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In this work we apply the Method of Fundamental Solutions (MFS) with
fixed singularities and boundary collocation to certain axisymmetric harmonic
and biharmonic problems. By exploiting the block circulant structure of the
coefficient matrices appearing when the MFS is applied to such problems, we
develop efficient matrix decomposition algorithms for their solution. The algo-
rithms are tested on several examples.
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1. INTRODUCTION

In this paper, we investigate the application of the Method of Fundamen-
tal Solutions (MFS) to certain axisymmetric harmonic and biharmonic
problems. In particular, we consider the MFS with fixed singularities for
harmonic and biharmonic problems in axisymmetric hollow domains. We
extend the ideas developed in [14], where the MFS is applied to har-
monic problems in axisymmetric simply-connected domains, and [8], where
the MFS is applied to the corresponding biharmonic problems. In the
problems examined in this study, the MFS discretization leads to lin-
ear systems the coefficient matrices of which have block circulant struc-
tures. Matrix decomposition algorithms are developed for the efficient
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solution of these systems. These algorithms also make use of fast Fourier
transforms (FFT). Comprehensive reviews of the recent developments and
applications of the MFS and related methods may be found in the sur-
vey papers [2, 6, 7, 10]. Also, the books [4, 9, 11] provide useful infor-
mation concerning various implementational and theoretical aspects of the
MFS. In domain–discretization techniques such as finite element and finite
difference methods, the reduction of the three-dimensional axisymmetric
problem to a two-dimensional problem governed by the axisymmetric ver-
sion of the governing equation is important because of the complica-
tions involved in the discretization of three-dimensional domains [5]. This
difficulty is not as pronounced in the MFS as it is a meshless method.
Further, the fundamental solutions of these (two-dimensional) equations
are complicated and involve complete elliptic integrals. Finally, when the
boundary conditions of the problem are not axisymmetric, the two-dimen-
sional approach requires the solution of a sequence of boundary value
problems. The approach that we are suggesting in this study avoids these
complications.

2. THE HARMONIC CASE

2.1. MFS Formulation

We consider the three-dimensional boundary value problem

∆u = 0 in Ω,

u = f on ∂Ω 1,

u = g on ∂Ω 2,

where ∆ denotes the Laplace operator and f is a given function. The
region Ω⊂R

3 is axisymmetric, which means that it is formed by rotating
a region Ω ′ ∈R

2 about the z-axis. The boundary of Ω is ∂Ω=∂Ω1 ∪∂Ω2
and the boundary of Ω ′ is defined by the two boundary segments ∂Ω ′

1
and ∂Ω ′

2, which generate ∂Ω1 and ∂Ω2, respectively. In the MFS [6, 14],
the solution u is approximated by

uMN(c,d,R,S;P) =
M∑

m=1

N∑

n=1

cm,n k1(P,Rm,n)

+
M∑

m=1

N∑

n=1

dm,n k1(P, Sm,n), P ∈Ω,

where c=(c11, c12, . . . , c1N, . . . , cM1, . . . , cMN)
T , d =(d11, d12, . . . , d1N, . . .,

dM1, . . . , dMN)
T and R, S are 3MN -vectors containing the coordinates
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of the singularities (sources) Rm,n, Sm,n, m = 1, . . . ,M, n = 1, . . . ,N ,
which lie outside Ω. The function k1(P,R) is the fundamental solution of
Laplace’s equation in R

3 given by

k1(P,R) = 1
4π |P−R|

with |P −R| denoting the distance between the points P and R. The sin-
gularities Rm,n, Sm,n are fixed on the boundary ∂Ω̃=∂Ω̃1 ∪∂Ω̃2 of a solid
Ω̃ surrounding Ω. The solid Ω̃ is generated by the rotation of the pla-
nar domain Ω̃ ′ which is similar to Ω ′ . Clearly ∂Ω̃1 and ∂Ω̃2 are simi-
lar to ∂Ω1 and ∂Ω2, respectively. Also, the boundary of Ω̃ ′ is defined by
the segments ∂Ω̃ ′

1 and ∂Ω̃ ′
2, which generate ∂Ω̃1 and ∂Ω̃2, respectively.

