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Discontinuous Galerkin finite element methods (DGFEM) offer certain advan-
tages over standard continuous finite element methods when applied to the
spatial discretisation of the acoustic wave equation. For instance, the mass
matrix has a block diagonal structure which, used in conjunction with an
explicit time stepping scheme, gives an extremely economical scheme for time
domain simulation. This feature is ubiquitous and extends to other
time-dependent wave problems such as Maxwell’s equations. An important con-
sideration in computational wave propagation is the dispersive and dissipative
properties of the discretisation scheme in comparison with those of the origi-
nal system. We investigate these properties for two popular DGFEM schemes:
the interior penalty discontinuous Galerkin finite element method applied to
the second-order wave equation and a more general family of schemes applied
to the corresponding first order system. We show how the analysis of the
multi-dimensional case may be reduced to consideration of one-dimensional
problems. We derive the dispersion error for various schemes and conjecture on
the generalisation to higher order approximation in space.

KEY WORDS: Discontinuous Galerkin finite element method; numerical dis-
persion; numerical dissipation; wave propagation.

1. INTRODUCTION

Discontinuous Galerkin finite element methods (DGFEM) were originally
devised to solve scalar first-order hyperbolic problems [16] but were later
generalised to apply to first-order hyperbolic systems [7], elliptic problems
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[3–5, 11, 20] and second-order hyperbolic problems such as Maxwell’s
equations and the acoustic wave equation [17]. The dispersive and dissi-
pative behaviour of a discretisation scheme plays an important role in the
simulation of wave propagation phenomena [18]. Typically, one finds that
unless the initial mesh is sufficiently fine numerical dispersion may well
produce an approximation that looks plausible, but in fact is not even
qualitatively correct due to phase lag or lead arising from the numeri-
cal scheme propagating waves at an incorrect speed. For this reason, one
often finds various rules of thumb guiding the choice of initial mesh-size.
Despite the importance of such criteria and the insights provided by the
supporting analysis, relatively little is known concerning the dispersive and
dissipative behaviour of general DGFEM schemes, particularly in the case
of second-order problems (and the associated first-order systems). A fairly
complete analysis of the dispersion and dissipative behaviour of a class of
DGFEM methods for a scalar linear conservation law was given in [2] in
terms of both the order of the method and the mesh-size and, as a special
case, provides a proof of conjectures of Hu and Atkins [13, 14].

In this paper we investigate the dispersive behaviour of a variety of
DGFEM methods for the acoustic wave equation based on either the
interior penalty discontinuous Galerkin method (IP-DG) or a general
DGFEM method based on writing the wave equation as a first-order sys-
tem and using the fluxes from [4]. In order to focus attention on the
DGFEM discretisation we restrict ourselves to semi-discretisation in space.
A dispersion analysis of the continuous problem shows that the disper-
sion relation for the wave equation in two space dimensions separates into
independent one-dimensional dispersion relations corresponding to each
coordinate direction. Many standard finite element and finite difference
methods on Cartesian grids inherit this property which facilitates the dis-
persion analysis of the discrete problem. We restrict our attention to a uni-
form grid of squares since we are interested in wave propagation. Away
from scatterers it is usual to employ a uniform grid to propagate the wave
as accurately as possible. Of course a dispersion analysis can be carried
out on more general elements (for example triangles and general quadri-
laterals) provided the mesh has suitable translational invariance. However,
the computations are more complex and are not considered here.

For the wave equation [10], the standard finite element method using
tensor product elements and a tensor product grid has the following fea-
tures:

1. The multi-dimensional discrete dispersion relation can be written
as a sum of one-dimensional discrete dispersion relations in the
two coordinate directions.
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2. The one-dimensional dispersion relations can be obtained by
applying the same finite element method to a one-dimensional
wave equation.

In this paper we investigate to what extent such a decomposition is possi-
ble for certain DGFEM schemes. We find

1. For all the DG methods considered here we can perform the
decomposition mentioned in item (1) above.

2. For the IP-DG method the relevant one-dimensional discrete dis-
persion relations are obtained by applying the same interior penalty
method to the one-dimensional wave equation. However, for the
general DGFEM based on discretising a first-order system, the rel-
evant one-dimensional problem is not obtained by directly apply-
ing the same DG scheme to a one-dimensional wave equation and
analysing the dispersion relation in this simpler case.

The last point above means that a standard one-dimensional dispersion
analysis does not give the one-dimensional dispersion relation relevant to
building the dispersion relation for a general multi-dimensional DGFEM
system and hence cannot be used to account for the dispersive behaviour
of multi-dimensional systems. We regard this as a significant result in its
own right.

For both interior penalty DGFEM and general schemes based on
first-order systems, we provide a dispersion analysis for some low order
schemes and conjecture on how the results extend to arbitrary order ele-
ments. In particular we explicitly compute the relevant one-dimensional
dispersion relations which we show can then be combined to obtain the
multi-dimensional discrete dispersion relation. This multi-dimensional dis-
persion relation shows grid orientation effects as is to be expected, but we
have not explicitly investigated that aspect here since it is well understood.

In a previous paper, Ainsworth [2] investigated the dispersion relation
of an upwind type DG method applied to the transport equation (one
way wave equation). We hoped that this analysis would be applicable to
the study in this paper. However, it is not relevant to the IP-DG scheme
since the IP-DG scheme is not based on upwinded fluxes and, and as we
shall see, gives a different dispersion behaviour. For the general DGFEM
based on the first-order system, the relevant one-dimensional problems
are generally non-standard and so again Ainsworth’s theory is not gen-
erally applicable. However, in the case of fully “centred fluxes” that the-
ory is applicable and can be used to obtain a complete description of the
one-dimensional dispersion relation, and hence of the multi-dimensional
problem, as we shall show.
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The plan of the paper is as follows. In Sec. 2, we study an interior
penalty discontinuous Galerkin (IP-DG) scheme restricting our attention
to tensor product basis functions and show that the dispersion relation
does, in general, decompose into one-dimensional relations. We then ana-
lyse the method for piecewise polynomials of degree one through three. We
also derive explicit bounds for the IP-DG stability parameter in order to
avoid pollution by spurious modes. In Sec. 3, we rewrite the second-order
wave equation as a first-order system and discretise in space using the gen-
eral class of DGFEM methods described in [4]. We show that this general
scheme includes the standard “upwind” and “centred” DGFEM schemes
that have appeared in the literature. We then present a decomposition of
the dispersion relation into special one-dimensional problems and com-
ment on why this decomposition is non-standard. In Sec. 3.5, we derive
dispersion relations for the scheme in the case of low fixed polynomial
degree and in the limit of small mesh size. These results show that there is
considerable scope for modifying the performance of the general DGFEM
scheme by a suitable choice of parameters. In Sec. 3.4, we consider the
special case of fully centred fluxes. In this case a complete description of
the dispersion relation for all orders is possible using the results of Ains-
worth [2]. In Sec. 4 some indicative numerical examples are presented and
we summarise the conclusions in Sec. 5.

2. INTERIOR PENALTY DISCONTINUOUS GALERKIN

In this section we analyse the dispersion relation for a semi-discrete
symmetric interior penalty discontinuous Galerkin (IP-DG) scheme (this is
a classical method for elliptic problems [20]). The method differs from the
IP-DG scheme of Riviere and Wheeler in [17] in that their scheme is based
on a non-symmetric formulation and has a different penalty term. A pos-
sible advantage of the scheme we propose is that it is non-dissipative (due
to the symmetric formulation).

In preparation for the discrete dispersion analysis, we first briefly
elaborate on how the dispersion relation for the wave equation may be
derived in a way that will extend to the discrete problem and allow us
to reduce the analysis to the consideration of one dimensional problems.
Consider the wave equation

1
c2
utt =∆u in R

2, (1)

where c>0 is the prescribed wave speed. We seek a separable solution in
the form
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u(x1, x2, t)=u1(x1)u2(x2) exp(−iωt),

where ω is the temporal frequency. Substituting into the wave equation
and using the separation of variables hypothesis we see that u1 and u2
satisfy

−k2 = u′′
1

u1
+ u′′

2

u2
,

where k = ω/c is the wave number. We choose wave numbers k1 and k2
such that k2 =k2

1 +k2
2, and

u′′
j

uj
=−k2

j .

Thus the original multi-dimensional problem is reduced to a pair of
canonical one-dimensional problems. If we now seek a wave solution of
this problem of the form uj (xj )= exp(iκjxj ) we see that κj = kj (or κj =
−kj ). This type of argument will be extended to the analysis of the numer-
ical scheme where we compute a numerical wave number kj,h ≈ kj . The
difference between the numerical wave number and the true wave number
quantifies the phase error for the method.

