)

where ct is a constant that depends on the order of the temporal scheme.
Including the approximation of Eq. (2) and preconditioning the system we
replace (1) by

P−1 ∂w

∂τ
+ ξ

ctw
n+1 −E(wn,wn−1, . . . )

∆t
+A

∂w

∂x
+B +C

∂w

∂z
=0 (3)

We can express (3) in conservation form as

P−1∂w

∂τ
+ ξ

ctw
n+1 −E(wn,wn−1, . . . )

∆t
+ ∂f

∂x
+ ∂g

∂y
+ ∂h

∂z
=0 (4)

The equations are advanced in pseudo-time by a multistage Runge-Kutta
(RK) scheme. Let superscript 0 denote the last artificial time and k be the
most recent stage of RK. Let n be the last physical time step calculated
and n + 1 the next physical time step. Rk denotes the spatial derivative
terms of the residual at the last stage, k. Denote the total pseudo-residual
by

(R∗)k =Rk + ctw
k −E(wn, . . . )

∆t

Within each subiteration we march the pseudo-time τ to infinity until R∗
is zero. We call this solution at the end of a physical time step the pseudo-
steady state. A typical stage of the RK scheme takes the form

wk+1 =w0 −αk∆τP(R∗)k −αkct∆τP

(
wk+1 −wk

∆t

)
(5)
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Collecting terms, we have(
I +αkct

∆τ

∆t
P
)

wk+1 =w0 −αk∆τP(R∗)k +αkct

∆τ

∆t
Pwk

Assuming constant coefficients we Fourier transform (3) in space. Define
ζ= ξct

∆t
and

G(ω1,ω2,ω3)=P [−ζ I + i(Aω1 +Bω2 +Cω3)] (6)

with ω2
1 +ω2

2 +ω2
3 =1. The condition number is defined as

cond#=max
ωi

∣∣∣∣λmax(G)

λmin(G)

∣∣∣∣ .
where λ denotes an eigenvalue of the matrix. Note that the eigenvalues of
i(Aω1 + Bω2 + Cω3) are pure imaginary since the matrices are symmetr-
izable. Physically, the condition number (with ξ=0) can be interpreted as
the ratio of the fastest speed to the slowest speed in any direction. If vis-
cous terms are included, then we have additional negative real matrices in
(6). We stress that if ∆t is sufficiently small, then the condition number
is close to 1. The methods proposed here will not improve the condition
number of such problems and, hence, will not improve the convergence
rate to a pseudo-steady state. For the Euler equations, the condition num-
ber is approximately inversely proportional to the Mach number.

With a local preconditioner we change the discrete equations at indi-
vidual grid nodes without introducing new coupling between neighboring
nodes. Hence, this technique makes sense only for a system of equa-
tions. For a scalar equation, local preconditioning is simply a rescaling
of the time variable and has no effect on the numerical solution. This
approach is distinct from incomplete LU (ILU) technique which couples
all the nodes together. We choose the matrix P so as to improve the con-
dition number of the equations at the node point. The assumption is that
the better the system is conditioned, the faster the iteration process will
approach a steady state.

We consider two different local preconditioners, Jacobi and low speed,
to alleviate the stiffness of the system. We then formulate a composite pre-
conditioner that combines the complementary properties of the Jacobi and
low speed preconditioners to achieve an efficient scheme for solving flows
with embedded low speed flows. For time dependent problems where the
physical time scale is sufficiently small, and so ζ is large, preconditioning
can harm the convergence rate. For such problems the preconditioning in
the update stage should be turned off and should only affect the artificial
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viscosity or the upwinding. In summary, local preconditioning has been
very successful for improving both the convergence rate and accuracy for
low speed steady state flows. For time dependent flows it has been moder-
ately successful in improving the accuracy and less successful in improving
the converge rate. Part of the difficulty is that for dual time stepping we
wish to perform only a small number of subiterations. Hence, the asymp-
totic convergence rate is less important than the initial convergence rate.
While preconditioning improves the asymptotic rate, it is less successful in
improving the initial decrease in the residuals.