A set of MN collocation points {Pi,j }M,Ni=1,j=1 is chosen on ∂Ω1 and a

set of MN collocation points {Qi,j }M,Ni=1,j=1 is chosen on ∂Ω2 in the fol-
lowing way: We first choose N points {Pj }Nj=1 on the boundary segment
∂Ω ′

1 and N points {Qj }Nj=1 on ∂Ω ′
2. These can be described by their polar

coordinates (rPj , zPj ), (rQj , zQj ), j = 1, . . . ,N , where rPj , rQj denotes
the vertical distance of the points Pj , Qj from the z-axis and zPj , zQj
denotes the z-coordinate of the points Pj , Qj -respectively. The points on
∂Ω1 are, taken to be

xPi,j = rPj cos ϕi, yPi,j = rPj sin ϕi, zPi,j = zPj
and the points on ∂Ω2 are

xQi,j = rQj cos ϕi, yQi,j = rQj sin ϕi, zQi,j = zQj ,
where ϕi = 2(i − 1)π/M, i = 1, . . . ,M . Similarly, we choose a set of
MN singularities {Rm,n}M,Nm=1,n=1 on ∂Ω̃1 and a set of MN singulari-
ties {Sm,n}M,Nm=1,n=1 on ∂Ω̃2 by taking Rm,n = (xRm,n , yRm,n , zRm,n), Sm,n =
(xSm,n , ySm,n , zSm,n), and

xRm,n = rRn cos ψm, yQm,n = rRn sin ψm, zRm,n = zRn,
xSm,n = rSn cos ψm, ySm,n = rSn sin ψm, zSm,n = zSn,

where ψi = 2(α+ i− 1)π/M, i= 1, . . . ,M. The parameter α ∈ [−1/2,1/2]
describes the rotation of the singularities in the azimuthal direction. The
N points Rj are chosen on ∂Ω̃ ′

1 whereas the N points Sj are chosen on
∂Ω̃ ′

2. The coefficients c and d are determined so that the boundary condi-
tion is satisfied at the boundary points {Pi,j }M,Ni=1,j=1, {Qi,j }M,Ni=1,j=1:

uMN(c,d,R,S;Pi,j )=f1(Pi,j ), uMN(c,d,R,S;Qi,j )=f2(Pi,j ),
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i = 1, . . . ,M, j = 1, . . . ,N. This yields an 2MN × 2MN linear system of
the form




A B

C D








c

d



 =



f

g



 , (2.1)

where the matrices A, B, C and D are block circulant [3] MN ×MN

matrices, that is

A= circ(A1,A2, . . . ,AN), B= circ(B1,B2, . . . ,BN),

C= circ(C1,C2, . . . ,CN), D= circ(D1,D2, . . . ,DN).

The matrices A�,B�,C�,D�, �=1, . . . ,M, are N ×N matrices defined by

(A�)j,n= 1
4π |P1,j −R�,n| , (B�)j,n= 1

4π |P1,j −S�,n| ,

(C�)j,n= 1
4π |Q1,j −R�,n| , (D�)j,n= 1

4π |Q1,j −S�,n| ,

�=1, . . . ,M j, n=1, . . . ,N. The system (2.1) can therefore be written as

( M∑

�=1

P�−1 ⊗A�
)

c+
( M∑

�=1

P�−1 ⊗B�
)

d = f ,

( M∑

�=1

P�−1 ⊗C�
)

c+
( M∑

�=1

P�−1 ⊗D�
)

d = g,

where the matrix P is the M×M permutation matrix P =circ (0,1,0, . . . ,0)
and ⊗ denotes the matrix tensor product [12].

2.2. Matrix Decomposition Algorithm

In the case we are examining, a Matrix Decomposition Algorithm [1]
involves the reduction of the 2MN × 2MN system (2.1) to M decoupled
2N ×2N systems. This is achieved by exploiting the block circulant struc-
ture of the matrices A, B, C and D. If U is the unitary M ×M Fourier
matrix, it is well-known [3, 13] that circulant matrices are diagonalized in
the following way. If C = circ(c1, . . . , cM), then C =U∗DU, where D=
diag(ĉ1, . . . , ĉM) , and

ĉj =
M∑

k=1

ck ω
(k−1)(j−1).
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In particular, the permutation matrix P = circ(0,1,0, . . . ,0) is diagonal-
ized as P =U∗T U, where

T = diag
(
1,ω,ω2, . . . , ωM−1

)
, ω = e2π i/M. (2.2)

Next we simplify system (2.1). Let




Ã B̃

C̃ D̃



 =



U ⊗IN 0

0 U ⊗IN








A B

C D








U∗ ⊗IN 0

0 U∗ ⊗IN





and



c̃

d̃



 =



U ⊗IN 0

0 U ⊗IN








c

d



 ,




f̃

g̃



 =



U ⊗IN 0

0 U ⊗IN








f

g



 .

