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Non-Linear PML Equations for Time Dependent
Electromagnetics in Three Dimensions
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In this paper we present a new set of non-linear PML equations for the multi-
dimensional Maxwell’s equation and show that they are strongly well posed
and temporally stable. Numerical examples demonstrate the validity of the new
method.
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1. INTRODUCTION

The PML method of Berenger [2], and unsplit variants of it, has become
very popular for use in computational electromagnetics (CEM). (See e.g.,
Turkel and Yefet [9] or Gedney [4] in [8]). The various methods have sev-
eral features in common, the most prominent of which is the introduc-
tion of non-physical variables. This increases the number equations, in the
three-dimensional (3D) case, from 6 to 12. Also, at least theoretically [1],
they are susceptible to long time temporal growth. While the original Ber-
enger PML equations are only weakly well posed, the other unsplit vari-
ants are strongly well posed hyperbolic systems.

In this paper we introduce a new set of PML equations which has a
number of features:

1. No non-physical variables are introduced – hence the number of
equations is the same as in Maxwell’s equations (6 in 3D).
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2. The undifferentiated “source-terms” on the right-hand-side of the
new equations are algebraically non-linear.

3. The new system has a decaying energy integral and hence the
solution is temporally stable.

4. The system is strongly well posed and in particular possesses a
unique solution.

In Sec. 2 we present the new set of non-linear PML equations and
prove that they possess the properties listed above. In addition, the way
the non-linear source terms are derived guarantees that individual plane
waves will decay in all direction inside the PML. A slightly different ver-
sion (identical in 2D but not in 3D) with similar properties is also pre-
sented at the end of Sec. 2. In Section 3 we present a few numerical results
in two-dimensions (2D) to demonstrate the validity and efficiency of this
approach.

2. THE NON-LINEAR PML EQUATIONS

We start by considering the 3D dimensionless Maxwell’s equations in
vacuum in the absence of currents and charges

∂ �E
∂t

=∇ × �H, (2.1)

∂ �H
∂t

=−∇ × �E. (2.2)

The non-dimensionalization is similar to that in [1]. This set of equations
has a plane-wave solution of the form

�E = �eI (2.3)

�H = �hI (2.4)

where

I = exp[i(ωt − �k · �r)] (2.5)

with �r = (x1, x2, x3). Here �k =ω�α is the wave vector and
⇀
α= (α1, α2, α3) is

the direction of the propagation. In particular, from Eqs. (2.1) and (2.2)
the coefficient vector (�e, �h) of the plane-wave solution satisfies

�e = −�α × �h (2.6)
�h = �α × �e. (2.7)
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From Eqs. (2.6) and (2.7) one gets, using vector identities,

�α = �e× �h
|�h|2 = �e× �h

|�e|2 = �e× �h
a|�h|2 + (1−a)|�e|2 . (2.8)

Note that in any given particular direction �α, the coefficient vector (�e, �h)

of the plane wave solution is a linear combination of two linearly indepen-
dent eigenvectors of Eqs. (2.1) and (2.2). The components of these eigen-
vectors are functions of the components of �α.

As in the classic PML approach, we surround the computational
domain with a PML region and seek equations that cause the electromag-
netic field to decay inside the PML region (in any direction of propaga-
tion). In this particular work we furthermore seek a set of equations with
the following properties:

(i) The total number of equations in the PML should not exceed
the number of Maxwell’s equations (6 in 3D).

(ii) A monochromatic plane wave in a given direction, upon enter-
ing the PML, will decay (in all directions) spatially.

(iii) The energy integral of the solution is temporally stable.
(iv) The system is strongly well posed as an initial value problem in

the sense of Gustafsson et al. [5].