2.1. Implementation

For low Mach number flows, the ratio of acoustic to convective
speeds is large, which results in an ill-conditioned and stiff system. Hence,
we introduce a preconditioner to alleviate this stiffness. Because P based
on conservation variables is a full matrix, we make use of entropy
variables w0 =

(
dp
ρc

, du, dv, dw, dp − c2dρ
)

for which the energy equation
decouples from the rest of the governing equations. Furthermore, the
Jacobian matrix is sparse in these variables. The simplest preconditioner in
w0 variables is given by (see [15, 16, 19])

P0
−1 =




1
β2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 (7)

β is a parameter which is of the order of the Mach number to approxi-
mately equalize all the eigenvalues of P0A0.

We need to choose β2 and the pseudo-time step. When we ignore the
term wk+1−wk

∆t
in (5), the RK scheme is explicit for the physical time deriv-

ative; however, it requires that the pseudo-time step also include a physical
time step contribution. The precise form of this term is given in (10). The
present analysis is done on the continuous level, except for the source term
that arises from discretization of the physical time derivative by a BDF
formula. The amplification matrix for a RK scheme is a polynomial in a
stage amplification matrix. The total scheme is stable when all the eigen-
values of the stage amplification matrix lie within the stability region of
the particular RK scheme. The stage amplification matrix in pseudo-time
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for the Euler equations given by

G(ω1,ω2,ω3)=P0

[
−ctVol

∆t
+ i(ω1A+ω2B +ω3C)

]
(8)

where Vol is the cell volume and A,B,C are the Jacobian matrices of the
inviscid flux vectors. The matrices A,B,C are symmetrizable and so this is
a symmetric hyperbolic system.

In Cartesian coordinates the amplification matrix is given by

G(ω1,ω2,ω3) = −ctP0

∆t
+i

ω1

∆x




β2u β2c 0 0
c u 0 0
0 0 u 0
0 0 0 u




+i
ω2

∆y




β2v 0 β2c 0
0 v 0 0
c 0 v 0
0 0 0 v


+ i

ω3

∆z




β2w 0 0 β2c

0 w 0 0
0 0 w 0
c 0 0 w




Define

q = uω1

∆x
+ vω2

∆y
+ w

ω 3
∆z D =− ct

∆t
+ iq

Then

G=




β2D β2c
ω1
∆x

β2c
ω2
∆y

β2c
ω3
∆z

c
ω1
∆x

D 0 0
c

ω2
∆y

0 D 0
c

ω3
∆z

0 0 D




The eigenvalues of G are λ0 =D and

λ± = β2 +1
2

D ±
√√√√(β2−1

2

)2

D2+β2c2

(( ω1

∆x

)2 +
(

ω2

∆y

)2

+
(

ω3

∆z

)2
)

(9)

Because D is a complex number, so is λ±. We define λinv = max(|λ+|, |λ−|).
The artificial time step is determined by demanding that λinv be within the
stability domain of the RK scheme for all ωi with ω2

1 +ω2
2 +ω2

3 =1. Since
λ± is a complex number, this leads to a condition on the time step that
depends on the details of the stability curve. Hence, we replace this by a
condition on the real and imaginary parts separately. The formula we use
for calculating the artificial time step, ∆τ ∼ 1

λ
, is given by

1
∆τ

= 1
∆τss

+ Kτ

ct∆t
(10)
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where ∆τss is the steady state (without dual time-stepping) artificial time
step which is a sum of inviscid and viscous contributions.

The difficulty in determining β is that D is a complex number. Let β2
ss

denote β for the steady state problem. We choose

β2
inv = K1M

2 +K2M
2
ref

β2
ss = K3(Re∆)β2

inv (11)

The formula for β2 with dual time stepping is then given by

β̃ 2 = β2
ss +Kβ


 ct

c

√(
1

∆x

)2 +
(

1
∆y

)2 +
(

1
∆z

)2
∆t




p

(12)

β2 = max(β̃ 2,1) (13)

where K1,K2,Kβ are constants. The cell Reynolds number, Re∆, is the
ratio, for each cell, of the inviscid to viscous fluxes. It can also be defined
in terms of a ratio of the inviscid to viscous time step. M is the local
Mach number and Mref is a reference Mach number, representative of the
free stream Mach number. Based on numerical experimentation, p = 1