Then, after pre-multiplication by I2 ⊗U ⊗IN , (2.1) becomes




Ã B̃

C̃ D̃








c̃

d̃



 =



f̃

g̃



 . (2.3)

Since

A =
M∑

k=1

Pk−1 ⊗Ak,

then

Ã = (U ⊗IN)
( M∑

k=1

Pk−1 ⊗Ak
)
(U∗ ⊗IN)

=
M∑

k=1

(
U Pk−1U∗)⊗Ak =

M∑

k=1

T k−1 ⊗Ak

and similarly

B̃ =
M∑

k=1

T k−1 ⊗Bk, C̃ =
M∑

k=1

T k−1 ⊗Ck and D̃ =
M∑

k=1

T k−1 ⊗Dk.
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The system (2.3) can therefore be decomposed into M decoupled 2N×2N
systems

Gm




c̃m

d̃m



=




f̃m

g̃m



 , m=1, . . . ,M,

where f̃m= (
f̃ m,1, . . . , f̃ m,N

)T , g̃m= (
g̃m,1, . . . , g̃m,N

)T ,

Gm =



Âm B̂m

Ĉm D̂m



 (2.4)

and

Âm =
M∑
j=1

ω(m−1)(j−1) Aj , B̂m =
M∑
j=1

ω(m−1)(j−1) Bj ,

Ĉm =
M∑
j=1

ω(m−1)(j−1) Cj , D̂m =
M∑
j=1

ω(m−1)(j−1) Dj ,

(2.5)

m=1, . . . ,M. We thus have the following efficient algorithm for the solu-
tion of system (2.3).

Algorithm

Step 1. Compute f̃ = (U ⊗IN)f , g̃ = (U ⊗IN)g.
Step 2. Construct the matrices Gm, m=1, . . . ,M.
Step 3. Solve the M systems (2.4).
Step 4. Compute c= (U∗ ⊗IN) c̃, d = (U∗ ⊗IN) d̃.

Remarks. In Step 1, because of the form of the matrix U , the oper-
ation can be carried out a cost of O(NM log M) via an appropriate
FFT algorithm. Similarly, in Step 4, because of the form of the matrix
U∗, the operation can be carried out via inverse FFTs at a cost of
order O(NM log M) operations. In Step 2 we need to perform an M-
dimensional inverse FFT, in order to compute the entries of the matri-
ces Âj , B̂j , Ĉj , D̂j , j = 1, . . . ,M, from (2.5). which done at a cost of
O(N2M log M) operations. In Step 3, we need to solve M complex linear
systems of order N , which is done using an LU -factorization with partial
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pivoting at a cost of O(MN3) operations. The FFT and inverse FFT oper-
ations are performed using the NAG1 routines C06EAF,C06FPF,C06FQF
and C06FRF.

3. THE BIHARMONIC CASE

3.1. MFS Formulation

We now consider the three-dimensional boundary value problem

∆2u = 0 in Ω,

u = f1 and
∂u

∂n
=g1 on ∂Ω1,

u = f2 and
∂u

∂n
=g2 on ∂Ω2.

(3.1)

The region Ω ∈ R
3 is axisymmetric and, as in the harmonic case, formed

by rotating a region Ω ′ ∈R
2 about the z-axis. We keep the same notation

as in the harmonic case for the boundaries of Ω and Ω ′. In the MFS [6,
8], the solution u is approximated by

uMN(c1, c2,d1,d2,R,S;P) =
M∑

m=1

N∑

n=1

c1
m,n k1(P,Rm,n)

+
M∑

m=1

N∑

n=1

c2
m,n k2(P,Rm,n)

+
M∑

m=1

N∑

n=1

d1
m,n k1(P, Sm,n)

+
M∑

m=1

N∑

n=1

d2
m,n k2(P, Sm,n), P ∈Ω,(3.2)

where c1 = (c1
11, c

1
12, . . . , c

1
1N, . . . , c

1
M1, . . . , c

1
MN)

T , c2 = (c2
11, c

2
12, . . . , c

2
1N,

. . . , c2
M1, . . . , c

2
MN)

T ,d1 = (d1
11, d

1
12, . . . , d

1
1N, . . . , d

1
M1, . . . , d

1
MN)

T ,d2 =
(d2

11, d
2
12, . . . , d

2
1N, . . . , d

2
M1, . . . , d

2
MN)

T , and R, S are 3MN -vectors con-
taining the coordinates of the singularities Rm,n, Sm,n, m= 1, . . . ,M, n=
1, . . . ,N , which lie outside Ω. The function k2(P, S) is the fundamental
solution of the the biharmonic equation in R

3 given by

1Numerical Algorithms Group Library Mark 20, NAG Ltd, Wilkinson House, Jordan Hill
Road, Oxford, UK, 2001.
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k2(P,R) = 1
8π

|P −R|.

