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Space–Time Adaptive Solution of First Order PDES
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An explicit time-stepping method is developed for adaptive solution of
time-dependent partial differential equations with first order derivatives. The
space is partitioned into blocks and the grid is refined and coarsened in these
blocks. The equations are integrated in time by a Runge–Kutta–Fehlberg (RKF)
method. The local errors in space and time are estimated and the time and
space steps are determined by these estimates. The method is shown to be sta-
ble if one-sided space discretizations are used. Examples such as the wave equa-
tion, Burgers’ equation, and the Euler equations in one space dimension with
discontinuous solutions illustrate the method.

KEY WORDS: Runge–Kutta–Fehlberg method; shock problems; space adapta-
tion; time adaptation.

AMS subject classification: 65M20; 65M50.

1. INTRODUCTION

A numerical method for solution of time dependent partial differen-
tial equations (PDEs) with space–time adaptivity is developed in this
paper. The grid is refined and coarsened dynamically in patches and the
equations are integrated with variable time steps. Adaptive methods are
in general more efficient than fixed grid methods in particular in higher
dimensions and for problems with steep gradients [7]. The adaptivity is
often based on control of the discretization errors to decide when a change
of the grid or the time step is required. Moreover, no prior knowledge of
the solution is in principle necessary when the initial grid is generated or
when the initial time step is chosen.
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There are essentially two methods of adapting the computational grid
for PDEs: the moving grid method and adaptive mesh refinement (AMR)
generally referred to as the r-method and the h-method. The grid points
in a moving grid method are generated by equidistributing the space steps
with a monitor function in every time step. This function often depends
on the arc length or the curvature of the solution or its gradient [4,17,
26,33,34,36]. In [27] the cell volumes are controlled and error estimates
determine the monitor function in [25]. The choice of monitor function
has a significant impact on the accuracy of the results [1]. An associ-
ated nonlinear differential equation defined by the monitor function is
solved for the position of the new grid points. The discretized PDE and
the equation for the grid points are coupled and solved simultaneously
as in [4,17] or solved separate from each other as in [26,34]. Solutions
to two-dimensional (2D) problems are computed in [4,17,26,27,34]. An
advantage of the method is that grid points are reallocated for better
accuracy without increasing the memory requirements. The data structure
remains the same as for a fixed grid. The errors due to the time discretiza-
tion are controlled in [26], and in [25] the a posteriori space error estimates
influence the movement of the grid. Moving grid methods sometimes have
difficulties in higher dimensions with skewed cells (or ‘mesh tangling’). In
such cells the accuracy of the discretization schemes is degraded and addi-
tional refinement is required. Also a constant number of grid cells may not
suffice for a good resolution if an initially smooth solution develops mul-
tiple shock structures.

In AMR methods, points or cells are added in the original grid when
a finer resolution is necessary and removed when they are no longer
needed. Wherever a sensor is sufficiently large, either single new cells or
patches with many new cells are introduced. The resulting grid in the
first approach has irregular boundaries between the refined and coars-
ened areas and a special data structure organizes the cells [30]. In the sec-
ond approach the data structure is simpler but a waste of cells cannot
be avoided. The patches are aligned with the original grid in [2,3], where
solutions to time dependent flow problems are computed in 2D. The error
is estimated by comparing the solutions obtained with twice the step size
in space and time. If this is too large then the grid is refined. Substantial
savings in computing time are reported in [7,21]. Other similar methods
for different problems in physics are [16] and [18].

Our method is of AMR type with refinement in patches or blocks
of the grid. The geometry of these blocks is predetermined, thus fur-
ther simplifying the data structure compared to the method in [2]. The
discretization (or truncation) errors are estimated in space and time. All
cells in a block are refined or coarsened depending on the spatial error.
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The time steps are selected in the same way as in the numerical solution
of ODEs [12,13,32]. Steady-state solutions of flow problems with shocks
have been computed with finite volume methods in 2D and 3D [7–9].
Time-dependent hyperbolic equations are solved in 2D with an implicit
time-stepping method in [28]. Such a method is suitable for PDEs with
second derivatives and all blocks can be advanced in time by the same
time step. The stability at the block boundaries is investigated in [10].