2 in
(12) yields the most consistent results (see [21] for more details). Because
we do not let β2 exceed unity, the preconditioning is turned off locally in
the farfield for external problems, where the cell volumes are large. Sim-
ilarly, when ∆t is small enough, then preconditioning is turned off glob-
ally. When the contribution of the physical time step is large enough, then
the preconditioning does not improve the convergence of the subiterations,
but it is still useful for improving the accuracy of the numerical solution.
We note that the low speed preconditioner was constructed to improve the
convergence rate to a steady state. It was later found [17,19] that it is nec-
essary for accuracy at low Mach numbers.

3. JACOBI PRECONDITIONING

The Jacobi preconditioning [1,13] is based on adding a matrix-based
artificial viscosity and then choosing P −1 as the terms on the diagonal
(i.e., the coefficient of wij ). The result for a central difference scheme is

P −1
J = ζ I +|A|+ |B|+ |C| (14)

The good high frequency damping characteristics of the Jacobi precondi-
tioner make it an ideal candidate for coupling with a multigrid scheme.
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Because this formulation connects the preconditioning with the artificial
viscosity (or upwinding), the matrix P is affected by the details of the dis-
cretization. However, Eq. (14) has also been used with other artificial vis-
cosities such as CUSP (see Caughey and Jameson [5]). We prefer to view
the preconditioner represented by Eq. (14) as a matrix or characteristic
inverse time step (see [24] for a similar view). A multistage, non-precon-
ditioned RK scheme uses an artificial time step given by

∆τ = CFL
ζ +ρ(A)+ρ(B)+ρ(C)

(15)

where ρ is the spectral radius and CFL is a number chosen to achieve sta-
bility. A matrix time step for the Jacobi preconditioner replaces this by

∆τ =CFL (ζ I +|A|+ |B|+ |C|)−1 (16)

In calculating the absolute value of the matrices, one needs to cutoff the
eigenvalues to prevent them from becoming too small (see [23] for more
details).

4. PRECONDITIONING SQUARED

Consider P given by (7) with β given by (11, 12). We combine the
low speed preconditioning with Jacobi preconditioning by starting with an
artificial viscosity based on the low speed preconditioning for increased
accuracy and then forming the Jacobi preconditioning for better conver-
gence rates [18]. Let P be the low speed preconditioning, and let the phys-
ical time derivative be represented by (2). Then the preconditioned scheme
(showing only the second-order dissipation) is given by

P −1
J = P0

−1 (ζP0 +|P0A|+ |P0B|+ |P0C|)

P −1
J ∆w = ctw

n+1 −E(wn,wn−1, ...)

∆t
+Fx +Gy +Hz

−∆x

2

[
(P0

−1|P0A|wx)x + (P0
−1|P0B|wy)y + (P0

−1|P0C|wz)z

]
≡ Res (17)

One can simultaneously symmetrize the matrices P0, |P0A|, |P0B|, |P0C|.
Hence, the artificial viscosity and accuracy is based on the low speed pre-
conditioner P0. However, the acceleration based on equalizing the eigen-
values uses a combination of low speed and Jacobi preconditioning.
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5. RESULTS

The results are computed using TLNSD, a finite volume central
difference code augmented by a matrix artificial viscosity. The equations
are advanced in time with a dual time stepping scheme, as described
above. A five stage RK scheme, accelerated by residual smoothing and
multigrid is used for advancing the solutions in pseudo-time, see [9,25].

We examine the use of both Jacobi and low speed preconditioners
for steady flow. We consider a RAE2822 airfoil using a 320 × 64 C grid.
In Figures 1a and 1b, we present results for an inflow Mach number of
0.05. We see that the Jacobi preconditioning by itself helps relatively lit-
tle for this low Mach number flow. In contrast, using the low speed pre-
conditioning gives a large improvement in the residual convergence. The
combined low speed and Jacobi preconditioning gives a dramatic improve-
ment, yielding 8 orders of magnitude decrease in the residual in 300 mul-
tigrid cycles. The residual is reduced by about 11 orders of magnitude. For
a five stage RK formula, this is equivalent to 1500 explicit sweeps through
the grid. Such rapid convergence represents a significant improvement for
low-speed, viscous, turbulent flow computations on high aspect ratio grids.