The 2MN collocation points {Pi,j }M,Ni=1,j=1, {Qi,j }M,Ni=1,j=1 and the 2MN sin-

gularities {Pm,n}M,Nm=1,n=1, {Qm,n}M,Nm=1,n=1 are chosen in exactly the same way
as in the harmonic case. The coefficients c1, c2,d1 and d2 are determined
so that the boundary conditions are satisfied at the boundary points:

uMN(c1, c2,d1,d2,R,S;Pi,j ) = f1(Pi,j ),

uMN(c1, c2,d1,d2,R,S;Qi,j ) = f2(Pi,j ),

∂

∂n
uMN(c1, c2,d1,d2,R,S;Pi,j ) = g1(Pi,j ),

∂

∂n
uMN(c1, c2,d1,d2,R,S;Qi,j ) = g2(Pi,j ),

(3.3)

i = 1, . . . ,M, j = 1, . . . ,N . This yields an 4MN × 4MN linear system of
the form





A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44









c1

c2

d1

d2



=





f 1

f 2

g1

g2



 , (3.4)

where the matrices Ars, r, s = 1,2,3,4 are block circulant MN × MN

matrices, that is

Ars = circ
(
Ars1 ,A

rs
2 , . . . ,A

rs
M

)
, r, s=1,2,3,4.

The matrices Ars, r, s=1,2,3,4, can be written as

Ars =
(
IM ⊗Ars1 +P ⊗Ars2 +P2 ⊗Ars3 +· · ·+PM−1 ⊗ArsM

)
.

For �=1, . . . ,M the N ×N submatrices Ars� = (
(Ars� )j,n

)
, are defined by

(
A11
�

)

j,n
= 1

4π
1

|P1,j −R�,n| ,
(
A12
�

)

j,n
= 1

4π
1

|P1,j −S�,n| ,
(
A13
�

)

j,n
= 1

8π
|P1,j −R�,n|,

(
A14
�

)

j,n
= 1

8π
|P1,j −S�,n|,

(
A21
�

)

j,n
= 1

4π
1

|Q1,j −R�,n| ,
(
A22
�

)

j,n
= 1

4π
1

|Q1,j −S�,n| ,
(
A23
�

)

j,n
= 1

8π
|Q1,j −R�,n|,

(
A24
�

)

j,n
= 1

8π
|Q1,j −S�,n|,
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(
A31
�

)

j,n
= 1

4π
∂

∂n

[
1

|P1,j −R�,n|
]
,

(
A32
�

)

j,n
= 1

4π
∂

∂n

[
1

|P1,j −S�,n|
]
,

(
A33
�

)

j,n
= 1

8π
∂

∂n
|P1,j −R�,n|,

(
A34
�

)

j,n
= 1

8π
∂

∂n
|P1,j −S�,n|,

(
A41
�

)

j,n
= 1

4π
∂

∂n

1
|Q1,j −R�,n| ,

(
A42
�

)

j,n
= 1

4π
∂

∂n

1
|Q1,j −S�,n| ,

(
A43
�

)

j,n
= 1

8π
∂

∂n
|Q1,j −R�,n|,

(
A44
�

)

j,n
= 1

8π
∂

∂n
|Q1,j −S�,n|.

3.2. Matrix Decomposition Algorithm

In this case, a Matrix Decomposition Algorithm involves the reduc-
tion of the 4MN × 4MN system (3.4) to M decoupled 4N × 4N systems.
Let us denote by H the 4MN ×4MN matrix

H =





A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44





=
M−1∑

k=0





Pk ⊗A11
k+1 Pk ⊗A12

k+1 Pk ⊗A13
k+1 Pk ⊗A14

k+1

Pk ⊗A21
k+1 Pk ⊗A22

k+1 Pk ⊗A23
k+1 Pk ⊗A24

k+1

Pk ⊗A31
k+1 Pk ⊗A32

k+1 Pk ⊗A33
k+1 Pk ⊗A34

k+1

Pk ⊗A41
k+1 Pk ⊗A42

k+1 Pk ⊗A43
k+1 Pk ⊗A44

k+1





.

Clearly,

(U ⊗IN) (Pk−1 ⊗Arsk ) (U∗ ⊗IN)= (UPk−1U∗)⊗Arsk =T k−1 ⊗Arsk
for k= 1, . . . ,M and r, s= 1,2,3,4. Pre-multiplication of system (3.4) by
I4 ⊗U ⊗IN yields

(I4 ⊗U ⊗IN)H (I4 ⊗U∗ ⊗IN) (I4 ⊗U ⊗IN) s = (I4 ⊗U ⊗IN) t, (3.5)

where s = [c1|c2|d1|d2]T , t = [f 1|f 2|g1|g2]T , since (U∗ ⊗IN)(U⊗IN) =
IMN . The system (3.5) can be written alternatively