In this paper, we solve time-dependent problems with first-order space
derivatives in 1D. The equations are discretized with a second-order
finite volume method in space and an explicit second-order Runge–Kutta–
Fehlberg (RKF) method in time suitable for conservation laws. The time
step varies between the blocks so that small time increments are neces-
sary only in blocks with small cells for stability of the explicit method.
The time integration is proved to be stable for a convection equation and
the accuracy is of second order also at the block interfaces. Second-order
accuracy for smooth solutions in the discretization of the derivatives, in
the interpolation between a coarse and a fine grid, and at the block
boundaries improves the accuracy in the solution locally compared to e.g.
a first order method. Global second-order accuracy is not a relevant prop-
erty here with parts of the computational domain having large cells with-
out refinement and other parts having shock wave solutions. The local
errors are estimated in space as in [8] by comparing the space discretiza-
tion on two different grids and in time by the RKF method. Small step
sizes around shocks may be the only way to reduce errors there and also
in areas away from the shock. High-order schemes suffer from a loss of
order of accuracy for shock problems even in smooth parts of the solu-
tion [6]. The local errors are integrated by the error equation to obtain
estimates of the global error. The techniques developed in this paper can
be applied to 2D and 3D problems. The treatment of the block boundaries
is the same as here for steady state problems in 2D in [8] and [9], and for
time-dependent equations in 2D in [28].

The advantage of refining and coarsening the grid in patches or
blocks is a simpler data structure compared to refinement of single cells. It
is easier to maintain more than first-order accuracy in cells with neighbors
that are larger or smaller. Furthermore, for time-dependent problems the
adminstration of the grid is reduced with patches. With single cells they
will be reorganized in almost every time step while the grid remains con-
stant for longer time with patches. The initial partitioning of the grid into
fixed blocks affects the efficiency of the adaptation. How many extra cells
that are used depends on the size of the patches. With few blocks the grid
may be unnecessarily fine in large areas but with many blocks the admin-
stration of the adaptivity increases. However, compared to one fixed grid
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at the finest level required by the solution in a time interval, even one
block with varying grid size uses fewer cells in the same interval. There are
at least two possible ways of automatically selecting a block partitioning.
A provisional solution is first computed on a coarse grid with a coarse
error tolerance. Based on this solution the size of the blocks can be cho-
sen. Another possibility is to allow blocks to be split into two, four, and
eight new blocks in 1D, 2D, and 3D if necessary to adapt to the changing
solution in the time interval. This approach requires a slightly enhanced
data structure compared to [8] and [28].

Compared to moving grid methods the AMR method is readily
extended to higher dimensions, has few parameters, and no instability has
been observed. For an explicit method, small time steps are taken only in
blocks with small cells and not as single, global time steps for all cells.
There is an estimate of the error due to the spatial discretization and there
is no need to solve an additional nonlinear equation to determine the grid
in the next time step. Disadvantages are the additional data structure and
the treatment of the difference stencils at the block boundaries.

The contents of the remainder of the paper are as follows. In the next
section, the discretization of the PDE is discussed and in Sec. 3 the error
control is described. The numerical examples in Sec. 4 are a scalar con-
vection equation, the wave equation, Burgers’ inviscid equation, and the
Euler equations of gas dynamics.

2. DISCRETIZATION IN SPACE AND TIME

The discretization of the PDE is here described for one space dimen-
sion and time. The time step is denoted by ∆t and the space step by ∆x.
The PDE is written in conservation form here but this is not necessary for
the time integration algorithm to be applicable.

2.1. Finite Volume and Runge–Kutta Discretization

The computational domain in space is divided into a number of
blocks. The size of the cells in a block varies smoothly but is allowed to
jump at the block boundaries. At level 0 in Fig. 1 the spatial domain con-
sists of two blocks: one with coarse cells to the left and one with fine cells
to the right. The blocks are separated by the bold line in the figure and
they overlap each other with two ghost cells. One ghost cell in the coarse
grid is composed of two fine cells to the right of the block boundary and
two fine ghost cells reside inside one coarse cell to the left. The new time
level at 1 is reached by taking an intermediate step to level 1/2 in the fine
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Fig. 1. Space–time diagram of a domain with two blocks with different grid sizes. The indi-
ces of the cells in the fine grid are written with small digits and in the coarse grid with large
digits. The time axis is divided into four levels corresponding to t =0,∆t/4,∆t/2,∆t .

block. The jump in the grid size is at most 2 in this paper but other quo-
tients are possible employing similar techniques.