To perform a dispersion analysis of the numerical scheme, we assume
that a uniform mesh τh of square elements of side h are used to cover
the entire plane. The unit outward normal on the boundary of an ele-
ment K ∈ τh is denoted by nK . A neighbouring element K ′ meeting K

at an edge e will have unit outward normal nK ′ = −nK on e. The edges
of the element K are denoted by N , E, W and S in the obvious way
(see Fig. 1).

It will be necessary to consider jumps and averages of the discon-
tinuous functions across element interfaces in the mesh and we adopt
the fairly standard notation of [4]. If u and v are respectively piecewise
smooth scalar and vector functions on the mesh (i.e. smooth on each
element) then, on an edge e between elements K and K ′, let

W,b

b a

a

a=–h/2 b=h/2

b

b

h

V

U

V

U

V V

U

V

UU
W,a

W,a

E,a

E,aW,  b

V

U
E,

E,

b

Fig. 1. Notation for the p = 1 dispersion analysis for systems. The degrees of freedom of
segment number e are denoted by (Ua,Va) at the left end and by (Ub,Vb) at the right end.
On adjacent elements the relevant degrees of freedom are (UW,b,VW,b) and (UE,a,VE,a).
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{{u}}= 1
2
(u|K +u|K ′), {{v}}= 1

2
(v|K +v|K ′) (2)

[[u]]= (u|KnK +u|K ′nK ′), [[v]]=v|K ·nK +v|K ′ ·nK ′ . (3)

Let Qp denote the set of polynomials of degree at most p in x and y,
and Pp denote the set of polynomials of degree at most p in a single var-
iable (so Qp=Pp×Pp). The symmetric IP-DG scheme for the wave equa-
tion gives rise to the following semi-discrete variational problem of finding
u(x, t) such that for each time t � 0u(., t)|K ∈ Qp for each element K in
the mesh together with

∑

K∈τh

1
c2
(utt , φ)K +

∑

K∈τh
(∇u,∇φ)K

−
∑

e∈τh
[〈{{∇u}}, [[φ]]〉e+〈{{∇φ}}, [[u]]〉e]+

∑

e∈τh
α〈[[u]], [[φ]]〉e=0

for all piecewise smooth test functions φ with φ|K ∈Qp. Here

(u, v)K =
∫

K

uv dA and 〈u, v〉e=
∫

e

uv ds.

We confine attention to tensor product meshes and it will be conve-
nient to define new jump and average operators associated with the four
edges of K using the NEWS labelling (see Fig. 1). In particular, on the
Eastern (E) edge

{{u1}}E = 1
2

lim
ε→0, ε>0

u1(h/2− ε)+ 1
2

lim
ε→0, ε>0

u1(h/2+ ε), (4)

[[u1]]E = lim
ε→0, ε>0

u1(h/2− ε)− lim
ε→0, ε>0

u1(h/2+ ε). (5)

and on the Western (W) edge

{{u1}}W = 1
2

lim
ε→0, ε>0

u1(−h/2− ε)+ 1
2

lim
ε→0, ε>0

u1(−h/2+ ε), (6)

[[u1]]W = lim
ε→0, ε>0

u1(−h/2− ε)− lim
ε→0, ε>0

u1(−h/2+ ε). (7)

Note that the jump is now defined as left limit minus right limit rather
than in terms of normals as in (3). The operators on the North and South
edges are defined similarly (we only give the jump terms since the averages
{{.}}N and {{.}}S are obvious):
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[[u2]]N = lim
ε→0, ε>0

u2(h/2− ε)− lim
ε→0, ε>0

u2(h/2+ ε), (8)

[[u2]]S = lim
ε→0, ε>0

u2(−h/2− ε)− lim
ε→0, ε>0

u2(−h/2+ ε). (9)

The analysis will be reduced to the problem on one square centred at
the origin so we also define φ1,E =φ1(h/2), φ1,W =φ1(−h/2) and similarly
for φ2,N and φ2,S . In addition let

(u, v)=
∫ h/2

−h/2
uv ds.

We seek a discrete separable solution of the form

u=u1(x)u2(y) exp(−iωt), (10)

where uj ∈Pp, j =1,2. Choosing a separable test function φ=φ1(x)φ2(y),
φj ∈Pp, j = 1,2 supported on the element K centred at the origin in the
variational statement and simplifying, we obtain

− ω2

c2
(u1, φ1)(u2, φ2)+ (u′

1, φ
′
1)(u2, φ2)+ (u1, φ1)(u

′
2, φ

′
2)

− ({{u′
1}}Eφ1,E + (1/2)φ′

1,E [[u1]]E
)
(u2, φ2)

+ ({{u′
1}}Wφ1,W − (1/2)φ′

1,W [[u1]]W
)
(u2, φ2)

− ({{u′
2}}Nφ2,N + (1/2)φ′

2,N [[u2]]N
)
(u1, φ1)

+ ({{u′
2}}Sφ2,S − (1/2)φ′

2,S [[u2]]W
)
(u1, φ1)

+α (([[u1]]Eφ1,E − [[u1]]Wφ1,W
)
(u2, φ2)

+ (
[[u2]]Nφ2,N − [[u2]]Sφ2,S

)
(u1, φ1)

)=0.

Note that in deriving this equation we have made critical use of the sepa-
rability assumption that implies, for example, that u2 does not jump across
vertical edges since it depends only on the y-variable whose value may
only jump across horizontal element edges.

Dividing through by (u1, φ1)(u2, φ2) and using the fact that the test
functions φ1 and φ2 may be varied independently, we see that u1 satisfies
a one-dimensional equation with wave number k1 given by

−k2
1(u1, φ1)+ (u′

1, φ
′
1)−{{u′

1}}Eφ1,E − (1/2)φ′
1,E [[u1]]E

+{{u′
1}}Wφ1,W − (1/2)φ′

1,W [[u1]]W
+α ([[u1]]Eφ1,E − [[u1]]Wφ1,W

)=0, (11)
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with a similar equation for u2 in terms of the wave number k2. These wave
numbers satisfy the dispersion relation

k2
1 +k2

2 =k2.

We find it convenient to return to a bilinear form involving the
one-dimensional Helmholtz equation by integrating by parts using the fact
that

(u′
1, φ

′
1)=u′

1,Eφ1,W −u′
1,Wφ1,W − (u′′

1, φ1)

to obtain an alternative form of (11)

(u′′
1 +k2

1u1, φ1)+ 1
2

(
φ′

1,E [[u1]]E +φ1,W [[u1]]W
)

(12)

−φ1,E

(
1
2

[[u′
1]]E +α[[u1]]E

)
+φ1,W

(
1
2

[[u′
1]]W −α[[u1]]W

)
=0.

Now we scale to the interval I = [−1,1] using the transformation x̂=2x/h
and write U(s)=u1(x) and φ(s)=φ1(x). Defining in addition the dimen-
sionless wave number κ= k1h/2 and dimensionless penalty parameter γ =
αh/2 we obtain

(U ′′ +κ2U,φ)I + 1
2

(
φ′
E [[U ]]E +φ′

W [[U ]]W
)

−φE
(

1
2

[[U ′]]E +γ [[U ]]E

)
+φW

(
1
2

[[U ]]W −γ [[U ]]W

)
=0, (13)

where φE =φ(1), φW =φ(−1) and (u, v)I = ∫
I
uv ds.

We can now use (13) to perform the dispersion analysis. We seek
Bloch wave solutions and hence assume that there is a factor λ for which

U+
E =λU+

W, U−
W =λ−1U−

E ,

U ′+
E =λU ′+

W , U ′−
W =λ−1U ′−

E .

Using these definitions in (13) we obtain the eigenvalue problem of com-
puting λ and a finite element function U ∈Pp such that, for all finite ele-
ment functions φ ∈Pp on I

(U ′′ +κ2U,φ)I + 1
2

(
φ′
E(UE −λUW)+φW(λ−1UE −UW

)

−φE
(

1
2
(U ′

E −λU ′
W)+γ (UE −λUW)

)

−φW
(

1
2
(λ−1U ′

E −U ′
W)−γ (λ−1UE −UW)

)
=0. (14)
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In this analysis we can write λ= exp(iθ) or, to facilitate comparison with
the exact dispersion relation, in dimensional variables λ= exp(ihk1,h). The
problem takes the form of an eigenvalue problem where λ is the eigen-
value. Once we have computed λ we can obtain k1,h and comparing it to
k1 gives a measure of the dispersion error.