6. RELAXATION

We consider a relaxation scheme for the Euler equations developed
recently [26]. In conservation form we have

ρt + (uρ)x + (vρ)y = 0

(ρu)t + (ρu2 +ap +bπ)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 +ap +bπ)y = 0 (18)

(ρE)t + (u(ρE +dp + eπ))x + (v(ρE +dp + eπ))y = 0

(ρπ)t + (ρπu)x + (ρπv)y = −ρ

ε
(p −π)
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Fig. 1. RAE2822 convergence history, M∞ =0.05.
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where a, b, d, e are constants with a+b = d+e=1 and ε is the relaxation
parameter which approaches zero. As usual

ρE = p

γ −1
+ρ

(u2 +v2)

2
dp = (γ −1)

[
dE − u2 +v2

2
dρ −ρ (udu+vdv)

]

Converting (18) to primitive variables we get

ρt +uρx +vρy +ρ
(
ux +vy

) = 0

ρut +ρuux +ρvuy +apx +bπx = 0

ρvt +ρuvx +ρvvy +apy +bπy = 0 (19)

pt + z1(upx +vpy)+ z2(ux +vy)+ z3(uπx +vπy) = 0

πt +uπx +vπy = −1
ε
(p −π)

where

z1 = 1− (γ −1)(a −d)

z2 = (1+ (γ −1)d )p + e(γ −1)π

z3 = (γ −1)(e−b)= (γ −1)(a −d)

We introduce a pseudo entropy by

dS =dp − z2

ρ
dρ (20)

Then

St +uSx +vSy =0

We next calculate the eigenvalues and eigenvectors. We eliminate ρ in
(19) in favor of the entropy variable. We then get

pt + z1(upx +vpy)+ z2(ux +vy)+ z3(uπx +vπy) = 0

ut +uux +vuy + apx +bπx

ρ
= 0

vt +uvx +vvy + apy +bπy

ρ
= 0 (21)

St +uSx +vSy = 0

πt +uπx +vπy = −ρ

ε
(p −π)
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or in matrix form

wt +Awx +Bwy =F

where

w =




p

u

v

S

π


 , A=




z1u z2 0 0 z3u
a
ρ

u 0 0 b
ρ

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u


 B =




z1v 0 z2 0 z3v

0 v 0 0 0
a
ρ

0 v 0 b
ρ

0 0 0 v 0
0 0 0 0 v




Let U =uω1 +vω2. Then

Aω1 +Bω2 =




z1U z2ω1 z2ω2 0 z3U
aω1
ρ

U 0 0 bω1
ρ

aω2
ρ

0 U 0 bω2
ρ

0 0 0 U 0
0 0 0 0 U


 ω2

1 +ω2
2 =1

Aω1 +Bω2 has a double convective eigenvalue of U . The eigenvalues are
given by

λ0 =U triple

λ± =
(z1 +1)U ±

√
(z1 −1)2U2 +4 az2

ρ

2
. (22)

The original Euler equations correspond to

a =1 b=0 d =1 e=0.

The opposite extreme is given by

a =0 b=1 d =0 e=1.

In this case we have

z1 =1 z2 =p + (γ −1)π λ± =U.

Thus, all the eigenvalues degenerate to U . Two of the eigenvalues corre-
spond to convection. However, the other eigenspace degenerates into a sin-
gle eigenvector. Hence, the system is no longer strictly hyperbolic since
we do not have distinct eigenvectors. Therefore, we shall choose a �=0. By
choosing a small we can keep the acoustic eigenvalues close to U . This
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corresponds to the effect of low speed preconditioning. We note that for
low speed preconditioning choosing the optimal parameters leads to prob-
lems. Hence, for robustness one chooses parameters slightly less than opti-
mal.

We wish to check if we can simultaneously symmetrize both matri-
ces. If this can be done then the system is symmetric hyperbolic. One way
to do check this is to diagonalize the matrix A. We can then easily check
under which conditions B is symmetrizable. It is relatively easy to show
that this is a necessary and sufficient condition to simultaneously symme-
trize two matrices.