The PDE is approximated in space by a finite volume method and in
time by an explicit Runge–Kutta method. Consider a PDE for u in con-
servation law form;

ut +f (u)x =0. (1)

A subscript x or t denotes differentiation with respect to the variable. The
conservation law is integrated over a cell ωj of length ∆x between xj−1/2
and xj+1/2 so that

∆x−1

(∫
ωj

udx

)
t

+∆x−1(f (u(xj+1/2))−f (u(xj−1/2)))=0. (2)

The average un+1
j in ωj at time t = tn+1 is computed from un

i , i = j −
k, . . . , j +k, with the Runge–Kutta scheme

u∗
j =un

j −∆tFj (u
n), (3a)

un+1
j =un

j −0.5∆t(Fj (u
n)+Fj (u

∗)), (3b)

where Fj (u) is the discretization of the space derivative f (u)x in cell j .
The method in (3) is second-order accurate in time for smooth problems
and has the TVD (total variation diminishing) property [11].
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The space derivative in (1) is discretized with

Fj (u) = ∆x−1(hj+1/2 −hj−1/2),

hj+1/2 = h(uj−k+1, . . . , uj+k),
(4)

where f (u) = h(u, . . . , u) for consistency, (see [24]). In our discretizations
k =2 and two ghost cells suffice on each side of a block interface. For the
simple, hyperbolic, scalar model equation

ut +aux =0, (5)

we choose a second-order accurate upwind formula

hj+1/2(uj−1, uj , uj+1, uj+2)=
{

a(1.5uj −0.5uj−1), a >0,

a(1.5uj+1 −0.5uj+2), a <0.
(6)

Burgers’ equation is approximated by the first-order Engquist–Osher
scheme [5,23], and the Euler equations of gas dynamics are discretized
by Osher’s method of second-order [24,29], in the numerical examples in
Sect. 4. Both methods are in the form (4).

Assume that the step sizes in the coarse and fine blocks in Fig. 1, ∆x

and ∆x/2, are constant. Let Uj denote a cell average in the coarse grid
and uj a value in the fine grid. Then the values in the ghost cells U1 and
U2 (see Fig. 1) in the coarse block are exactly given by the values u in the
fine block

U1 =0.5(u1 +u2), U2 =0.5(u3 +u4). (7)

The values u0 and u−1 are determined by one-sided third order accurate
interpolation

u0 = (11U0 −4U−1 +U−2)/8, u−1 =2U0 −u0. (8)

The interpolation coefficients are determined such that the Taylor expan-
sions of the cell averages are matched including second order terms in ∆x.
Then h1/2 is a third-order accurate approximation at the block interface
and F1(u) and F2(u) in the fine block are second order accurate there, (see
[28]).

The scheme is not conservative at block boundaries with jumps in the
step size, since the flux in the coarse grid there is different from the flux
in the fine grid. When a shock passes the interface both blocks have the
same step size, thus ensuring conservation at least locally.

The solution is advanced in time by (3). The simplest algorithm is to
let ∆t be the same in all blocks. The time step is constrained by some
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characteristic speed v in the problem, the CFL number depending on the
time-stepping method and ∆x in the following way:

∆t �CFL ·∆x/v.

With the same global time step, ∆t is probably limited by stability in the
fine blocks. In the coarse blocks, ∆t could be longer and the error would
still satisfy an error bound. Computational work is saved if the solution is
integrated in two steps with ∆t/2 in the fine block, where the space step is
∆x/2, and with ∆t in the coarse block. The difficulty is how to calculate
the missing values in the ghost cells.

Assuming that all values at level 0 are known, U∗ in the coarse grid
and u∗ in the fine grid are computed with (3a). They are second-order
approximations of un+1 and un+1/2, respectively. The values in the fine
ghost cells −3,−2,−1,0, at level 1/2 are computed by linear interpolation
in time from the corresponding interpolated values in the ghost cells at
levels 0 and 1 using U0 =Un and U∗. Then un+1/2 is computed in the fine
grid including the ghost cells −1 and 0 with (3b). This is a globally sec-
ond-order accurate approximation of u(x, tn+1/2). Take the step from level
1/2 to 1 in the fine block by first computing u∗ from (3a) with un+1/2 as
the input solution. Both U∗ and u∗ are now known at level 1 including
ghost cells and Un+1 and un+1 can be computed by (3b). A complete time
step ∆t has been taken in both blocks with a second-order time accurate
solution at the new time tn+1. This procedure is then generalized to com-
putational domains with blocks with grid sizes ∆x/2k for k = 0,1,2, . . .

The corresponding time steps are ∆t/2k. By restricting the jump in the
time step to 2 at a block interface, the general case is not more compli-
cated than what we have in Fig. 1.