The following observation will be used throughout to simplify the treat-
ment of problems of the type given in equation (14). Firstly, observe that
non-trivial modes U ∈Pp may be split into what may be dubbed as propagat-
ing and trapped modes. A trapped mode refers to a non-trivial solution that
vanishes at the endpoints E and W of the element, and satisfies the equa-
tion over the subspace of test functions that all vanish at the endpoints.
This accounts for dim Pp − 2 modes. The remaining modes correspond to
modes that are non-zero at the endpoints, and for which (U ′′ + κ2U,φ)I
vanishes for all test functions satisfying homogeneous boundary conditions.
In view of the fact that equation (14) then reduces to a quadratic algebraic
equation for λ, we expect to (and do) find that there are two such modes
giving dim Pp modes in total. By forming tensor products of these modes
on the reference cell as in equation (10), we obtain a full complement of
solutions for the space Qp in two dimensions on the reference cell. Further-
more, by extending the solution to the entire space as a Bloch wave and
taking advantage of the completeness result of Oden and Keller [15], we
obtain a full complement of solutions for the original problem.

2.1. Dispersion Error for Various Elements

In this section we shall apply the results of the previous section to
compute explicit dispersion relations for various piecewise polynomials.

2.1.1. Piecewise Constant Elements

In principle, the IP-DG method can be applied with piecewise con-
stant finite elements. In that case U is constant and φ= 1 so φ′ =U ′ = 0
and the eigenvalue problem (14) simplifies greatly to

(
−2κ2 +γ (2−λ−λ−1)

)
U =0.

Thus if λ= exp(iθ) we see that the above equation implies cos θ = (1 −
κ2/γ ), or

cos θ − cos 2κ=
(

2− 1
γ

)
κ2 +O(κ4).
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For small κ we can expand this as a series and compare with the exact
wave number k1 to get

k1,h−k1 =−1
2

(
2−

√
2
γ

)
k1 +O(k3

1h
2)

where numerical wave number is given by k1,h= θ/h.
If the method is to be consistent, then we are obliged to choose γ =

1/2 and this corresponds to a penalty parameter of α = 1/h. Although
we would not advocate using piecewise constant approximation (e.g. it is
only consistent with a careful choice of α), it is nevertheless illuminating
to consider this case and, with the correct choice of α, the method has a
second-order relative error in the wave number.

2.1.2. Piecewise Linear Elements

Using (14) with U =UW(1− s)/2+UE(1+ s)/2 and selecting φ= (1−
s)/2 gives the equation

(
κ2

3
+ γ

λ
− 1

2λ

)
UE +

(
2κ2

3
+ λ

4
+ 1

4λ
−γ

)
UW =0

and using φ= (1+ s)/2 gives

(
2κ2

3
+ λ

4
+ 1

4λ
−γ

)
UE +

(
κ2

3
+γ λ− 1

2
λ

)
UW =0.

These equations have a non-trivial solution if and only if

cos2 θ +4
(
κ2 − 2

3
γ κ2 −γ

)
cos θ −

(
1+ 16

3
γ κ2 − 4

3
κ4 −4γ

)
=0.

There are two roots to this equation. To understand their nature, consider
the limiting case as κ→0 leading to the equation

cos2 θ −4γ cos θ − (1−4γ )=0

which has the roots cos θ = 1 or cos θ = 4γ − 1. In view of the fact that
κ=k1h/2, the first of these corresponds to the physical mode. The second
is a spurious mode, and in order for this to be damped out we need θ to
be imaginary so we must demand 4γ − 1> 1 (recall γ is positive). Thus
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we obtain the stability requirement that γ >1/2 or, in terms of the origi-
nal parameters, α> 1/h. This type of stability condition is typical of IP-
DG schemes but we have not seen quantitative bounds derived in this way
before.

We now assume γ > 1/2, focus attention on the physical mode and
consider the case where κ small (i.e. h small). The physical mode is then
given by

cos θp− cos 2κ= 2
3
κ4 + 4

45
1+18γ
1−2γ

κ6 +O(κ8)

where θp denotes the value of θ corresponding to the physical choice of
the two roots. The first difference compared with the case of piecewise
constant approximation, is that there is no choice of γ giving a higher
order dispersion relation. Writing the dispersion error directly in terms of
the wave number k1 and the mesh size h, we find that

k1,h−k1 =− 1
24
k3

1h
2 +O(k5

1h
4).

Thus the piecewise linear scheme gives second-order accuracy in the rel-
ative error in the wave number which is typical for standard continuous
piecewise linear finite elements or second-order finite difference methods.
In particular, this is the best order possible and coincides with that of
piecewise constants with a judicious choice of the penalty parameter, or
that of piecewise linear approximation using a standard Galerkin formu-
lation.

2.1.3. Quadratic Elements

The analysis proceeds along the same lines as for piecewise linear ele-
ments. In this case we write

U =UW(1− s)/2+UE(1+ s)/2+UC(1− s2)

and choosing φ to be successively the three basis functions gives an
eigenvalue problem for the linear system in the unknowns UE , UC and
UW . The characteristic equation for λ= exp(iθ) turns out to be

4
3

(
1+ κ2

5

)
cos2 θ +

(
4
3
κ2 −4+ 8

3
γ − 32

45
κ4 + 8

45
γ κ4 + 32

45
κ2γ

)
cos θ

+
(

8
3

− 8
3
γ + 8

135
κ6 − 64

15
κ2 − 8

15
γ κ4 + 208

45
γ κ2

)
=0.
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Note that this equation remains quadratic in cos θ . As before, we distin-
guish two roots. In the limit as κ→0 the equation becomes

4
3
(cos θ −1)(cos θ −2+2γ )=0

so we again have the physical root cos θ =1 as well as a root correspond-
ing to a spurious mode cos θ = 2 − 2γ . For stability we need 2 − 2γ <−1
and this implies γ >3/2 or α>3/h.

Therefore, assuming that α > 3/h, we concentrate on the physical
mode and find that

cos θp− cos 2κ = 4
45

γ −3
2γ −1

κ6

− 2
4725

368γ 2 −2048γ +2157
(2γ −1)2

κ8 +O(κ10),

and

k1,h−k1 = − 1
720

γ −3
2γ −1

k5
1h

4

+ 1
604800

88γ 2 −1068γ +1737
(2γ −1)2

k7
1h

6 +O(k9
1h

8).

As with piecewise constant approximation, we find that a particular choice
of the penalty parameter, in this case γ =3 or α=6/h gives

k1,h−k1 =− 1
22400

k7
1h

6 +O(k9
1h

8)

and produces a higher order of accuracy in the dispersion behaviour for
quadratic elements. The order of the method for a general parameter
agrees with what one would expect for standard quadratic finite element
approximation. However, choosing an optimal value of γ gives a higher
order than can be achieved using the standard formulation.

2.1.4. Cubic Elements

The computation of the dispersion relation for cubic elements follows
the same steps as for linear or quadratic elements. Expanding the field U

in terms of cubic basis functions and then selecting φ in (14) successively
to be each one of the basis functions, we obtain a 4 ×4 eigenvalue prob-
lem one again resulting in only a quadratic equation for cos θ , whereas
one might have expected a quartic. The complexity of the computations
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is such that there is little to be gained by presenting full details here. In
the limit as κ→0 the quadratic simplifies to

(cos θ −1)(cos θ +3−4γ /3)=0

and find that the spurious mode can be controlled by choosing −3 +
4γ /3>1 or γ >3 so that α>6/h. The physical mode has the expansion

cos θp− cos 2κ= 2
1575

κ8 + 4
496125

127γ +24
3−γ κ10 +O(κ12)

and this time there is no optimal choice of the parameter γ that can
improve the order of approximation in the dispersion relation. In fact

k1,h−k1 =− 1
201600

k7
1h

6 +O(k9
1h

8)

so we can see that the method is sixth order accurate for any α provided
α is chosen to guarantee stability.

2.2. General Order Approximation

The analysis in the cases of elements of order p=0,1,2,3 can be gen-
eralised to arbitrary order of approximation but becomes rather compli-
cated and we shall confine ourselves to stating conjectures on the possible
generalisations.

We conjecture that the bound on the value of the parameter γ needed
to eliminate the spurious mode is given by

γ >
1
4
p(p+1)

or

α>
1

2h
p(p+1)

which agrees with the earlier results in the cases p=1, . . . ,3.
The expression for the discrete dispersion relation is given by

cos θp− cos 2κ= 22p+1

2p+1

[
p!
(2p)!

]2

κ2p+2 +O(κ2p+4)

for odd order approximation p, while for even order the corresponding
expression is given by

cos θp− cos 2κ = 22p+1

2p+1

[
p!
(2p)!

]2 4γ − (p+1)(p+2)
4γ −p(p−1)

κ2p+2

+O(κ2p+4).
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These expressions agree with those derived earlier in the special cases p=
0, . . . ,3. Likewise, we obtain estimates for the accuracy of the discrete
wave number

k−k1 =− 1
2(2p+1)

[
p!
(2p)!