One verifies that there is symmetry if and only if

a =d a �=0 b= e (23)

and so

z1 =1

z3 =0

z2 =p + (γ −1)(ap +bπ)

To complete the symmetrization we define

p =Xp̂ π =−Y p̂ +Zπ̂

or equivalently

p̂ = p

X
π̂ = π

Z
+ Y p

XZ

where

aX2 −bXY =ρz2
XZ2

Y
=ρz2 (24)

From the two equations we get aX2 − bXY = bXZ2

Y
. As always a + b = 1

and z2 =p + (γ −1)(ap +bπ).
We consider the extreme cases:

a =1 b=0
Then X = √

ρz2, Y = 0 Z nonzero and we recover the symmetrization of
the Euler equations in entropy variables.

a =0 b=1
So aX2 −bXY = XZ2

Y
implies −XY = XZ2

Y
or −Y 2 =Z2 which is impossible.

So, as we knew, in this extreme case the matrix cannot be symmetrized.
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This approach has several advantages compared with the classical
preconditioning algorithm (4). The preconditioning matrix P depends on
a parameter β that usually depends on a Mach number (local or refer-
ence). Hence, the condition number of the preconditioned system does not
depend on the speed of sound, c, for low speed flow but it does depend
on β and so the Mach number. Thus, we have reduced the condition num-
ber from 1

M
to one that is independent of the Mach number but depends

on v
u

. This is less than optimal when u and v are considerably different.
However, in the pressure relaxation approach the matrix A has eigenvalues
that depend only on u (in Cartesian coordinates) and B depends only on
v. This will carry over to the artificial viscosity/upwinding and so behaves
similar to a CUSP scheme.

A disadvantage of the method is that one requires the storage of one
new variable, π . This of course, is still much less than the standard relax-
ation approach but is still is 20% for three dimensional flow. If one is also
storing several turbulence variables then the percentage increase is less, i.e.
for a two equation turbulence model in 3D we go from 7 to 8 variables,
an increase of 15% in the storage.

7. SUBCHARACTERISTIC CONDITION

To further study the properties of the relaxtion we consider the
growth of the equations in time as described by Natalini [21] for a scalar
equation. If there is growth then the solutions to the regularized equations
cannot approach the solution of the original system as ε → 0. We linear-
ize (21) about a zero flow with ρ0 = 1. We further only consider the one
dimensional case. We then have

pt + z̄2ux = 0

ut +apx +bπx = 0 (25)

St = 0

πt = 1
ε
(p −π)

where z̄2 =p0 + (γ −1)(ap0 +bπ0) is constant. Now S decouples from the
system. We Fourier transform the equations in space and assume

p(x, t)=A(t)eiξ x
ε

π(x, t)=B(t)eiξ x
ε (26)

u(x, t)=C(t)eiξ x
ε
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Then

dW

dt
= d

dt


A

B

C


=


 0 0 −iξ z̄2

1 −1 0
−iξa −iξb 0


W =QW

The characteristic polynomial becomes

λ2(λ+1)+ (aλ+1)z̄2ξ
2 =0 (27)

This is a cubic equation with real positive coefficients. If a = 1 then the
roots are λ0=−1 and λ± =±i

√
z̄2ξ . So the real part of the eigenvalues are

negative for λ0 and are zero for the acoustic eigenvalues λ±. We calculate
the general formula for the solution of a cubic equation

z3 +a2z
2 +a1z+a0 =0

a2 =1 a1 =aa0

a0 = z̄2ξ
2 is an arbitrary real positive number. We wish to find the solution

as a function of a. Define

Q= 3aa0 −1
9

R = 9aa0 −27a0 −2
54

=−
(

3−a

6
a0 + 1

27

)

Then

D =Q3 +R2 = a0

27

(
a3a2

0 +
(

3
4
(3−a)2 −a2

)
a0 +1

)

and

√
D = (a0a)3/2

√
27

√√√√1+
3
4 (3−a)2 −a2)

a0a
3

+ 1

a3a2
0

To simplify the arithmetic we assume that a0 is large (i.e., ξ � 1) and
expand the square root. Then