2.2. Stability in Time

The stability of the time integration is investigated for the model
equation (5). Suppose that a(x)> 0 and that a Dirichlet boundary condi-
tion is given at x =0 so that u(0, t)=u0. The approximation of the space
derivative is

Fj (u)=∆x−1a

(
3
2
uj −2uj−1 + 1

2
uj−2

)
. (9)

Consider a grid partitioned into two blocks as in Fig. 1. Let ul be the
solution vector in the left coarse block and let ur be the corresponding
vector in the right fine block. Their indices increase for increasing x-values
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and after space discretization with (9), ul(t) and ur(t) satisfy

ult =∆x−1(A1ul +B1ub), urt =∆x−1(A2ur +B2ul), (10)

where A1 and A2 are lower triangular matrices with two subdiagonals
determined by (9) and B1 and B2 have non-zero elements only in the
upper left and right corners, respectively, and ub depends on u0. The ele-
ments in B2 are given by the interpolation (8). Introduce the quotient µ=
∆t /∆x, which is the same in both blocks. Then one step from n to n+ 1
with (3) in the left block can be written

un+1
l = (I −µA1 +0.5µ2A2

1)u
n
l +µB3ub (11)

with a sparse B3. The values in the ghost cells of the right block are deter-
mined only by the ul-values to the left of the block interface. After some
basic matrix algebra we have for un+1

r

un+1
r = (I −µA2 +0.5µ2A2

2)
2un

r +µB4u
n
l (12)

with a sparse B4. The conclusion from (11) and (12) is that the stability of
the whole time-integration is guaranteed if the integration in each block
separately is stable. The same conclusion can be drawn if the order of the
blocks is interchanged and if a <0. This is summarized in a proposition.

Proposition 1. Assume that the grid is partitioned into two blocks
with a jump in the step size at the interface. Equation (5) is integrated
with (3) as described in the previous Sec. 2.1 and the space discretization
is (6). If µ=∆t/∆x is such that the time-integration (3) is stable in each
block separately, then the combined integration is also stable.

Proof. The claim follows from the discussion above and (11) and
(12).

Suppose that the eigenvalues of A1 and A2 are λj (A1) and λj (A2).
The time step should be chosen sufficiently small so that µλj (A1) and
µλj (A2) belong to the stability region of the the Runge–Kutta method (3).
The generalization to several blocks with different time steps ∆t /2k, k ≥0,
is straightforward.

3. ERROR CONTROL

The discretization errors and the control of them are discussed in this
Section. The errors in the space and time discretizations are estimated and
measured in certain norms. The grid size in the blocks and the time step
are determined by these estimates.
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3.1. The Error Equation

Let the integrated form (2) of the differential equation (1) be denoted
by G(u) and its discretization by Γ (u). Then for any smooth u in a cell j

we have

τj (u)=Gj(u)−Γj (u).

If u is the analytical solution, then Gj(u)=0 and

Γj (u)=−τj (u).

The numerical solution û and its smooth reconstruction from the cell aver-
ages satisfy Γj (û)=0 for all j . Hence, the error δu= û−u in û fulfills the
discrete error equation

Γj (û)−Γj (u)=Γj (u+ δu)−Γj (u)= τj (u). (13)

The continuous counterpart is

Gj(u+ δu)−Gj(u)= τj (û)+Γj (û)= τj (û). (14)

If Γ and G are linear then Γj (δu)=τj (u) and Gj(δu)=τj (û). The discret-
ization error consists of two parts τSj and τTj due to the space discretiza-
tion and the time discretization so that

τj = τSj + τTj . (15)

For smooth solutions and the second-order discretizations (3) and (6),
τSj =O(∆x2) and τTj =O(∆t2). The assumption of smoothness is in gen-
eral not valid for conservation laws, but by including viscosity it is possible
to analyze adaptive schemes based on the solution error [19].

If the space operator is linear in u, then Fj (u) = (A(t)u)j with a
matrix A. The error in the average of u approximately satisfies the differ-
ential equation form of the error equation

Gj(δu)≈ δujt +Fj (u+ δu)−Fj (u)= δujt + (A(t)δu)j = τj ,

δuj (0)=0, j =1, . . .N,
(16)

assuming that the initial conditions are exact. This is a system of ordinary
differential equations. By Duhamel’s principle [22], the solution of (16) can
be written

δu(t)=
∫ t

0
S(t, s)τ (s) ds (17)

with a solution operator S. We find that by changing the discretization
error τ by a factor β, the error in the solution is also changed by the same
factor.
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3.2. Optimal Error Control

The grid size ∆x and the time step ∆t for the coarsest block are cho-
sen such that a norm of τ satisfies an upper bound. Assume that there are
M blocks with N cells covering the computational domain. The indices for
the cells in block J are NJ to NJ+1 −1. Then the temporal errors between
tn and tn+1 are measured in the J th block of length �J with NJ+1 −NJ

cells with grid size ∆xj in the norm ‖ · ‖r,J defined by

‖τn+1
T ‖r

r,J =∆t−1�−1
J

∫ tn+1

tn

NJ+1−1∑
j=NJ

|τTj |r∆xj dt. (18)