]2

k
2p+1
1 h2p+O(k2p+3

1 h2p+2)

for odd order p, while for even order

k−k1 = − 1
2(2p+1)

[
p!
(2p)!

]2 4γ − (p+1)(p+2)
4γ −p(p−1)

k
2p+1
1 h2p

+O
(
k

2p+3
1 h2p+2

)

which agree with the previous expressions in the cases p=1,2,3. (The case
p=0 is different owing to the fact that it is inconsistent without the cor-
rect choice of penalty parameter). For an even order approximation, the
optimal choice for the penalty parameter is

γ = 1
4
(p+1)(p+2)

or

α= 1
2h
(p+1)(p+2)

which agrees with our earlier results in the special cases p= 0 and p=
2. We note that the value of the penalty parameter needed for stability
grows as O(p2/h), in agreement with the growth estimates assumed in
thea priori error analyses. In the situation considered here, we obtain a
finer result including the value of the constant in the growth estimate.

A rather lengthy proof of the bounds on the value of the penalty
parameter needed to eliminate the spurious mode is known, but a proof
of the error estimates remains open. Nevertheless, we are reasonably con-
fident that the conjectures are true based on comparison with results
obtained using computer algebra up to p=100.

3. GENERALISED DGFEM METHODS

An important general class of discontinuous Galerkin methods for
elliptic problems is described in Arnold et al. [4] and consists of writing
the equation as equivalent first-order system and then discretising using
DGFEM. We now follow this approach to derive a DGFEM for the wave
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equation (1) expressed as a first-order system as follows

1
c
ut = vx +wy, (15)

1
c
vt = ux, (16)

1
c
wt = uy. (17)

The splitting is by no means unique. For instance, we might have left two
time derivatives on u and not included time derivatives on v and w. The
formulation described in the remainder of this section is a special case of
the non-linear hyperbolic system solver proposed by Cockburn and Shu
(see for example [6, 9]) and is often employed in the scientific computing
literature. For the linear case it is used, for example, by the USEMe [12]
family of codes.

The continuous dispersion analysis of the system follows the usual
steps. However, we choose to spell out the ideas since it forms the founda-
tion of the less standard discrete dispersion analysis of the DGFEM. As
before, we seek a separable time harmonic solution of the form

u(x, y, t)=u1(x)u2(y) exp(−iωt)

with similar expressions for v and w. Using these expressions, the differ-
ential equation becomes

−i
ω

c
u1u2 = v′

1v2 +w1w
′
2, (18)

−i
ω

c
v1v2 = u′

1u2, (19)

−i
ω

c
w1w2 = u1u

′
2. (20)

The second two equations imply that there are constants γ1 and γ2 such
that (using also the wave number k)

u′
1

v1
=−ikγ1 and

v2

u2
=γ1, (21)

u′
2

w2
=−ikγ2 and

w1

u1
=γ2. (22)

Using these expressions in equation (18) shows that

−ik=γ1
v′

1

u1
+γ2

w′
2

u2
.
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Again using a separation of variables argument shows that there are con-
stants γ3 and γ4 such that

v′
1

u1
=−ikγ3 and

w′
2

u2
=−ikγ4. (23)

and γ1γ3 +γ2γ4 =1. The system satisfied by the functions u1 and v1 is the
one-dimensional mixed system

u′
1 = −ikγ1v1, (24)

v′
1 = −ikγ3u1. (25)

Thus u′′
1 = −k2γ1γ3u1 and we see that if u1 = exp(ik1x) and v1 = −k1

exp(ik1x)/(kγ1)) then

k2
1 =γ1γ3k

2

and similarly if u2 = exp(ik2y), then k2
2 = γ2γ4k

2 so we obtain the disper-
sion relation

k2 =k2
1 +k2

2

where u= exp(i(k1x+k2y−ωt)) as expected.

3.1. General DGFEM for the First-Order System

In this section we summarise the general DGFEM method of [4]
applied to the first-order system. As for the IP-DG method, let K denote
a square in an infinite uniform mesh of squares covering R

2 with edges
parallel to the coordinate axis and lengths of size h (see Fig. 1). On an ele-
ment K in the mesh, (u, v,w)∈ (H 1(K))3 satisfies (15)–(17) and a general
DGFEM method is derived by multiplying each equation by a test func-
tion and integrating by parts. Then we obtain

1
c
(ut , φ)K + (v, φx)K + (w,φy)K = 〈v̂ ·nK,φ〉∂K,

1
c
(vt ,ψ)K + (u,ψx)K = 〈û nK,1,ψ〉∂K,

1
c
(wt , ξ)K + (u, ξy)K = 〈û nK,2, ξ〉∂K,

where nK = (nK,1, nK,2)T is the unit outward normal to K and v̂ and û are
“numerical fluxes” computed from the values of u, v and w on elements
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adjacent to the relevant edge. Let v = (v,w)T . Then following [4] we use
the notation in (2) and (3) to define the fluxes by

û = {{u}}+C1,2 · [[u]]−C2,2[[v]] (26)

v̂ = {{v}}−C1,1[[u]]−C1,2[[v]]. (27)

In practice, for the uniform mesh used here, it suffices to choose C1,2 =
C1,2e1 on vertical edges and C1,2 =C1,2e2 on horizontal edges where C1,2
is a scalar and ei , i=1,2 are the unit vectors in the coordinate directions.

3.2. Upwind and Centred Schemes

An obvious question is the relationship between the general choice
of the numerical flux (26)–(27) in the previous section and the standard
“upwind” choice. We show that the upwind choice is a special case of the
general one. To do this we start by describing the upwind flux. Let D
denote the partitioned 3×3 matrix given by

D=
⎛

⎝
0 nTK

nK 0

⎞

⎠ .

Then D may be diagonalised and we find that D=PPT where

P =
(

1/
√

2 1/
√

2 0
nK/

√
2 −nK/

√
2 n⊥

K

)
and =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

where n⊥
K is a unit vector orthogonal to nK = (nK,1, nK,2)T given by n⊥

K =
(−nK,2, nK,1)T . Then we define

||=
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠

and |D|=P ||PT . For any α with 0<α�1 we set D+ = (D+α|D|)/2 and
D− = (D−α|D|)/2. Now let σ̂ upwind denote the upwind numerical flux so
that

σ̂ upwind =
⎛

⎝
v̂ ·nK
ûn1,K
ûn2,K

⎞

⎠ .
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Let u denote the vector (u,vT )T on K and let u′ be the corresponding
vector on an adjacent element K ′. Then recalling that {{u}} = (u + u′)/2,
we see that the upwind flux is given as follows

σ̂ upwind = D+u′ +D−u

= D{{u}}+ α

2
|D|(u′ −u)

= D{{u}}+
(−α/2 0

0 −α
2

nKnTK

)(
u−u′
v −v′

)
. (28)

The fully upwinded flux corresponds to α=1. The value α=0 is also used
sometimes and in this case the flux is said to be centred and we define
σ̂ centred =D{{u}}.

Now let us rewrite the numerical flux (26)–(27) in the same way.
Denoting this flux by σ̂DG we have,

σ̂DG = D

( {{u}}+C1,2 ·nK(u−u′)−C2,2(v ·nK −v′ ·nK)
{{v}}−C1,1nK(u−u′)−C1,2(v ·nK −v′ ·nK)

)

= D

(
{{u}}+

(
C1,2 ·nK −C22n

T
K

−C1,1nK −C1,2n
T
K

)(
u−u′
v −v′

))

= D{{u}}+
( −C1,1 −(nTKC1,2)n

T
K

(C1,2 ·nK)nK −C2,2nKnTK

)(
u−u′
v −v′

)
.

Comparing this expression to (28) we see that the expressions can be made
equal by choosing C1,2 =0 and C1,1 =C2,2 =α/2. This holds for 0�α�1.
The fully upwinded case is α=1 or C1,1 =C2,2 =1/2C1,2 =0 and the cen-
tred case is α=0 or C1,1 =C2,2 =0.

3.3. Discrete Separation of Variables

Now we shall show that the dispersion analysis of the first-order
system in two space dimensions can be reduced to considering a pair
of one-dimensional problems. However, these problems are non-standard
and differ from what one would obtain by simply applying the DGFEM
scheme to the one-dimensional first-order system. This contrasts with
the situation identified for IP-DG scheme considered earlier, where it
was found that the analysis could be reduced to the consideration of a
one-dimensional scheme that did coincide what one would obtain by
applying IP-DG to a one-dimensional wave equation.
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The semi-discrete problem consists of seeking (uh, vh,wh) ∈ (Qp)
3

such that

1
c
(uh,t , φh)K + (vh, φh,x)K + (wh,φh,y)K = 〈v̂h ·nK,φh〉∂K,

1
c
(vh,t ,ψh)K + (uh,ψh,x)K = 〈ûh nK,1,ψh〉∂K,

1
c
(wh,t , ξh)K + (uh, ξh,y)K = 〈ûh nK,2, ξh〉∂K,

for all (φh,ψh, ξh)∈ (Qp)
3.