√
D ∼

(a0a

3

)3/2
(

1+ 1
2

3
4 (3−a)2 −a2

a0a
3

)
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It then follows that

√
D +R =

(a0a

3

)3/2 − 3−a

6
a0 +O(1)∼

(a0a

3

)3/2
(

1− 3−a

6

(
3

a0a

)3/2

a0

)

√
D −R =

(a0a

3

)3/2 + 3−a

6
a0 +O(1)∼

(a0a

3

)3/2
(

1+ 3−a

6

(
3

a0a

)3/2

a0

)

Therefore

S ∼ (
√

D +R)1/3 ∼
(a0a

3

)3/2
(

1− 3−a

18

(
3
a

)3/2

a
−1/2
0

)

T ∼ (
√

D −R)1/3 ∼−
(a0a

3

)3/2
(

1+ 3−a

18

(
3
a

)3/2

a
−1/2
0

)

It follows that

S +T =−3−a

3a

Finally, from Cartan’s formula for the cubic equation we get the real
part of the acoustic eigenvalues

Re(λ±)=−1
3

− S +T

2
∼ 1−a

2a

So, Re(λ±)=0 for a =1 but for Re(λ±)<0 we require that a >1.
In conclusion even though the homogenous equation allows for

slower eigenvalues than u+ c the subcharacteristic condition requires that
a >1 i.e., that the speeds are all greater than the original Euler equations.
This was to be expected by a physical interpretation of the CFL condition.
However, now it results from the subcharacteristic condition rather than a
stability argument.

The remaining advantage of the regularized equation is that by indeed
increasing the eigenvalues of the system we can make the real part nega-
tive. i.e., if we are going to a steady state then the solution decays for large
time while the original Euler equation only allows for traveling waves.

8. HELMHOLTZ EQUATION

Though the Helmholtz equation is elliptic it is considerably harder
to solve than the Laplace equation [20]. Because of the wave propaga-
tion, accuracy requires that the number of points per wave length increases
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as the frequency increases [3]. The equation may involve complex quan-
tities and the matrix to be inverted is nonsymmetric, indefinite and ill-
conditioned. The basic solution is oscillatory which makes it difficult to
use multigrid methods since the error is not well represented on coarse
grids. The most difficult grids are not the very coarse grids but rather
the intermediate levels. The methods must be able to handle variable and
even discontinuous coefficients. In conclusion, the main difficulty in solv-
ing indefinite problems is the possible lack of robustness.

In particular we consider preconditioners, for Krylov space methods,
based on properties of the differential equation itself. Consider

∂2u

∂x2
+ ∂2u

∂y2
+k2u=0 (28)

If we consider acoustic scattering about a body then we append to the
differential equation boundary conditions. Along the body we specify
either Dirichlet or Neumann conditions depending on whether the scat-
terer is hard or soft. At infinity we impose the Sommerfeld radiation
boundary condition. In a finite difference or finite element setting the
Sommerfeld condition is replaced by an absorbing boundary condition at
a finite outer surface e.g., [4]. Hence, the solution of the Helmholtz is
complex.

To improve the convergence rate of a Krylov method we introduce
a preconditioning. One possibility is to base the preconditioning on the
structure of the resultant finite discretization matrix. Instead we consider
a preconditioning based on continuous approximations to the Helmholtz
equation. Only at the end do we replace this by a discretized version.
The simplest approximation to (28) is to set k = 0 both in the differen-
tial equation and in the boundary conditions. This is not particularly good
when the Sommerfeld radiation condition is replaced by a PML. Hence, a
slightly better preconditioner is to replace k in (28) by k0 where k0 is below
the first eigenvalue and so the operator is still positive definite [2, 14]. A
better approximation is to replace the real valued function k2 by a com-
plex valued function k2

0(1+ iα) [6, 7]. When k0 is sufficiently small or else
α is O(1) then one can solve the preconditioned equations efficiently by
multigrid. In fact one iteration of a FMG algorithm is usually best [8].