Assume that kj time steps are taken between tn and tn+1 and that the tem-
poral order of accuracy is p with τTj =ct (xj , t

n)∆tp +O(∆tp+1) for cell j .
Then by (18)

‖τn+1
T ‖r

r,J = ∆t−1�−1
J

∑NJ+1−1
j=NJ

∆xj

∑kj

i=1 k−1
j ∆t |ct (xj , t

n)|r∆tprk
−pr
j

+O(∆tpr+1)

= �−1
J

∑NJ+1−1
j=NJ

∆xj |ct (xj , t
n)|r∆tprk

−pr
j +O(∆tpr+1).

(19)

For a block J with ∆xj =∆xJ =const., kj =kJ =const., j =NJ , . . . ,NJ+1 −
1, and �J =∆xJ (NJ+1 −NJ ) we have

‖τn+1
T ‖r

r,J =�−1
J ∆xJ ∆tprk

−pr
J

∑NJ+1−1
j=NJ

|ct (xj , t
n)|r +O(∆tpr+1). (20)

Let � be the length of the interval �=∑M
J=1 �J . Then for all M blocks the

norm is

‖τn+1
T ‖r

r = �−1∑M
J=1 �J ‖τn+1

T ‖r
r,J

= �−1∑N
j=1 ∆xj |ct (xj , t

n)|r∆tprk
−pr
j +O(∆tpr+1).

(21)

The leading term |ct (xj , t
n)(∆t/kj )

p| is estimated in Sec. 3.4.
The spatial errors are measured in the same norm as above. Assume

that the spatial order of accuracy is q so that τSj = cs(xj , t
n)∆x

q
j +

O(∆x
q+1
j ) between tn and tn+1. Then in the same manner as above for all

cells

‖τn+1
S ‖r

r = ∆t−1�−1
∫ tn+1

tn

∑N
j=1 |τSj |r∆xj dt

= �−1∑N
j=1 ∆xj |cs(xj , t

n)|r∆x
qr
j +O(∆xqr+1).

(22)

For blocks with constant ∆xJ the norm in (22) is

‖τn+1
S ‖r

r = �−1∑M
J=1 ∆x

qr
J

∑NJ+1−1
j=NJ

∆xJ |cs(xj , t
n)|r +O(∆xqr+1)

= �−1∑M
J=1 �J ‖τn+1

S ‖r
r,J .

(23)
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The leading term |cs(xj , t
n)∆x

q
j | is estimated in Sec. 3.3.

The total error τ = τT + τS determines the error δu in the solution,
(see (13)–(15)). In special cases we have a fortuitous cancellation so that
τ =0 but τT �=0 and τS �=0. Such a case is the first-order discretization

∆t−1(un+1
j −un

j )+a∆x−1(un
j −un

j−1)=0

of (5) with ∆x =a∆t . The error τ grows when ∆t decreases from the opti-
mal choice where τ = 0. The cancellation with a particular choice of ∆x

and ∆t is impossible to achieve in general situations for systems of equa-
tions in several dimensions. This matter is discussed further in [14]. There-
fore, we control the errors τT and τS separately by adjusting ∆t and ∆x

so that

‖τ‖r ≤‖τS‖r +‖τT ‖r ≤ ε.

Let ∆x be the coarsest grid size and ∆t the longest time step in all
blocks. In a block with ∆xJ < ∆x the number of time steps to reach ∆t

is ∆x/∆xJ . Moreover, let v be the volume of a block in a Cartesian grid
in a d-dimensional space, δ =d +1, and w0 be the work per cell and time
step. The computational work to advance such a problem in a time inter-
val [0, T ] without any change of space or time steps is proportional to the
number of time steps and the number of cells in the M blocks

W =w0
T

∆t

M∑
J=1

∆x

∆xJ

v

∆xd
J

=w0∆t−1∆xvT

M∑
J=1

1

∆xδ
J

. (24)

The local error in each step is by (21) and (23)

‖τ‖r ≤‖τT ‖r +‖τS‖r ≤Ct∆tp +
M∑

J=1

CJ ∆x
q
J , (25)

where ‖τT ‖r ≤Ct∆tp and ‖τS‖r,J ≤CJ ∆x
q
J . The goal of the adaptation is

to minimize the work in (24) subject to an upper bound ε on the local
error in (25). The minimal work is characterized in the following proposi-
tion.