Ĥ ŝ = t̂, (3.6)
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where

ŝ = (I4 ⊗U ⊗IN) s =





(U ⊗IN) c1

(U ⊗IN) c2

(U ⊗IN)d1

(U ⊗IN)d2



 =





c̃1

c̃2

d̃1

d̃2




,

t̂ = (I4 ⊗U ⊗IN) t =





(U ⊗IN)f 1

(U ⊗IN)f 2

(U ⊗IN)g1

(U ⊗IN)g2



 =





f̃ 1

f̃ 2

g̃1

g̃2





and

Ĥ = (I4 ⊗U ⊗IN)H (I4 ⊗U∗ ⊗IN)

=
M−1∑

k=0





T k ⊗A11
k+1 T

k ⊗A12
k+1 T

k ⊗A13
k+1 T

k ⊗A14
k+1

T k ⊗A21
k+1 T

k ⊗A22
k+1 T

k ⊗A23
k+1 T

k ⊗A24
k+1

T k ⊗A31
k+1 T

k ⊗A32
k+1 T

k ⊗A33
k+1 T

k ⊗A34
k+1

T k ⊗A41
k+1 T

k ⊗A42
k+1 T

k ⊗A43
k+1 T

k ⊗A44
k+1





,

where T is given by (2.2). The solution of system (3.6) can therefore be
decomposed into the solution of the M independent 4N ×4N systems

Hm





c̃m1

c̃m2

d̃
m

1

d̃
m

2




=





f̃
m

1

f̃
m

2

g̃m1

g̃m2




, m=1, . . . ,M, (3.7)

where

Hm =





Â11
j Â12

m Â13
m Â14

m

Â21
m Â22

m Â23
m Â24

m

Â31
m Â32

m Â33
m Â34

m

Â41
m Â42

m Â43
m Â44

m




and Âk�m =

M∑

j=1

ω(m−1)(j−1) Ak�j , (3.8)

k, �= 1,2,3,4, m= 1, . . . ,M. We thus have the following efficient algo-
rithm
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Algorithm

Step 1. Compute f̃ 1 = (U ⊗ IN)f 1, f̃ 2 = (U ⊗ IN)f 2, g̃1 = (U ⊗
IN)g1, g̃2 = (U ⊗IN)g2.

Step 2. Construct the matrices Hm m=1, . . . ,M.
Step 3. Solve(3.7).
Step 4. Compute c1 = (U∗ ⊗ IN) c̃1, c2 = (U∗ ⊗ IN) c̃2,d1 = (U∗ ⊗

IN) d̃1, d2 = (U∗ ⊗IN) d̃2.

Remarks. In Step 1 the operation can be carried out at a cost of
O(NM logM) using FFTs. Similarly, Step 4 can be carried out at a cost
of order O(NM logM). In Step 2, we need to perform an M-dimensional
inverse FFT, in order to compute the matrices Ârsk , r, s = 1,2,3,4, k =
1, . . . ,M, from (3.8). This can be done at a cost of O(N2M logM) opera-
tions. In Step 3, we need to solve M complex linear systems of order N .
This is done using an LU -factorization with partial pivoting at a cost of
O(M N3) operations.

4. EXAMPLES OF AXISYMMETRIC SOLIDS

4.1. Case I: Thick Spherical Shell

We first consider the case where the domain Ω ⊂ R
3 is the 3-dimen-

sional domain defined by Ω = {
x ∈ R

3 : �1 < |x|< �2
}
. In this case, the

2MN singularities Rm,n and Sm,n are fixed on the boundary ∂Ω̃ = ∂Ω̃1 ∪
∂Ω̃2 of the 3-dimensional domain defined by Ω̃ ={x ∈ R

3 : R1< |x|<R2}
where R1<�1<�2<R2. A set of MN collocation points {Pi,j }M,Ni=1,j=1 is
chosen on the boundary ∂Ω1 of Ω (i.e. the surface of a sphere of radius
�1) and a set of MN collocation points {Qi,j }M,Ni=1,j=1 is chosen on the
boundary ∂Ω2 (i.e. the surface of a sphere of radius �2) so that if Pi,j =
(xPi,j , yPi,j , zPi,j ) and Qi,j = (xQi,j , yQi,j , zQi,j ), then