9. SCATTERING

We consider the three dimensional scattering around a body. Define

B(θ,ϕ)v = 1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
+ 1

sin2 θ

∂2v

∂ϕ2
(29)
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The Helmholtz equation in spherical coordinates is given by

∂

∂r

(
r2 ∂u

∂r

)
+B(θ,ϕ)u+ r2k2u=0 (30)

B1u= ∂u

∂r
−
(

ik − 1
r

)
u=O

(
1
r3

)
as r →∞

We have expressed the Sommerfeld radiation condition in terms of
the first BGT approximation [4]. Defining a new variable s=kr then both
the Helmholtz equation and the Sommerfeld radiation condition are inde-
pendent of k in the s coordinate, i.e., k directly affects the solution only
through the r variable. Another way that k can enter the solution is
through the boundary conditions. Define a new variable given by the fun-
damental solution

u=v
eikr

kr
(31)

This can be considered a preconditioning based on spherical waves
rather than plane waves. For general configurations one can replace the
spherical distance r by an ellipsoidal or spheroidal coordinate. Consider a
plane wave uinc(x)=eikx cos θ impacting on a sphere (either hard or soft) of
radius a. The solution is

u=−
∞∑

n=0

in(2n+1)anh
(1)
n (kr)Pn(cos θ) (32)

for a soft sphere an = jn(ka)

h
(1)
n (ka)

for a hard sphere an = j ′
n(ka)

h
(1)′
n (ka)

The spherical Hankel functions jn(kr) and hn(kr) both have the form

eikr

kr

n∑
m=0

bnm

(kr)m

v satisfies the equation (see (29))


v +2
(

ik − 1
r

)
∂v

∂r
= ∂2v

∂r2
+2ik

∂v

∂r
+ 1

r2
B(θ,ϕ)v =0 (33)

B̃1v = ∂v

∂r
=0 at outer boundary

For the function v we get the functional form

v = 1
k

∞∑
n=0

bn

(kr)n
Fn(θ, ϕ) = b0

k
F0(θ, ϕ)+ . . . Fn independent of k (34)
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i.e., v has no oscillatory part that depends explicitly on k just terms that
decay in r. The number of significant terms depends linearly on the wave-
number k. Hence, we hope that a numerical approximation to this prob-
lem for v should require a grid that only depends on the points per
wavelength. For other bodies there might be some dependence greater than
linear in k in the θ and ϕ directions in the near field but not the far field.
Outside a sphere surrounding the scatterer one can prove

u(x)=
∞∑

n=0

n∑
m=−n

anmh(1)
n (kr)Ym

n (x̂)

converges absolutely and uniformly on compact subsets.
The approximation to the equation is Hermitian when finite elements

are used. For a Dirichlet condition at the scatterer the total problem for
v is Hermitian symmetric. However, the second order absrobing boundary
condition leads to a non-symmetric problem.

The definition of the far field pattern is

u(x)= eikr

r

(
u∞

(x

r

)
+O

(
1
r

))
r →∞

Since v = eikr

kr
this translates to

kv(x)=u∞
(x

r

)
+O

(
1
kr

)
r →∞

Using (34) we can improve this to

kv +kr
∂v

∂r
= u∞

(x

r

)
+O

(
1

k2r2

)

kv +kr
∂v

∂r
+ k

2
∂

∂r

(
r2 ∂v

∂r

)
= kv +2kr

∂v

∂r
+ kr2

2
∂2v

∂r2
=u∞

(x

r

)
+O

(
1

k3r3

)

9.1. Results for Three Dimensional Scattering

We consider scattering around a sphere. We assume that the solution
is independent of φ and so only two independent variables appear even
though the problem is three dimensional. We present the errors in Table I.