Proposition 2. The work W in (24) is minimized with respect to ∆t

and ∆xJ subject to the constraint

Ct∆tp +
M∑

J=1

CJ ∆x
q
J ≤ ε
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if

Ct∆tp = ε/(1+ (pδ)/q),

M∑
J=1

CJ ∆x
q
J = ε/(1+q/(pδ)).

Furthermore,

CJ ∆x
q
J = C

δ/(q+δ)
J∑M

J=1 C
δ/(q+δ)
J

· ε

1+q/(pδ)
.

Proof. Since the parameters in W and the constraint are positive, the
minimum is obtained with the constraint satisfied as an equality. Then the
work can be written

W = w0C
1/p
t vT ∆x

(ε −∑CJ ∆x
q
J )1/p

∑ 1

∆xδ
J

.

At the optimum ∂W /∂∆xJ =0 for all J . The solution is

CJ ∆x
q+δ
J = pδ

q

(∑ 1

∆xδ
J

)−1 (
ε −

∑
CJ ∆x

q
J

)
. (26)

The right-hand side is independent of J and is denoted by α. Therefore,

∆xJ = (α/CJ )1/(q+δ). (27)

Insert (27) into the expression for the spatial error

M∑
J=1

CJ ∆x
q
J =αq/(q+δ)

M∑
J=1

C
δ/(q+δ)
J .

It follows from the right-hand side of (26) that

ε =
(

1+ q

pδ

)
αq/(q+δ)

∑
C

δ/(q+δ)
J .

Hence,

Ct∆tp = q
pδ

αq/(q+δ)
∑

C
δ/(q+δ)
J = ε/(1+pδ/q),∑M

J=1 CJ ∆x
q
J = ε/(1+q/pδ).

The expression for CJ ∆x
q
J is obtained from (27).
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The optimal distribution of the errors between the time and the space
discretization is to let

‖τT ‖r ≤ εT = ε/(1+ (pδ)/q), ‖τS‖r ≤ εS = ε/(1+q/(pδ)).

The optimal error bounds for the spatial error in each block are

‖τS‖r,J ≤κJ ε/(1+q/(pδ)), κJ =C
δ/(q+δ)
J /

M∑
J=1

C
δ/(q+δ)
J .

In the numerical examples in Sec. 4, p = q = 2, d = 1, and the opti-
mal bounds are εT = ε/3 and εS =2ε/3. The spatial error in each block is
required to be less than a constant tolerance regardless of the errors in the
other blocks and the optimal distribution in the proposition is not utilized.
The norm in Sec. 4 is the L1-norm ‖ · ‖1.

3.3. Space Step Error Estimate

The local errors in the space discretization are estimated by compar-
ing Fj in a coarse cell with the sum of Fj in the corresponding fine cells.
The difference is the leading term in the discretization error τS . It is esti-
mated at a time level where the solution has been advanced by ∆t and
computed in all blocks. Let uj and uj+1 be the solutions in the fine grid
cells j and j +1. Create a coarse cell j ′ by removing the cell wall between
j and j +1 and let Uj ′ =0.5(uj +uj+1). Then it follows from [8] that

τSj = 1
3
(Fj ′(U)−0.5(Fj (u)+Fj+1(u)))+O(∆x3) (28)

in a fine grid cell. Excessive refinement based on τS at e.g. shocks is
avoided by introducing a smallest grid size. The grid size in a block is
based on the estimate τSj and the fact that it is proportional to ∆x2.

The grid size in all cells in a block J is changed by a factor 2 depend-
ing on whether ‖τS‖J is greater or less than a tolerance εS . Let �x	 denote
the smallest integer number i such that x ≤ i. Then the algorithm for block
J is

if =‖τS‖J >εS

make r refinements with r =�log2(θ‖τS‖J/εS)/p	
elseif 2p‖τS‖J <θεS

make c coarsenings with c=�− log2(‖τS‖J/εS)/p	−1
endif
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Fig. 2. A shock in a scalar conservation law is moving to the right. The solution on the
fine grid (upper) and the solution on the coarse grid (lower).

A safety factor θ = 0.8 is introduced to avoid unnecessary coarsening of
the grid and to ensure that the grid is sufficiently fine.

The error estimate has an irregular behavior at the block boundaries
due to the interpolation in the ghost cells. Therefore, the two cells closest
to the boundary are excluded from the estimate.

The estimate τS works well for smooth problems, (see [8,9,28]), but
it is not a fool-proof shock detector as the next example shows. An alter-
native based on a weak formulation and convergence theory for conser-
vation laws is found in [20]. Consider the solution in Fig. 2 of (1) with
f ′′(u)> 0 and its space discretization (4). The solution on the upper fine
grid is restricted to the lower coarse grid by averaging. Let the solution in
the cells be denoted as follows

u1 =u2 =uL, u3 =uM, u4 =u5 =u6 =uR,

u12 =uL, u34 =0.5(uM +uR)=uN, u56 =uR.