We seek a separable solution on K of the form

uh(x, y, t) = u1(x)u2(y) exp(−iωt),

vh(x, y, t) = v1(x)v2(y) exp(−iωt),

wh(x, y, t) = w1(x)w2(y) exp(−iωt),

where ui, vi,wi ∈Pp, i=1,2. Selecting test functions φ(x, y)=φ1(x)φ2(y),
φi ∈Pp, i=1,2 (and similarly for the other test functions), we obtain

−ik(u1, φ1)(u2, φ2)+ (v1, φ
′
1)(v2, φ2) + (w1, φ1)(w2, φ

′
2)

= 〈v̂h ·nK,φ1φ2〉∂K (29)

−ik(v1,ψ1)(v2,ψ2)+ (u1,ψ
′
1)(u2,ψ2) = 〈ûhnK,1,ψ1ψ2〉∂K (30)

−ik(w1, ξ1)(w2, ξ2)+ (u1, ξ1)(u2, ξ
′
2) = 〈ûhnK,2, ξ1ξ2〉∂K (31)

Now we need to examine the flux terms in detail. Prompted by the disper-
sion analysis for the continuous problem, we first consider the second two
equations above. This implies that we need to examine ûh. Labelling the
edges of K as N , S, E and W as for the IP-DG analysis we obtain

〈ûhnK,1,ψ1ψ2〉= (ûE,h,ψ1,Eψ2)− (ûW,h,ψ1,Wψ2),

where ûE,h is the “flux” on the Eastern edge at x=h/2 and similarly ûW,h
is the flux at the edge x = −h/2. Using (26) on the Eastern edge we see
that

ûE,h={{u1}}Eu2 +C1,2[[u1]]Eu2 −C2,2[[v1]]Ev2,

where the operators are given by (4)–(5). Thus

(ûE,h,ψ1,Eψ2)=
[({{u1}}E +C1,2[[u1]]E

)
(u2,ψ2)−C2,2[[v1]]E(v2,ψ2)

]
ψ1,E.
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Using the corresponding result for the Western edge, equation (30) may be
written explicitly as

−ik(v1,ψ1)(v2,ψ2)+ (u1,ψ
′
1)(u2,ψ2)

= [({{u1}}E +C1,2[[u1]]E
)
(u2,ψ2)−C2,2[[v1]]E(v2,ψ2)

]
ψ1,E

− [({{u1}}W +C1,2[[u1]]W
)
(u2,ψ2)−C2,2[[v1]]W(v2,ψ2)

]
ψ1,W .

This equation can be rewritten as

[−ik(v1,ψ1)+C2,2[[v1]]Eψ1,E −C2,2[[v1]]Wψ1,W
]
(v2,ψ2)

+ [(u1,ψ
′
1)−

({{u1}}E +C1,2[[u1]]E
)
ψ1,E

+ ({{u1}}W +C1,2[[u1]]W
)
ψ1,W

]
(u2,ψ2)=0.

We see that there is a constant γ1 such that

(u1,ψ
′
1)−

({{u1}}E+C1,2[[u1]]E
)
ψ1,E+({{u1}}W+C1,2[[u1]]W

)
ψ1,W

−ik(v1,ψ1)+C2,2[[v1]]Eψ1,E −C2,2[[v1]]Wψ1,W
=−γ1, (32)

(v2,ψ2)

(u2,ψ2)
=γ1. (33)

Similarly from equation (31) we obtain that there is a constant γ2 such
that

(u2, ξ
′
2)−

({{u2}}N +C1,2[[u2]]N
)
ψ2,N + ({{u2}}S +C1,2[[u2]]S

)
ψ2,S

−ik(w2, ξ2)+C2,2[[w2]]Nψ2,N −C2,2[[w2]]Sψ2,S
=−γ2 (34)

(w1, ξ1)

(u1, ξ1)
=γ2. (35)

Now turning to equation (29) and writing out the numerical fluxes explic-
itly we have

−ik(u1, φ1)(u2, φ2)+ (v1, φ
′
1)(v2, φ2)+ (w1, φ1)(w2, φ

′
2)

= [({{v1}}E −C1,2[[v1]]E
)
(v2, φ2)−C1,1[[u1]]E(u2, φ2)

]
φ1,E

+ [({{w2}}N −C1,2[[w2]]N
)
(w1, φ1)−C1,1[[u2]]N(u1, φ1)

]
φ2,N

− [({{v1}}W −C1,2[[v1]]W
)
(v2, φ2)−C1,1[[u1]]W(u2, φ2)

]
φ1,W

− [({{w2}}S −C1,2[[w2]]S
)
(w1, φ1)−C1,1[[u2]]S(u1, φ1)

]
φ2,S .
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Dividing both sides by (u1, φ1)(u2, φ2) and collecting terms, this implies
that

−ik+ (v1, φ
′
1)−

({{v1}}E −C1,2[[v1]]E
)
φ1,E + ({{v1}}W −C1,2[[v1]]W

)
φ1,W

(u1, φ1)

(v2, φ2)

(u2, φ2)

+ (w1, φ1)

(u1, φ1)

(w2, φ
′
2)−

({{w2}}W −C1,2[[w2]]N
)
φ2,N + ({{w2}}S −C1,2[[w2]]S

)
φ2,S

(u2, φ2)

=−C1,1

(
[[u1]]Eφ1,E

(u1, φ1)
+ [[u2]]Nφ2,N

(u2, φ2)
− [[u1]]Wφ1,W

(u1, φ1)
− [[u2]]Sφ2,S

(u2, φ2)

)
.

Now using (33) and (35) we obtain

−ik+γ1
(v1, φ

′
1)−

({{v1}}E −C1,2[[v1]]E
)
φ1,E + ({{v1}}W −C1,2[[v1]]W

)
φ1,W

(u1, φ1)

+γ2
(w2, φ

′
2)−

({{w2}}N −C1,2[[w2]]N
)
φ2,N + ({{w2}}S −C1,2[[w2]]S

)
φ2,S

(u2, φ2)

=−C1,1

(
[[u1]]Eφ1,E

(u1, φ1)
+ [[u2]]Nφ2,N

(u2, φ2)
− [[u1]]Wφ1,W

(u1, φ1)
− [[u2]]Sφ2,S

(u2, φ2)

)
.

By the usual separation of variables argument there are constants γ3 and
γ4 such that the following analog of (23) holds

(v1, φ
′
1)−

({{v1}}E −C1,2[[v1]]E
)
φ1,E + ({{v1}}W −C1,2[[v1]]W

)
φ1,W

(u1, φ1)

+C1,1

γ1

(
[[u1]]Eφ1,E

(u1, φ1)
− [[u1]]Wφ1,W

(u1, φ1)

)
= ikγ3

(w2, φ
′
2)−

({{w2}}N −C1,2[[w2]]N
)
φ2,N + ({{w2}}S −C1,2[[w2]]S

)
φ2,S

(u2, φ2)

+C1,1

γ2

(
+ [[u2]]Nφ2,N

(u2, φ2)
− [[u2]]Sφ2,S

(u2, φ2)

)
= ikγ4

γ1γ3 +γ2γ4 =1.

Thus we see that the reduced one-dimensional problems that determine the
dispersion relation are as follows:

(u1,ψ
′
1)−

({{u1}}E +C1,2[[u1]]E
)
ψ1,E + ({{u1}}W +C1,2[[u1]]W

)
ψ1,W

=−γ1
(−ik(v1,ψ1)+C2,2[[v1]]Eψ1,E −C2,2[[v1]]Wψ1,W

)
, (36)

(v1, φ
′
1)−

({{v1}}E −C1,2[[v1]]E
)
φ1,E + ({{v1}}W −C1,2[[v1]]W

)
φ1,W

+C1,1

γ1

(
[[u1]]Eφ1,E − [[u1]]Wφ1,W

)= ikγ3(u1, φ1) (37)

together with a similar problem for (u2, v2).
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This problem is a little non-standard. But we note that if we multiply
(37) by γ1 and define ṽ1 = γ1v1 then these equations may be rewritten as
(where we have used the fact that γ1γ3 =k2

1/k
2),

(u1,ψ
′
1)−

({{u1}}E +C1,2[[u1]]E
)
ψ1,E + ({{u1}}W +C1,2[[u1]]W

)
ψ1,W

= ik(ṽ1,ψ1)−C2,2
(
[[ṽ1]]Eψ1,E − [[ṽ1]]Wψ1,W

)
, (38)

(ṽ1, φ
′
1)−

({{ṽ1}}E −C1,2[[ṽ1]]E
)
φ1,E + ({{ṽ1}}W −C1,2[[ṽ1]]W

)
φ1,W

= i
k2

1

k
(u1, φ1)−C1,1

(
[[u1]]Eφ1,E − [[u1]]Wφ1,W

)
. (39)

These are the discontinuous Galerkin analogs of the first equations in (21)
and (23), respectively. We have thus shown that the dispersion analysis of
the two-dimensional discontinuous Galerkin method can be reduced to the
study of one-dimensional discontinuous Galerkin problems. However, the
presence of both k1 and k in (38) and (39) shows that they are not a direct
DGFEM discretisation of (21) and (23).