xPi,j = �1 sinϑj cosϕi, yPi,j =�1 sinϑj sinϕi, zPi,j =�1 cosϑj ,

xQi,j = �2 sinϑj cosϕi, yQi,j =�2 sinϑj sinϕi, zQi,j =�2 cosϑj ,

where ϕi =2(i−1)π/M, i=1, . . . ,M and ϑj = j π/(N +1), j =1, . . . ,N .
Note that we avoid the points corresponding to ϑj =0 and ϑj =π as these
remain invariant under rotation in the ϕ-direction and hence lead to singu-
lar matrices. Similarly, we choose a set of MN singularities {Ri,j }M,Ni=1,j=1
on ∂Ω̃1 (i.e., the surface of a sphere of radius R1) and a set of MN sin-
gularities {Si,j }M,Ni=1,j=1 on ∂Ω̃2 (i.e., the surface of a sphere of radius R2),
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by taking Ri,j = (xRi,j , yRi,j , zRi,j ), Si,j = (xSi,j , ySi,j , zSi,j ), with

xRi,j =R1 sinϑj cosψi, yRi,j =R1 sinϑj sinψi, zRi,j =R1 cosϑj ,

xSi,j = R2 sinϑj cosψi, ySi,j =R2 sinϑj sinψi, zSi,j =R2 cosϑj ,

where ψi =2(α+ i−1)π/M, i=1, . . . ,M, 0�α<1.

4.2. Case II: Sphere with Interior Cylinder Removed

We next consider the domain

Ω = {
x ∈R

3 : |x|<�2
}

�
{
(x, y, z)∈R

3 : x2 +y2<�2
1, −h<z<h},

�1, h<�2.

In this case a set of MN collocation points {Pi,j }M,Ni=1,j=1 is chosen on
the boundary ∂Ω1 of Ω (i.e., the surface of a cylinder of radius �1 and
height h) and a set of MN collocation points {Qi,j }M,Ni=1,j=1 is chosen on
the boundary ∂Ω2 (i.e., the surface of a sphere of radius �2) so that if
Pi,j = (xPi,j , yPi,j , zPi,j ) and Qi,j = (xQi,j , yQi,j , zQi,j ), then

xPi,j = rPj cosϕi, yPi,j = rPj sinϕi, zPi,j = zPj ,

xQi,j = �2 sinϑj cosϕi, yQi,j = �2 sinϑj sinϕi, zQi,j = �2 cosϑj ,

where ϕi = 2(i− 1)π/M, i= 1, . . . ,M and ϑj = jπ/(N + 1), j = 1, . . . ,N .
The polar coordinates

(
rPj , zPj

)
, j = 1, . . . ,N, represent N points on the

boundary of the rectangle (0, �1)× (−h,h). Similarly, we choose a set
of MN singularities {Ri,j }M,Ni=1,j=1 on ∂Ω̃1 (i.e., the surface of a cylinder of

radius R1 and height 2H ) and a set of MN singularities {Si,j }M,Ni=1,j=1 on ∂Ω̃2
(i.e. the surface of a sphere of radius R2), by taking Ri,j = (xRi,j , yRi,j , zRi,j ),
Si,j = (xSi,j , ySi,j , zSi,j ), with

xRi,j = r̃Rj cosψi, yRi,j = r̃Rj sinψi, zRi,j = z̃Rj ,
xSi,j = R2 sinϑj cosψi, ySi,j =R2 sinϑj sinψi, zSi,j =R2 cosϑj ,

where ψi = 2(α + i − 1)π/M, i = 1, . . . ,M . The polar coordinates
(r̃Qj , z̃Qj ), j =1, . . . ,N describe N points on the boundary of the rectangle
(0,R1)× (−H,H) with R1<�1<�2<R2 and H <h.

4.3. Case III: Cylinder with Interior Sphere Removed

We next consider the following domain

Ω = {
(x, y, z)∈R

3 :x2 +y2<�2
2, −h<z<h}�

{
x ∈R

3 : |x|<�1
}
,

�1<h,�2. (4.1)
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In this case a set of MN collocation points {Pi,j }M,Ni=1,j=1 is chosen on the
boundary ∂Ω1 of Ω (i.e. the surface of a sphere of radius �1) and a set
of MN collocation points {Qi,j }M,Ni=1,j=1 is chosen on the boundary ∂Ω2
(i.e. the surface of a cylinder of radius �2 and height h) so that if Pi,j =
(xPi,j , yPi,j , zPi,j ) and Qi,j = (xQi,j , yQi,j , zQi,j ), then

xPi,j =�1 sinϑj cosϕi, yPi,j =�1 sinϑj sinϕi, zPi,j =�1 cosϑj ,

xQi,j = rQj cosϕi, yPi,j = rQj sinϕi, zQi,j = zQj ,

where ϕi =2(i−1)π/M, i=1, . . . ,M and ϑj = j π/(N +1), j =1, . . . ,N .
The polar coordinates (rQj , zQj ), j =1, . . . ,N, represent N points on the
boundary of the rectangle (0, �2) × (−h,h). Similarly, we choose a set
of MN singularities {Ri,j }M,Ni=1,j=1 on ∂Ω̃1 (i.e. the surface of a sphere