The above requirements are satisfied by the following set of equations,
given here in vector form

∂ �E
∂t

=
[
∇ + (�σ ⊗ �PH )

]
× �H (2.9)

∂ �H
∂t

=−
[
∇ + (�σ ⊗ �PE)

]
× �E (2.10)

where ⊗ stands for the “vector direct product”

�a ⊗ �b= (a1b1, a2b2, a3b3), (2.11)

and

�PH =
�E × �H

a| �H · �H |+ (1−a)| �E · �E| (2.12)

�PE = −
�E × �H

a| �E · �E|+ (1−a)| �H · �H | (2.13)

�σ = (σ1(x1), σ2(x2), σ3(x3))�0. (2.14)
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Note that due to the definitions of �PH and �PE , Eqs. (2.9) and (2.10)
contain non-linear undifferentiated terms. Equations (2.9) and (2.10) in
detailed component form are shown in Appendix I for both the 2D and
3D cases.

It is readily verified that the following decaying plane wave vector-
function ( �EA, �HA), is a solution of Eqs. (2.9) and (2.10):

�EA = �eI · e−α1
∫

σ1(x1)dx1−α2
∫

σ2(x2)dx2−α3
∫

σ3(x3)dx3 (2.15)

�HA = �hI · e−α1
∫

σ1(x1)dx1−α2
∫

σ2(x2)dx2−α3
∫

σ3(x3)dx3 (2.16)

The subscript A indicates that these are fields assumed for our ansatz.
Here �e, �h and �α are given by Eqs. (2.6), (2.7) and (2.8). Note that for

the ansatz (2.15), (2.16)

�PH =− �PE = �α. (2.17)

This is not true in general, and therefore they should be retained as
separate entities when solving (2.9), (2.10).

So far we have demonstrated that requirements (i) and (ii) are ful-
filled (see (2.9), (2.10) and (2.15), (2.16)). Next we’ll show that the solu-
tion ( �E, �H) of (2.9), (2.10) is temporally stable. Referring to (2.9), (2.10)
we write:

1
2

∂

∂t
( �E · �E)= �E · (∇ × �H)+ �E ·

[
�σ ⊗ �PH

]
× �H (2.18)

1
2

∂

∂t
( �H · �H)=− �H(∇ × �E)− �H

[
�σ ⊗ �PE

]
× �E (2.19)

Adding (2.18) and (2.19) we have, using (2.12), (2.13),

1
2

∂

∂t
( �E · �E + �H · �H) = �E · (∇ × �H)− �H · (∇ × �E)

−(�σ ⊗ �PH ) · ( �E × �H)− (�σ ⊗ �PE) · ( �E)

= −div( �E × �H)− (�σ ⊗ �PH ) ·
[
( �H · �H) �PH

]

−(�σ ⊗ �PE) ·
[
( �E · �E) �PE

]

= −div( �E × �H)−
3∑

i=1

σi( �PHi
)2| �H |2 −

3∑
i=1

σi( �PEi
)2|E|2.

(2.20)
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Next we take the volume integral of Eq. (2.20), and use the divergence
theorem

∫
div ( �E × �H)dV =

∫
( �E × �H) ·d �S =0, (2.21)

such that

1
2

d

dt

∫
(| �E|2 +| �H |2)dV = −

3∑
i=1

∫
σi |PHi

|2| �H |2dV

−
3∑

i=1

∫
σi |PEi

|2| �E|2dV <0. (2.22)

Thus the “energy” decays and the solution is temporally stable. The non-
linear terms in (2.9), (2.10) ((�σ ⊗ �PH )× �E) and ((�σ ⊗ �PH )× �H) are Lips-
chitz for 0 <a < 1. Thus the boundedness of the solution (see Eq. (2.22))
also ensures uniqueness of the solution. This implies that the problem is
strongly well posed in the sense of Gustafsson, et al. [5].

With the same ansatz as above (see Eqs. (2.15) and (2.16)) one may
derive another set of non-linear PML equations which differ slightly from
(2.9), (2.10). As before, one starts with (2.15), (2.16) and shows that this
ansatz is also satisfied by the following set of equations

∂ �E
∂t

=∇ × �H −



3∑
j=1

σj (xj )


 �E + �σ ⊗ �E + (�σ ⊗ �H)× �PH (2.23)

∂ �H
∂t

=−∇ × �E −



3∑
j=1

σj (xj )


 �H + �σ ⊗ �H − (�σ ⊗ �E)× �PE. (2.24)

In practice it is convenient to use a = 1
2 in the definition of �PH and �PE ,

see (2.8), (2.12), (2.13) as in that case the denominator in (2.12), (2.13)
is the simply the local energy which is less likely to vanish than one of
the computational components, i.e., taking a = 1

2 tends to yield a slightly
more robust algorithm. Equations (2.23) and (2.24) are given in compo-
nent form in Appendix II.