An important simplification occurs when C1,1 =C2,2 =0 in the case of
centred fluxes. Then

(u1,ψ
′
1)−

({{u1}}E +C1,2[[u1]]E
)
ψ1,E + ({{u1}}W +C1,2[[u1]]W

)
ψ1,W

= ik(ṽ1,ψ1),

(ṽ1, φ
′
1)−

({{ṽ1}}E −C1,2[[ṽ1]]E
)
φ1,E + ({{ṽ1}}W −C1,2[[ṽ1]]W

)
φ1,W

= i
k2

1

k
(u1, φ1).

Now defining ũ1 =k1u1/k we obtain

(ũ1,ψ
′
1)−

({{ũ1}}E +C1,2[[ũ1]]E
)
ψ1,E + ({{ũ1}}W +C1,2[[ũ1]]W

)
ψ1,W

= ik1(ṽ1,ψ1), (40)

(ṽ1, φ
′
1)−

({{ṽ1}}E −C1,2[[ṽ1]]E
)
φ1,E + ({{ṽ1}}W −C1,2[[ṽ1]]W

)
φ1,W

= ik1(ũ1, φ1). (41)

Thus in the case of generalised centred fluxes (i.e. C1,1 =C2,2 =0 but per-
haps C1,2 
= 0), the decomposition of the two-dimensional problem into
one-dimensional problems gives a clean separation (no factors of k in the
one-dimensional problem). This scheme will turn out to be non-dissipative,
and it is possible to choose C1,2 to obtain an improved dispersion relation.

3.4. Relationship with Schemes for One-Way Wave Equation

We now explore the possibility of relating the discrete dispersion rela-
tion of the one-dimensional problem (38)–(39) to the work of Ainsworth [2]
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on the one way wave equation. In order to do this, we shall attempt to
decompose the system (38)–(39) into an appropriate pair of discrete one
way problems. We first dilate the line using the map x̂= 2x/h and denote
the reference interval by K̂ = [−1,1]. Then abusing notation by defining
u(x̂)=u1(x) and v(x̂)= ṽ1(x) where x̂=2x/h and similarly for the test func-
tions we obtain

(u,ψ ′)
K̂

− ({{u}}E +C1,2[[u]]E
)
ψE + ({{u}}W +C1,2[[u]]W

)
ψW

= i
kh

2
(v,ψ)

K̂
−C2,2 ([[v]]EψE − [[v]]WψW) , (42)

(v, φ′)
K̂

− ({{v}}E −C1,2[[v]]E
)
φE + ({{v}}W −C1,2[[v]]W

)
φW

= i
k2

1h

2k
(u,φ)

K̂
−C1,1 ([[u]]EφE − [[u]]WφW) , (43)

where (·, ·)
K̂

denotes the inner product on [−1,1] and the subscript E and
W now refer to the reference interval K̂. Integrating by parts and rear-
ranging we obtain:

−i
kh

2
(v,ψ)

K̂
− (u′,ψ)

K̂
+ (1/2−C1,2

)
[[u]]EψE

+ (1/2+C1,2
)

[[u]]WψW +C2,2 ([[v]]EψE − [[v]]WψW)=0,

−i
k2

1h

2k
(u,φ)

K̂
− (v′, φ)

K̂
+ (1/2+C1,2

)
[[v]]EφE

+ (1/2−C1,2
)

[[v]]WφW +C1,1 ([[u]]EφE − [[u]]WφW)=0.

Now we make the Bloch wave (or plane wave) assumption that the solu-
tion varies by the same phase factor λ across each element so that u(1+)=
λu(−1+) and u(−1−)= (1/λ)u(1−) (and similarly for v) so that the equa-
tions may be reduced to a single element K̂ and becomes

−i
kh

2
(v,ψ)

K̂
− (u′,ψ)

K̂
+ (1/2−C1,2

)
(u(1−)−λu(−1+))ψ(1)

+ (1/2+C1,2
)
((1/λ)u(1−)−u(−1+))ψ(−1)

+C2,2
(
(v(1−)−λv(−1+))ψ(1)− ((1/λ)v(1−)−v(−1+))ψ(−1)

)=0,

−i
k2

1h

2k
(u,φ)

K̂
− (v′, φ)

K̂
+ (1/2+C1,2

)
(v(1−)−λv(−1+))φ(1)

+ (1/2−C1,2
)
((1/λ)v(1−)−v(−1+))φ(−1)

+C1,1
(
(u(1−)−λu(−1+))φ(1)− ((1/λ)u(1−)−u(−1+))φ(−1)

)=0.

Next we make the assumption that u=u0w, v=v0w (i.e. the solution is a
discrete plane wave within each element) and choose φ=φ0ξ and ψ=ψ0ξ
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where the subscripted quantities are constants and the functions ξ and w

are polynomials of degree k. Introducing the vectors V = (v0, u0)
T and �=

(ψ0, φ0) we may write the above equation as

−�TMV (w, ξ)
K̂

−�TAV (w′, ξ)
K̂

+�T BV (w(1−)−λw(−1+))ξ(1)
+�T CV ((1/λ)w(1−)−w(−1+))ξ(−1)=0

where

M= i h
2k

(
k2 0
0 k2

1

)
, A=

(
0 1
1 0

)
,

B=
(

C2,2
1
2 −C1,2

1
2 +C1,2 C1,1

)
and C=

( −C2,2
1
2 +C1,2

1
2 −C1,2 −C1,1

)
.

Since the above equation must hold for all vectors �, this equation has a
non-trivial solution if and only if the matrix

−M(w, ξ)
K̂

−A(w′, ξ)
K̂

+B(w(1−)−λw(−1+))ξ(1)
+C((1/λ)w(1−)−w(−1+))ξ(−1) (44)

is singular. To try split into left and right going waves, we can diagonalise
A=ETDE where

E= 1√
2

(
1 1
1 −1

)
and D=

(
1 0
0 −1

)
.

But then

EBET = 1
2

(
C1,1 +C2,2 +1 C1.2 +C2,2 −C1,1
C2,2 −C1,2 −C1,1 C2,2 +C1,1 −1

)
.

Thus the matrix B is simultaneously diagonalisable with A if C1,2 =0 and
C1,1 =C2,2. When C2,2>0 this is precisely the choice for the upwind DG
scheme as we have seen in Sec. 3.2. Unfortunately even with this choice

EMET = ih

4k

(
k2 +k2

1 k2 −k2
1

k2 −k2
1 k2 +k2

1

)
.

Since this is not generally diagonal (except when k = k1, i.e. for a wave
travelling along the x axis), we can not apply the results of [2] to this
problem (except for wave travelling along the axis). There is one case
however where the results of Ainsworth are applicable and this is when
C1,1 =C2,2 =0 and C1,2 =0. Using the scaling of variables used in the devel-
opment of (40)–(41) we can eliminate k in this special case. Effectively, we
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can take k= k1 and all matrices are simultaneously diagonalisable. We then
obtain the scalar “one way” wave equation governing w and λ:

i
k1h

2
(w, ξ)

K̂
− (w′, ξ)

K̂
+ 1

2
(λw(−1+)−w(1−))ξ(1)

+1
2
(w(−1+)− (1/λ)w(1))ξ(−1)=0

which is equivalent to equation (35) considered in [2] in the case of cen-
tred fluxes. Various limiting cases were considered in [2], but we shall
restrict our attention to the limiting case hk� 1. Applying Theorem 2 of
the above reference, we obtain the following expression for the error in the
discrete wave-number for a p-th order DGFEM,

kp−kh,p= 1
2

(
p!

(2p+1)!

)2
{

− p+1
2p+1k

2p+3h2p+2 p even
2p+1
p+1 k

2p+1h2p p odd.

In particular, for the zeroth order scheme p=0, we obtain

kh,0 =k0 + 1
6
k3h2

while for the first-order scheme p=1, we obtain

kh,1 =k1 − 1
180

k5h4.