The values are ordered as uL > uM > uN > uR. The shock speed s =
(f (uL) − f (uR))/(uL − uR) is positive and therefore f (uL) > f (uR). The
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estimate (28) for a two-point scheme in cell 34 is

τS34 = 1
6∆x

(h(uN,uR)−h(uL,uN)

−(h(uR,uR)−h(uM,uR)+h(uM,uR)−h(uL,uM)))

= 1
6∆x

(h(uN,uR)−h(uL,uN)−f (uR)+h(uL,uM)).

(29)

The numerical flux h for the Godunov scheme [24] is for our problem

h(ul, ur)= max
ur≤u≤ul

f (u).

Then there are two cases: f ′(uR), f ′(uL)>0 and f ′(uR)<0, f ′(uL)>0. In
the first case f is increasing monotonically. In the second case we have
f (uL)>f (uM) and f (uL)>f (uR)>f (uN). From (29) we derive

τS34 =
{

1
6∆x

(f (uN)−f (uR)), f ′(uR)>0, f ′(uL)>0,

0, f ′(uR)<0, f ′(uL)>0.
(30)

The error estimate (28) does not detect the shock in the second case and
the grid will not be refined there. The same failure will occur if the coarse
grid in Fig. 2 is shifted one step to the left or right. The problems are the
same with the Engquist–Osher discretization.

As a remedy the discretization error estimate (28) is complemented by
a sensor for detection of shocks so that the grid is refined there even if τS

is small as in (30). A suitable condition is

|D+D−uj |= |∆x−2
j (uj+1 −2uj +uj−1)|>1/χ. (31)

If (31) is satisfied in one cell in a block, then the finest grid is used in that
block irrespective of τS . In the examples in Sec. 4, χ is chosen to be 2 ×
10−4. To avoid interpolation in shocks at block interfaces and to preserve
the conservation of the scheme when a shock crosses the interface, the fin-
est grid size is used also in a neighboring block if the shock is close to the
interface.

3.4. Time Step Error Estimate

The local error due to the time steps is estimated by comparing the
second order method (3) with a third order method in a RKF pair [13].
The third-order scheme is

u�
j =un

j −0.25∆t(Fj (u
n)+Fj (u

∗)), (32a)

un+1
j =un

j −∆t

(
2
3
Fj (u

�

)
+ 1

6
(Fj (u

n)+Fj (u
∗))). (32b)
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The variable u∗ is computed in (3a) and the sum Fj (u
n)+Fj (u

∗) is reused
from (3b). At a block boundary, U� in the coarse block in Fig. 1 is com-
puted at level 1/2 and u� in the fine block at level 1/4 including two
ghost cells. Then Un+1 and un+1/2 are given by (32b). In every block at
tn we have a second and a third order approximation u2j and u3j , j =
NJ , . . . ,NJ+1 − 1, at tn + ∆t/kJ . The local error τT is estimated by the
difference between un+1

2j
from (3) and un+1

3j
from (32)

τn+1
Tj = (∆t/kj )

−1(un+1
2j

−un+1
3j

)= ct (xj , t
n)(∆t/kj )

2 +O(∆t3). (33)

The time steps are chosen so that ‖τT ‖r in (21) is less than a given
tolerance εT at every time level tn where the solution is known in all
blocks. Following [12] and [32] the new time step is determined by a PI-
controller. The time step to reach tn was ∆t and the new step to tn+1 is

∆tnew =
(

θεT

‖τn+1
T ‖r

)0.3/p

·
(

‖τn
T ‖r

‖τn+1
T ‖r

)0.4/p

∆t, (34)

where p = 2 the order of the method and the safety factor θ is 0.8. If
∆tnew >∆t then the step from n− 1 to n is accepted and the next step is
computed with ∆tnew. If ∆tnew < 0.9∆t then un+1 is rejected and recom-
puted with ∆tnew since the error is too large in the last step. Traditionally,
only the first factor in (34) raised to 1/p determines the new time step, but
it is shown convincingly for ordinary differential equations in [12] and [32]
that the expression in (34) leads to smoother step sequences.

It turned out that in our test problems in Sec. 4, the time steps are
bounded by the stability requirement in many cases. Smooth initial solu-
tions usually lead to longer time steps well above the theoretical stability
limit. This implies growing, and in space oscillating, estimated time errors.
After a number of time cycles they are large enough to induce a reduction
of the time step.