of radius R1) and a set of MN singularities {Si,j }M,Ni=1,j=1 on ∂Ω̃2 (i.e.
the surface of a cylinder of radius R2 and height 2H ), by taking Ri,j =
(xRi,j , yRi,j , zRi,j ), Si,j = (xSi,j , ySi,j , zSi,j ), with

xRi,j = R1 sinϑj cosψi, yRi,j =R1 sinϑj sinψi, zRi,j =R1 cosϑj ,

xSi,j = r̃Sj cosψi, ySi,j = r̃Sj sinψi, zSi,j = z̃Sj ,

where ψi = 2(α + i − 1)π/M, i = 1, . . . ,M. The polar coordinates
(r̃Sj , z̃Sj ), j = 1, . . . ,N, describe N points on the boundary of the rectan-
gle (0,R2)× (−H,H) with R1<�1<�2<R2 and H >h.

4.4. Case IV: Torus with Interior Torus Removed

We finally consider the case where the domain Ω⊂R
3 is defined by

Ω =
{
(x1, x2, x3) ∈ R

3 : �2
1<

(√
x2 +y2 −�3

)2 + z2<�2
2

}
, (4.2)

�1<�2<�3, where its boundary ∂Ω= ∂Ω1 ∪ ∂Ω2 can be described by the
parametric equations

x1 =�3 cosϕ+�1 cosϕ cosϑ, y1 =�3 sinϕ+�1 sinϕ cosϑ, z1 =�1 sinϑ,

x2 =�3 cosϕ+�2 cosϕ cosϑ, y2 =�3 sinϕ+�2 sinϕ cosϑ, z2 =�2 sinϑ,

where 0�ϕ�2π, 0�ϑ�2π with (x1, y1, z1)∈ ∂Ω1 and (x2, y2, z2)∈ ∂Ω2.
We choose a set of MN collocation points {Pi,j }M,Ni=1,j=1 on the

boundary ∂Ω1 of Ω (i.e. the surface of a torus with radii �1, �3) and a
set of MN collocation points {Qi,j }M,Ni=1,j=1 on the boundary ∂Ω2 (i.e. the
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surface of a torus with radii �2, �3) so that if Pi,j = (xPi,j , yPi,j , zPi,j ) and
Qi,j = (xQi,j , yQi,j , zQi,j ), then

xPm,n = �3 cosϕn+�1 cosϕn cos ϑm,

yPm,n = �3 sinϕn+�1 sinϕn cosϑm,

zPm,n = �1 sinϑm, xQm,n =�3 cosϕn+�2 cosϕn cosϑm,

yQm,n = �3 sinϕn+�2 sinϕn cosϑm, zQm,n =�2 sinϑm,

where ϑm = 2(m − 1)π/N, m = 1, . . . ,M and ϕn = 2(n − 1)π/N,n =
1, . . . ,N. Similarly, we choose a set of MN singularities {Ri,j }M,Ni=1,j=1
on ∂Ω̃1 (i.e. the surface of a torus with radii R1, �3) and a set of MN sin-
gularities {Si,j }M,Ni=1,j=1 on ∂Ω̃2 (i.e. the surface of a torus with radii R2, �3),
by taking Ri,j = (xRi,j , yRi,j , zRi,j ), Si,j = (xSi,j , ySi,j , zSi,j ), where

xRm,n = R3 cosψn+R1 cosψn cosϑm,

yRm,n = R3 sinψn+R1 sinψn cosϑm, zRm,n =R1 sinϑm,

xSm,n = R3 cosψn+R2 cosψn cosϑm,

ySm,n = R3 sinψn+R2 sinψn cosϑm, zSm,n =R2 sinϑm,

where ψn=2(α+n−1)π/N, n=1, . . . ,N with 0�α<1.

5. NUMERICAL RESULTS

The algorithms described in Sec. 2.2 and 3.2 were tested in regions
defined by the solids described in Sec. 4, for both harmonic and bihar-
monic problems.

5.1. Harmonic Case

We considered two examples with boundary conditions corresponding
to the exact solutions:

Example (a). u = cosh(0.3x) cosh(0.4y) cos(0.5z).

Example (b). u = x2 −2y2 + z2.

In the description of the numerical results we shall be referring to,
say, Example (b) in the solid described in Case III, as Example 3b. In
these examples, the maximum relative error was calculated on a uniform
grid on the boundary (since all the functions involved are harmonic and
the maximum principle applies). In the cases of the spherical shell (Case
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I) and the toroidal domain (Case IV) the maximum relative error was cal-
culated at 2×23×23 points on the boundary, whereas in the Cases II and
III the maximum relative error was calculated at 2×20×20 points on the
corresponding boundaries. For Case I we present a full set of results for
Example (a). The results for Cases II–IV are similar to those of Case I
for both examples. The full set of results for all cases and both examples
can be found in [15].