It can be shown that if �E · �H =0 (as is the case in the 2D equations of
the TE and TM formulations), then the new set of PML equations, (2.23)–
(2.24) is identical with the (2.9)–(2.10) set. This, however, is not true in
general in the 3D case.
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3. COMPUTATIONAL RESULTS

To study the absorption properties of the non-linear set of PML
equations presented in Sec. 2 we have implemented the scheme on a
square covered by a uniform non-staggered grid using a 4th order cen-
tered finite difference algorithms with 3rd order boundary closure. A mult-
idomain approach is used to separate the PML region from the vacuum
region. The advancement in time is done using a 4th order Runge–Kutta
schemes. The time step, ∆t , is chosen to be well below the stability limit
although this was done to control temporal errors rather than for stability
reasons. No additional dissipation or filtering terms are used in the present
work. More details on the computational scheme can be found in [6, 7].

In the numerical tests we first consider the case of continuous excita-
tion applied to the transverse magnetic version of the PML equations (see
Appendix A) (A.10)–(A.12). This is done by adding the following forcing
terms to (A.8):




H
f
x

H
f
y

E
f
z


=




0
0
1


 e

−ln2 (x−xa)2+(y−ya)2
δa sin

(
πt

10

)
, (3.1)

where (xa, ya) is the location of the center of the source with width δa .
The profiles σ1(x), σ2(y) which appear in (A.10)–(A.12) are chosen as

σ1(x)=
{

0 |x|�L

c1

( |x−L|
δx

)n

L< |x|<L+ δx

σ2(y)=
{

0 |y|�L

c2

( |y−L|
δy

)n

L< |y|<L+ δy

where we have taken a square computational domain bounded by |x|<L,
|y|<L while δx and δy refer to the width of the absorbing layer perpen-
dicular to the x and y directions, respectively. The constants c1, c2 and n

control the shape of the absorbing function inside the layers. We have cho-
sen these parameters to be c1 =c2 =1 and n=2. It should be noted that no
effort has been made to optimize with respect to c1, c2, n, δx and δy , since
the goal of this paper is to present a new approach to deriving “compact”
PML systems rather than present a specific and optimized algorithm.

The careful reader will observe that the expression (2.12), (2.13)
may result in problems when the fields become very small, rendering the
denominator close to zero. This could happen both for zero initial con-
ditions or could be expected to happen deep inside the PML if the layer
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does a good job in damping the fields. We have experimented with several
ways of addressing this with the simplest and most efficient being to mod-
ify (2.12), (2.13) as

�PH =
�E × �H

a| �H · �H |+ (1−a)| �E · �E|+ ε
(3.2)

�PE =−
�E × �H

a| �E · �E|+ (1−a)| �H · �H |+ ε
(3.3)

where ε is taken to be of the order of the truncation error or slightly
larger. However, thorough computational experiments have shown that
taking this factor too large does not seem to impact the accuracy of the
PML.

We consider the computational domain (x, y) ∈ [−50,50] surrounded
(in the non-periodic 2D case) by absorbing layers with width δx = δy =10.
The PML in the corner regions is obtained by adding an x and y layer.
(We will also show a periodic 2D case with periodic boundary conditions
in the y-direction, in that case σ2(y)=0 and δy =0). The forcing source is
located at (xa, ya)= (−25,−25) with δa = 3. The absorbing layers are ter-
minated using characteristic boundary conditions.