The attempt to reduce the analysis to that of the one-way wave equation
for more general schemes, by attempting to diagonalise the matrix in (44)
directly, has not proved fruitful in the sense that the results are difficult to
interpret and do not compare directly to the work in [2].

3.5. Dispersion Error for General DGFEM Methods

Here we derive the dispersion relation for piecewise constant and
piecewise linear elements.

3.5.1. Dispersion Error for Constant Elements

DGFEM schemes using piecewise constant elements are often referred
to as “finite volume” schemes [19], and are an important class from the point
of view of practical calculations. In this case u1 and ṽ1 are piecewise con-
stant. On the central element let (u1, ṽ1)= (U,V ) and on the East and West
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elements the vector of unknowns is (UE,VE) and (UW ,VW), respectively.
We select ψ1 =φ1 =1 in (38) and (39) and obtain the following equations

−
(
UE +U

2
+C1,2(U −UE)

)
+
(
UW +U

2
+C1,2(UW −U)

)

= ikhV −C2,2(2V −VE −VW)
−
(
VE +V

2
−C1,2(V −VE)

)
+
(
VW +V

2
−C1,2(VW −V )

)

= i
k2

1

k
hU −C1,1(2U −UE −UW).

Now we write these equations as a matrix system. Let w = (U,V )T ,wE =
(UE,VE)

T and wW = (UW , .VW )T . Then the above system can be written as

CWwW + (S+C)w +CEwE =0, (45)

where the matrices are given as follows:

CE =
(−1/2+C1,2 −C2,2

−C1,1 −1/2−C1,2

)
and CW =

(
1/2+C1,2 −C2,2

−C1,1 1/2−C1,2

)
.

C=
(−2C1,2 2C2,2

2C1,1 2C1,2

)
, and S=

(
0 −ikh

−ik2
1h/k 0

)
.

As usual for a dispersion analysis we assume that the solution on
adjacent elements differs by a multiplicative factor λ so that

wW =w/λ and wE =λw.
Then the discrete plane wave solutions are the non-trivial solutions of

(λ−1CW + (S+C)+CEλ)w =0.

The determinant of the matrix in this equation must vanish and we find
that

a(λ2 +λ−2)+b(λ+λ−1)+ c=0,

where

a = 1
4

−C2
1,2 −C1,1C2,2,

b = 4C2
1,2 +4C2,2C1,1 − i

C2,2k
2
1h

k
− ikhC1,1,

c = −1
2

+ i
2C2,2 ∗k1h

k
+ (hk1)

2 −6C2
1,2 −6C2,2C1,1 + i2khC1,1.
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As we shall see it is then useful to write λ=exp(iθ) for some phase factor
θ so

λ2 +λ−2 =2 cos(2θ) and λ+λ−1 =2 cos(θ).

Using standard trigonometric identities the determinant condition
simplifies to

4a cos2 θ +2b cos θ + c−2a=0. (46)

This gives, obviously, θ in terms of a, b and c.
The limit of (46) as h→0 offers useful information about the method.

In the limit as h→0 equation (46) becomes

α cos2 θ + (1/2−2α) cos θ −α−1/2=0,

where α=1/4−C1,1C2,2 −C2
1,2. Assuming α 
=0, the roots of this equation

are cos θ=1 or cos θ= (2α−1)/(2α). As in the case of the IP-DG method,
to suppress the spurious mode we want the phase factor θ corresponding
to the spurious mode to be complex and so require that (2α− 1)/(2α)<
−1 which implies α<1/4 or equivalently C1,1C2,2 +C2

1,2>0. In the special
case of α= 0, the above equation has just one root and there is no need
for a stability condition.

We now consider the physical root of the dispersion relation (the root
θp such that θp→0 as h→0). In this case θp=k1,hh where k1,h is the dis-
crete wave number. Using MAPLE we find that

k1,h = k1 + i
k1(k

2C1,1 +k2
1C2,2)

2k
h

−k1(12k2k2
1C

2
1,2 +9k4

1C
2
2,2 −4k2k2

1 +30k2
1k

2C1,1C2,2 +9k4C2
1,1)

24k2
h2

+O(h3).

The first term (after k1) on the right-hand side is complex and this
implies that the method is dissipative. The first real term after k1 on the
right-hand side gives the phase error of the method and is second-order.
Thus the physical dispersion relation generally exhibits a first-order dissi-
pation term and second-order phase error. We now consider some special
cases.

LDG Scheme: This method was proposed by [8] (see also [4]). It
corresponds to the choice C2,2 =0. In this case the physical dispersion rela-
tion is (assuming C1,2 
=0)
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k1,h=k1 + i
C1,1kk1

2
h− (12C2

1,2k
2
1 +9C2

1,1k
2 −4k2

1)k1

24
h2 +O(h3).

As in the general case, the scheme is first-order dissipative and
second-order dispersive. There does not seem to be a particularly good
choice of the remaining parameters C1,2 and C1,1 (within the stability
requirement above) and a standard choice might be C1,1 =1/2 and C1,2 =0
(although our stability result would need C1,2>0).

Centred Scheme: For the centred scheme we choose C1,1 = C2,2 = 0. In
this case the dispersion relation for the general scheme is

k1,h=k1 − (3C2
1,2 −1)k3

1

6
h2 +O(h4).

As we expect for the centred scheme, the method is not dissipative, and
is second-order dispersive. Making the special choice C1,2 =1/

√
3 we now

find the improved dispersion relation

k1,h=k1 + k5
1

180
h4 +O(h6),

which is non-dispersive, fourth order and satisfies the limiting stability
requirement that C1,2 
=0.

Upwind Scheme: The fully upwind scheme corresponds to the choice
C1,1 =C2,2 =1/2 and has the dispersion relation

k1,h=k1 + i
(k2

1+k2)k1
4k h− k1(14k2k2

1+9k4+48k2k2
1C

2
1,2+9k4

1)

96k2 h2 +O(h3).

As for the LDG scheme the method is first-order dissipative and sec-
ond-order dispersive. There is no obvious advantage to choosing C1,2
other than zero, which is the standard choice for upwind finite volume
schemes.

3.5.2. Dispersion Error for Linear Elements

We now follow the same procedure as for piecewise constant elements
to analyse the case of linear elements (p= 1 in (38) and (39)). Using the
notation in Fig. 3 and selecting and ψ1 =φ1 = (h/2−x)/h in (38) and (39)
we obtain
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− (Ub+Ua)
2

+
(
Ua +UW,b

2
+C1,2(UW,b−Ua)

)

= ik
(
Va

3
+ Vb

6

)
h+C2,2(VW,b−Va)

− (Vb+Va)
2

+
(
Va +VW,b

2
−C1,2(VW,b−Va)

)

−C1,1(UW,b−Ua)= i
k2

1

k

(
Ua

3
+ Ub

6

)
h

In the same way choosing φ1 =ψ1 = (x+h/2)/h we obtain

(Ub+Ua)
2

−
(
Ub+UE,a

2
+C1,2(Ub−UE,a)

)

= ik
(
Va

6
+ Vb

3

)
h−C2,2(Vb−VE,a)

(Vb+Va)
2

−
(
Vb+Va

2
−C1,2(Vb−VE,a)

)

+C1,1(Ub−UE,a)= i
k2

1

k

(
Ua

6
+ Ub

3

)
h

Now we write these equations as a matrix system. Let w= (Ua,Ub,Va,Vb)T
(similarly for wW and wE). Then the above system can be written as

CWwW + (S+C)w+CEwE =0, (47)

where the matrices are defined as follows. The West exterior coupling
matrix is

CW =

⎛

⎜⎝

0 1/2+C1,2 0 −C2,2
0 0 0 0
0 −C1,1 0 1/2−C1,2
0 0 0 0

⎞

⎟⎠

and the East exterior coupling matrix is given by

CE =

⎛

⎜⎝

0 0 0 0
−1/2+C1,2 0 −C2,2 0

0 0 0 0
−C1,1 0 −1/2−C1,2 0

⎞

⎟⎠ .
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On the central element the coupling matrix arising from the flux contribu-
tions at either end of the interval is

C=

⎛

⎜⎝

1/2−C1,2 0 C2,2 0
0 −1/2−C1,2 0 C2,2
C1,1 0 1/2+C1,2 0

0 C1,1 0 −1/2+C1,2

⎞

⎟⎠

Finally, the integral terms contribute to the following matrix on element e

S=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2

−1
2

−i
kh

3
−i
kh

6
1
2

1
2

−i
kh

6
−i
kh

3

−i
k2

1h

3k
−i
k2

1h

6k
−1

2
−1

2

−i
k2

1h

6k
−i
k2

1h

3k
1
2

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that at higher order (i.e. p>1) the coupling matrices are essentially
unchanged (except for more rows and columns of zeros) and only the inte-
rior matrix is modified.