Case I. We considered Example (a) in a thick spherical shell with
�1 =1, �2 =2. We varied the angular parameter α and examined how this
affected the accuracy of the MFS approximation for various values of N
and for different ε=�1 −R1 =R2 −�2 (Fig. 1). Because of the symmetry
of the problem about α= 1/2, we only considered 0 � α� 1/2. We pres-
ent six cases for ε= 0.1,0.2,0.8 for N(=M)= 8,12,16,24,32,48 and 64.
From these results we see that for the smaller values of ε the error appears
to have a minimum value for α≈ 1/4. This is consistent with the obser-
vations reported in [8, 14]. We also varied the radius R2 of the external
sphere when α= 0, while keeping R1 fixed and equal to 0.5, and exam-
ined how this affected the accuracy of the approximation for different val-
ues of N (Fig. 2a). As can be seen from the figures, the error decreases
exponentially as we increase R2 up to a certain point, beyond which it
starts increasing again. This is due to the ill-conditioning of the corre-
sponding matrices for large R2 (and large N ) and was also reported in [8,
14]. In addition, we varied both radii R1 and R2 (of the inner and exter-
nal spheres, respectively) simultaneously and examined how this affected
the accuracy of the approximation for various N (Fig. 2b). Again, it was
observed that the error decreases up to a certain value of ε, beyond which
it starts increasing.

5.2. Biharmonic Case

We considered two examples with boundary conditions corresponding
to the exact solutions:

Example (c). u = (x2 +y2 + z2) cosh(0.3x) cosh(0.4y) cos(0.5z).

Example (d). u = x4 −2y4 + z4.

In the description of the numerical results we shall be referring to,
say, Example (c) in the solid described in Case III, as Example 3c. In these
examples, the maximum relative error was calculated on a uniform grid
in the interior of the domain. In the cases of the spherical shell (Case I)
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Fig. 1. Log–plot of error versus angular parameter α for different values of N and ε.
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Fig. 2. Log–plot of maximum relative error versus ε.
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Fig. 2. continued
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and the toroidal domain (Case IV) the maximum relative error was calcu-
lated at 20 × 23 × 23 interior points, whereas in the Cases II and III the
maximum relative error was calculated at 20×20×20 interior points. The
results for the biharmonic problems are similar to the results for the har-
monic case. We therefore only present a full set of results for Case IV for
Example (c). The full set of results for all cases and Examples (c) and (d)
can be found in [15].

Case IV. We considered Example (c) in a torus with an interior
torus removed with �1 = 1, �2 = 2 and �3 = 5. In Fig. 1b, we varied α

and examined how this affected the accuracy of the MFS approxima-
tion for N(=M)= 24,32,48,64 and for different ε= �1 −R1 =R2 − �2 =
0.5,0.8,0.95. For certain values of ε and N there is a minimum at α≈1/4.
In Fig. 2c, we varied R2 while keeping R1 fixed and equal to 0.5 and in
Fig. 2d we varied both R1 and R2. In all these cases we observed that as
ε increased the accuracy improved until a certain point beyond which it
deteriorated.

6. CONCLUSIONS

In this paper we propose efficient MFS algorithms for the solution
of harmonic and biharmonic problems in hollow axisymmetric domains.
These algorithms, which rely on matrix decomposition techniques with
the use of FFTs, can also be applied to hollow axisymmetric problems
governed by other differential equations such as the Helmholtz equation
and the Cauchy–Navier equations of elasticity. Further, other boundary
method discretizations also lead to the block circulant structures of the
matrices arising in the problems examined in this study, thus these algo-
rithms could be employed with these methods. It should be noted that
the current algorithm can be applied to different combinations of bound-
ary conditions, provided these conditions are taken uniformly everywhere
on that part of the boundary (∂Ω1 or ∂Ω2). This method could also be
extended to the solution of inhomogeneous and time-dependent problems
using the method of particular solutions [2, 10]. The optimal location of
the sources in the MFS is still an open question. This is the reason for
which we examined the behaviour of the error as ε varied. When the inte-
rior hole is very small, the positioning of the interior pseudo-boundary
can be problematic as, on the one hand we cannot take ε to be too small
as thus results in poor accuracy and, on the other hand we cannot take
ε to be too large as then the problem would become very ill-conditioned
because of the very small size of the internal pseudo-boundary. As has
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been reported in previous studies matrix decomposition algorithms of this
type improved (often significantly) the conditioning of the global system.
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