The reference solution, with respect to which we inspect the com-
putational results, is a numerical solution of the same problem over a
much larger domain of (x, y)∈ [−150,150] but with the same grid spacing
throughout. It is easy to show (with the non-dimensional speed of light,
c = 1) that for t < 225 no reflections from the outer boundaries will have
sufficient time to propagate back and interact with the solution within
[−50,50]. Since we use the exact same algorithm for solving the large
(reference) problem and the problem of interest ((x, y) ∈ [−50,50]) then
when we subtract one from the other the truncation errors of the scheme
are eliminated. Thus the difference between the two computations may be
claimed to represent only the error due to reflections.

The second case we tested was that of an initial pulse which is then
being evolved in time by the Maxwell operator. The initial conditions are
given by




Hx

Hy

Ez


=




0
0
1


 e

−ln2 (x−xa)2+(y−ya)2
δa . (3.4)

All the relevant parameters used in solving Eq. (A.8) are the same as those
taken in the case of continuous excitation.
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Fig. 1. The L2 error of Hx (at x = −48) for the periodic 2D case with a continuous forc-
ing source (a) as well as for the initial pulse case (b). The solid line represents the results of
using the non-linear algorithm while the dashed line represents the computations done using
the scheme due to Gedney [3].

In all the cases computed herein (for both the continuous excitation
and the initial pulse cases) we calculated the errors of both the present
non-linear PML equations and those due to the PML system presented by
Gedney [3]. The errors are the L2 errors along the lines x =−48 and x =48
and they were computed as function of time. It turns out that the behavior
of the errors of Hx,Hy and Ez are all very similar both in magnitude and
time evolution. They are also quite similar at x =−48 and x = 48. There-
fore, in order to reduce the number of figures we show only the L2 error



Non-Linear PML Equations in Three Dimensions 133

10
-5

10
-4

10
-3

10
-2

0 50 100 150 250

Time

R
ef

le
ct

io
n 

er
ro

r

10
-5

10
-4

10
-3

10
-2

0 50 100 150 250

Time

R
ef

le
ct

io
n 

er
ro

r

Fig. 2. The L2 error of Hx (at x = −48) for the full 2D case with a continuous forcing
source (a) as well as for the initial pulse case (b). The solid line represents the results of using
the non-linear algorithm while the dashed line represents the computations done using the
scheme due to Gedney [3].

of Hx (at x =−48) for both the quasi-2D and the 2D case and for a con-
tinuous source as well as initial pulse.

Figure 1 shows the L2 error of Hx (at x = −48) for the periodic 2D
case, with a continuous forcing source as well as for the initial pulse case.
Figure 2 is the same as Fig. 1 but for the full 2D case. In all cases the solid
line represents the results of using the non-linear algorithm. The dashed line
represents the computations done using the scheme due to Gedney [3].
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We note from Fig. 1 with the continuous source and a periodic
2D configuration that the two algorithms yield quite similar L2 errors
(∼10−3). For the full 2D case (Fig. 2) the error due to the non-linear
PML remains about the same, whereas in the Gedney PML the errors
are diminished by an order of magnitude. In the initial pulse cases the
non-linear algorithm seems to perform somewhat better in the periodic 2D
case. In the 2D case (Fig. 2) again the error due to the Gedney scheme
decreases by an order of magnitude whereas the non-linear results remain
about the same as in the periodic 2D case. However as time progresses the
two error curves approach each other.

Clearly much experimental work remains to be done to determine the
sensitivity of the non-linear equations to such parameters as the profiles of
σ , the width of the absorbing layers (both in 2D and 3D), and the correct
formulation of the PML equations in the overlapping corner regions. We feel
that the potential savings in speed and memory size due to the reductions
in the number of equations justify exploring these issues further.