Following the arguments for the piecewise constant case, we find that
the phase factor θ must satisfy equation (46) but now with the following
coefficients

a = −1
4
C2,2C1,1 − 1

36
C2,2k

2
1h

2C1,1 + 1
144

h2k2
1 − 1

4
C2

1,2

− 1
36
C2

1,2k
2
1h

2 + 1
16

b = 1
72

ikk2
1h

3C1,1 − 1
4

− 1
12

iC2,2
k2

1

k
h− 1

12
ikhC1,1 + 1

24
k2

1h
2

− 1
72

i
k4

1

k
h3C2,2 − 2

9
C2

1,2k
2
1h

2 − 2
9
C2,2k

2
1h

2C1,1

c = 1
18

ikk2
1h

3C1,1 − 7
72
k2

1h
2 + 1

6
ihC1,1 + 1

2
C2,2C1,1 + 1

2
C1,2

2

+ 1
144

k4
1h

4 + 1
6

iC2,2
k2

1

k
h− 1

2
C2,2k

2
1h

2C1,1 − 1
2
C2

1,2k
2
1h

2

+3
8

− 1
18

i
k4

1

k
h3C2,2

At this stage it is useful to consider (46) (but with the coefficients above)
in the limit as h→0. The equation becomes

(cos θ −1)(α cos θ +α−1/2)=0,
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where α = 1/4 − C1,1C2,2 − C2
1,2. As for the piecewise constant case, the

root cos θ = 1 is the physical root and the second root (assuming α 
= 0)
is spurious. If α=0 (this occurs when C1,1 =C2,2 =1/2 and C1,2 =0 which
is the parameter choice corresponding to full upwinding) there is no spuri-
ous mode and no need for a stability condition. If α 
=0 then the spurious
root can be made complex if α<1/4 or if C1,1C2,2 +C2

1,2>0. Interestingly
this is the same condition as for the piecewise constant case. Note that
energy arguments show that we need to choose C1,1 � 0 and C2,2 � 0 for
stability so that the limiting analysis here does not completely determine
the stability properties of the semi-discrete scheme.

We now compute the small h asymptotics of the phase in some cases.
Writing θ=k1,hh we can compute k1,h, the discrete wave number, in terms
of the other parameters in the scheme. We now study a few special cases.

1. LDG Scheme: Choose C2,2 =0 (and assuming C1,2 
=0). We obtain

k1,h = k1 + 1
288

ikk1
3C1,1

C1,2
2

h3

+ 1
17280

(
96 k1

2C1,2
4 −20C1,2

2k1
2 −5C2

1,1k
2
)
k1

3

C1,2
4

h4

+O(h5).

As in the piecewise constant case, the presence of an imaginary
term in the series corresponds to dissipation in the method. The
first real term in the series (after k1) determines the phase error
of the method. Therefore the dispersion error is O(h4) compared
to O(h2) for standard linear elements. Motivated by the work of
Warburton and Hesthaven we could choose C1,1 = 1/2 and then
if we choose C1,2 =1/h we obtain:

k1,h=k1 + k5
1

180
h4 + 1

576
ikk5

1h
5 +O(h6).

2. Centred Scheme: Setting C1,1 =C2,2 =0 we obtain

k1,h = k1 + 1
4320

(
24C1,2

2 −5
)
k1

5

C1,2
2

h4

+ 1
870912

(
576C1,2

4 −357C1,2
2 +56

)
k1

7

C1,2
4

h6 +O(h8).

This scheme is not dissipative. We see that the centred scheme
can be optimised to give a high order O(h6) dispersion error by
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selecting C1,2 =√5/24 to yield

k1,h=k1 + 53
302400

k1
7h6 +O(h8)

3. Full Upwinding: The currently most practically significant
DGFEM scheme in computational electromagnetics is the
method of Hesthaven and Warburton [12]. Applied to the wave
equation with p = 1 their choice of fluxes corresponds to full
upwinding and is obtained by taking C1,1 = C2,2 = 1/2 and
C1,2 =0 (in fact they use a more general choice depending on the
coefficients of the partial differential equation, but this reduces
to the one here for a simple wave equation). The resulting error
series is then

k1,h = k1 + 1
144

ik1
3 (k1

2 +k2
)

k
h3 − 1

4320

k3
1(6k

2
1k

2 +5k4
1 +5k4)

k2
h4

+O
(
h5
)

The method is dissipative and dispersive to the same order as the
general LDG scheme.
Choosing C1,1 =C1,2 =1/2 and C1,2 =1/h gives

k1,h=k1 + k5
1

180
h4 + i

(k2
1 +k2)k3

1

576k
h5 +O(h6).

4. NUMERICAL EXAMPLES FOR HELMHOLTZ EQUATION
IN ONE DIMENSION

In this section we show two numerical examples related to the gen-
eralised DGFEM scheme. These illustrate some of the properties of these
methods and their relationship to our analysis. We assume k1 =k (so k2 =
0) and consider the one-dimensional time harmonic problem of finding u
and v such that

ikv−u′ =0, iku−v′ =0.

In order to study plane wave solutions we impose unusual boundary con-
ditions. We demand u and v satisfy

ikv−u′ =0, iku−v′ =0, in (0,1)

u(0)=1, v(1)−u(1)=0.

which has solution u(x)=v(x)= eikx .
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We can then apply the generalised DGFEM scheme to this problem
using linear elements on a uniform grid. Our first example is for the LDG
scheme with C2,2 = 0. The dissipation behaviour of the scheme is gov-
erned by the sign of C1,1. When C1,1 =0 we revert to the centred scheme
which is dissipation free. If C1,1>0 the method is dissipative and the solu-
tion will decay across the domain (dissipation can be advantageous for
avoiding high frequency instability in time domain codes). For C1,1 > 0
the solution will grow. In Fig. 2 we show this using k= 12π and a grid
resulting in 10 degrees of freedom per wavelength (i.e. 5 grid cells per
wavelength).

Our second result is for the fully upwinded scheme using C1,1 =C2,2 =
1/2 and C1,2 = 0 (and again linear elements). In this case we have shown
that the method is dissipative, but also that is has excellent phase accuracy.
This is demonstrated in Fig. 3.
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0

Fig. 2. The real part of u plotted against x for LDG showing decay for C1,1>0, growth for
C1,1< 0 and dissipation free for C1,1 = 0. Here k= 12π and there are 10 degrees of freedom
per wavelength. Note that in each case the solution has excellent phase accuracy maintained
across the grid.
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Fig. 3. Results for the fully upwinded scheme. The method is dissipative with dissipation
decreasing as the grid is refined. This is illustrated here where we show the approximation to
the real part of u when k=6π , 12π and 32π and either 5 or 10 degrees of freedom per wave-
length. In each case the excellent phase accuracy of the scheme is obvious.

5. CONCLUSION

We have provided a framework for analysing the dispersion rela-
tion of various DGFEM schemes and pointed out the peril of assum-
ing that a direct one-dimensional dispersion analysis applies also to the
two-dimensional problem.

For the IP-DG scheme considered here we show how to reduce to a
pair of one dimensional problems and then have explicitly analysed some
cases. Based on the results reported in Sec. 2.1, we conjecture that:

• For pth degree polynomials there is a stable choice of γ and, for
all but one exceptional choice of γ , the order of convergence of the
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dispersion relation is O(k(kh)2p). This is in accordance with results
for standard p degree conforming elements [1] and suggests that IP-
DG performs asymptotically no better or worse than standard ele-
ments from the point of view of phase error.

• When the order p is even there is an optimal choice of the stability
parameter given by α= (p+ 1)(p+ 2)/2h that offers an increase in
the order of accuracy in the dispersion error to O(k(kh)2p+2). For
odd degree p there is no such choice.

• As the order p increases, the value of the stability parameter needed
to eliminate the spurious mode grows as p(p + 1)/2h which is
consistent with the choice assumed in the a priori analyses.

Of course we have analysed just one representative IP-DG scheme. The
general approach we have made should be applicable, for example, to the
method of [17] but the analysis has yet to be performed.

For general DGFEM we have shown the following

• The dispersion relation does decompose into one-dimensional prob-
lems, but these problems are not obtained by the direct application
of DGFEM to one-dimensional problems. Thus the straightforward
analysis of one-dimensional DGFEM problems does not apply to
the multi-dimensional problem (except for wave propagation along
coordinate directions).

• There are many possible “good” choices of parameters. The centred
scheme is attractive in that it is non-dissipative and can be made to
satisfy the limiting stability constraint with a suitable choice of the
coupling parameters.

• Much more work needs to be done to fully analyse the dispersion
properties of higher order elements, and to test the various methods
numerically.
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