We have improvements of a factor of 20 when using the second order
boundary condition. When the outer boundary is very close to the scat-
terer then there is not much improvement but both are very good.
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Table I. Three Dimensional Scattering Around Sphere R=1, k=3

helm helm N N
R max BC #r #θ err(L2) relerr err(L2) relerr

1.1 1 3 60 .023 .054 .0236 .054
1.1 2 3 60 .005 .011 .005 .011
2 1 10 60 .086 .067 .083 .065
2 2 10 60 .010 .008 .005 .004
3 1 20 60 .058 .033 .049 .028
3 2 20 60 .021 .012 .0026 .0015
5 1 40 60 .065 .026 .026 .010
5 2 40 60 .057 .023 .003 .001

We consider the number of elements needed to obtain a given accuracy
as a function of k and h for both the Helmholtz equation and the nonos-
cillatory version. We use the second order BGT boundary condition. We
fix the desired accuracy at 10% relative accuracy measured in both the L2

norm of the area of integration and the L2 norm of the normal derivative
on the surface. We also vary the position of the outer boundary. We see,
in Table II, that approximations to (33) yield more accurate solutions than
those to the Helmholtz equation but the pollution still exists. A rough cal-
culation indicates that for the original Helmholtz equation linear finite ele-
ments requires about Nθ =1.56k

3
2 points while the new formulation requires

about Nθ =1.33k
3
2 points. It is interesting that the new formulation requires

fewer points in the θ direction even though the transformation is only in the
r direction. The original Helmholtz formulation requires that Nr increase as
k

3
2 while the new formulation requires Nr to increase faster than linear in

k but less than k
3
2 . Hence, we reduce the severity of the pollution in the

r direction. For fixed k the Helmholtz formulation requires the number of
points in r to increase faster than linear as we move the artificial boundary
further out. However, (31) requires only a linear growth in the number of
points in the r direction as a function of r. This is because the error does
not grow in r for the new formulation while it does grow for approximations
to the Helmholtz equation. The number of points required in each direction
is difficult to calculate since one can trade off points in r against the number
of points needed in θ to achieve a given accuracy.

10. CONCLUSIONS

Frequently choosing a preconditioner based on properties of the con-
tinuous equations, i.e., the “physics” of the problem leads to a more effi-
cient and more accurate algorithm. In particular this is true of the local
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Table II. Relative Error for Three Dimensional Scattering Around Sphere

k k
3
2 scheme Rmax #r # θ #tot vol ∂u

∂n
FPP

5 11 u 1.1 3 18 76 .012 .053 .060
u 2 8 18 171 .056 .077 .088
u 3 18 18 361 .092 .086 .080
u 4 35 18 684 .096 .054 .084
v 1.1 3 16 68 .011 .050 .048
v 2 4 15 80 .040 .091 .060
v 3 8 15 144 .048 .091 .061
v 4 12 15 208 .055 .091 .062

10 32 u 1.1 3 50 204 .031 .069 .032
u 2 16 50 867 .082 .094 .058
u 3 48 50 2499 .099 .045 .053
u 4 100 50 5151 .099 .029 .052
v 1.1 3 40 164 .090 .077 .048
v 2 8 40 369 .048 .100 .085
v 3 16 40 697 .061 .095 .084
v 4 24 40 1025 .070 .094 .084

20 89 u 1.1 3 140 564 .067 .099 .086
u 2 40 140 5781 .094 .070 .029
u 3 140 140 19881 .098 .021 .031
u 4 290 140 41031 .100 .015 .030
v 1.1 5 115 596 .067 .097 .089
v 2 18 115 2204 .060 .094 .093
v 3 36 115 4292 .076 .091 .090
v 4 54 115 6380 .085 .091 .091

40 256 u 1.1 15 400 15708 .100∗ .067 .065
u 2 115 400 46516 .096 .032 .020
u 3 390 400 156791 .099 .012 .018
u 4 815 400 327216 .100 .009 .017
v 1.1 15 340 5456 .104∗ .075 .064
v 2 40 340 13981 .078 .096 .093
v 3 80 340 27621 .093 .094 .094
v 4 125 340 42966 .100 .088 .087

∗ adding nodal points doesn’t improve accuracy.

low Mach preconditioner for the compressible steady state fluid dynamic
equations. It is also true for improving the accuracy of approximations to
acoustic scattering about bodies. The continuous preconditioning was less
helpful for accelerating the rate of convergence for a time dependent prob-
lem when using a dual time approach. Finally, for relaxation methods we
found that though we could symmetrize the system nevertheless the sub-
characterstic condition implied that we could not accelerate the conver-
gence rate to a steady state.
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