APPENDIX A – THE PML EQUATIONS IN COMPONENT FORM
(FOR THE CASE a = 1

2 )

In three space dimensions, using | �H |2 = H 2
1 + H 2

2 + H 2
3 and | �E|2 =

E2
1 + E2

2 + E2
3 , the component form of (2.9) and (2.10) is (with M2 =

1
2 ( �E · �E + �H · �H )):

∂E1

∂t
= ∂H3

∂y
− ∂H2

∂z
+σ2(y)

(E3H1 −E1H3)

M2
H3 +σ3(z)

E2H1 −E1H2

M2
H2

(A.1)

∂E2

∂t
= ∂H1

∂z
− ∂H3

∂x
+σ3(z)

(E1H2 −E2H1)

M2
H1 +σ1(x)

E3H2 −E2H3

M2
H3

(A.2)

∂E3

∂t
= ∂H2

∂x
− ∂H1

∂y
+σ1(x)

(E2H3 −E3H2)

M2
H2 +σ2(y)

E1H3 −E3H1

M2
H1

(A.3)

∂H1

∂t
=−∂E3

∂y
+ ∂E2

∂z
+σ2(y)

(H3E1 −H1E3)

M2
E3 +σ3(z)

H2E1 −H1E2

M2
E2

(A.4)
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∂H2

∂t
=−∂E1

∂z
+ ∂E3

∂x
+σ3(z)

(H1E2 −H2E1)

M2
E1 +σ1(x)

H3E2 −H2E3

M2
E3

(A.5)

∂H3

∂t
=−∂E2

∂x
+ ∂E1

∂y
+σ1(x)

(H2E3 −H3E2)

M2
E2 +σ2(y)

H1E3 −H3E1

M2
E1.

(A.6)

Next we obtain the 2D equations (for the transverse electric, TE, case) by
setting E3 =H1 =H2 =0 , ∂

∂z
=0:

∂E1

∂t
= ∂H3

∂y
−σ2(y)E1

∂E2

∂t
=−∂H3

∂x
−σ1(x)E2

∂H3

∂t
=−∂E2

∂x
+ ∂E1

∂y
−σ1(x)

(
E2

2

M2

)
H3 −σ2(y)

E2
1

M2
H3

(A.7)

For the transverse magnetic, TM, case we set H3 =E1 =E2 =0, ∂
∂z

=0:

∂E3

∂t
= ∂H2

∂x
− ∂H1

∂y
−σ1(x)

(
H 2

2

M2

)
E3 −σ2(y)

(
H 2

1

M2

)
E3

∂H1

∂t
=−∂E3

∂y
−σ2(y)H1

∂H2

∂t
= ∂E3

∂x
−σ1(x)H2.

(A.8)

APPENDIX B – THE PML EQUATIONS, (2.23)–(2.24), IN
COMPONENT FORM (FOR THE CASE a = 1

2 )

In three space dimensions, with M defined as in Appendix I, the com-
ponent form of (2.23) and (2.24) is:

∂E1

∂t
= ∂H3

∂y
− ∂H2

∂z
− (σ2 +σ3)E1

−σ2

(
E2H1 −E1H2

M2

)
H2 −σ3

(
E3H1 −E1H3

M2

)
H3 (B.1)
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∂E2

∂t
= ∂H1

∂z
− ∂H3

∂x
− (σ3 +σ1)E2

−σ3

(
E3H2 −E2H3

M2

)
H3 −σ1

(
E1H2 −E2H1

M2

)
H1 (B.2)

∂E3

∂t
= ∂H2

∂x
− ∂H1

∂y
− (σ1 +σ2)E3

−σ1

(
E1H3 −E3H1

M2

)
H1 −σ2

(
E2H3 −E3H2

M2

)
H2 (B.3)

∂H1

∂t
= −∂E3

∂y
+ ∂E2

∂z
− (σ2 +σ3)H1

−σ2

(
H2E1 −H1E2

M2

)
E2 −σ3

(
H3E1 −H1E3

M2

)
E3 (B.4)

∂H2

∂t
= −∂E1

∂z
+ ∂E3

∂x
− (σ3 +σ1)H2

−σ3

(
H3E2 −H2E3

M2

)
E3 −σ1

(
H1E2 −H2E1

M2

)
E1 (B.5)

∂H3

∂t
= −∂E2

∂x
+ ∂E1

∂y
− (σ1 +σ2)H3

−σ1

(
H1E3 −H3E1

M2

)
E1 −σ2

(
H2E3 −H3E2

M2

)
E2 (B.6)

The 2D form of (2.23)–(2.24) is identical with that given in Appendix
A, as mentioned at the end of Sec. 2.
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