The time step errors at a shock are overestimated by (33) (see [15]).
Small time steps are not necessary at shocks to obtain the correct shock
speed. This is accomplished by the conservative formulation of the space
discretization. Therefore a filter multiplying the estimate (33) is introduced.
The filter Φ depends on |D+D−uj | as in (31). In cell j we let

Φj =1/(max(1, σ max
j

|D+D−uj |)). (35)

With a suitable parameter σ , Φj is small at a shock and is 1 in all other
points. The time step selection in (34) in then based on Φjτ

n+1
Tj instead of

τn+1
Tj .
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Fig. 3. The scalar model equation. (a) The pulse at the initial position. (b) The estimated
(dotted) and observed global errors (solid) at T =0.08.

4. NUMERICAL RESULTS

The adaptive method is applied to four equations in this Section. The
first two equations have constant coefficients and the last two equations
are Burgers’ inviscid equation and the Euler equations of gas dynamics.
The errors are measured in the L1-norm (r =1 in (21) and (23)).

4.1. A Scalar Model Equation

Equation (5) with a =1

ut +ux =0, x ∈ [0,1], t >0,

propagates the initial distribution u0(x) = u(x,0) to the right. With peri-
odic boundary conditions, the solution is periodic. The initial condition is
a Gauss pulse in Fig. 3(a). The block partitioning of the computational
domain in the x-direction is indicated by vertical dashed lines. The number
of cells in the blocks is displayed above each block. The global error δu

in the solution is computed with the error equation (14) and the estimated
local error τ . The result at T =0.08 after 179 time cycles or 1432 fine time
steps is compared to the true global error in Fig. 3(b). The error toler-
ances are εS =1/40 and εT =0.0001 leading to small time steps well below
the stability limit. Small time steps are necessary for an accurate integra-
tion of (14) and a good agreement between the estimated and true global
errors.

The solution is computed after one period (T =1) in Fig. 4. The com-
putational work and the true global error are plotted in Fig. 4(a) in a
log2 scale versus the local error tolerance ε = εT = εS . As the values of ε
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Fig. 4. The computational work and global error for the scalar model equation for
different ε = εT = εS (a), and for different εT when εS =1/16 (b).

decrease by a factor 4, the measured global error decreases by the same
factor as expected from (17). The computational work is measured by the
total number of times the solution is advanced one time step in a cell by
the basic Runge–Kutta solver (3).

When ε is changed by a factor β then we would expect ∆t and ∆xj

in a block to be modified by
√

β. The computational work in (24) will
then change by a factor β−3/2. The observation in Fig. 4(a) is that the
work behaves as β−1. An explanation is that every block is not refined
when β decreases and fewer cells are added than anticipated above.

Figure 4(b) shows the corresponding results at T =0.25 without a log-
arithmic scale versus εT , while εS = 1/16 is fixed. The work is minimized
when εT ≈εS/2. This is in excellent agreement with the prediction of Prop-
osition 2. The almost doubled work for larger εT is caused by the recal-
culation of almost every time cycle. The time step is here chosen close to
the stability limit with too optimistic a prediction of the next time step.

The effect of the PI-regulation (34) of the time step is investigated in
Fig. 5. The equation is solved up to T =0.25 with adaptivity in space and
time. There are between 1 and 3 grid levels in the experiments and the
error tolerance in space and time is εT =εS =1/16. A comparison is made
between the PI-control (34) and the standard P-control without the mem-
ory factor in (34).

For one and two grid levels, the time steps are smoother with PI-con-
trol as expected from [12,32]. For three levels the time steps are some-
what more oscillatory. The reason may be the increased number of internal
time steps in each time cycle and interpolation errors in space at the block
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Fig. 5. The adapted time step and the number of cells (dashed) for the scalar model
equation. For ∆t , the standard control (thin) is compared to PI-control (thick).

boundaries inducing perturbations in the time step regulation. In all cases,
the algorithm selects a time step close to the maximum CFL-number 0.5.

4.2. The Wave Equation

The wave equation is written in first-order form

Ut +
(

0 1
1 0

)
Ux =0, x ∈ [0,1], (36)

where U = (u1, u2)
T . The component u2 is initially zero, while the initial

state of u1 is displayed in the uppermost plot in Fig. 6(a). The boundary
conditions are periodic at x = 0 and x = 1. For t > 0 there are two pulses
traveling in opposite directions for each component illustrated in the other
two plots in Fig. 6(a) at T =0.25. The two pulses of u2 cancel each other
twice in every time unit. Due to the restriction on the jump in cell size at
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Fig. 6. The wave Equation. (a) From above: The initial state of u1, the traveling u1-pulses
at T =0.25, the traveling u2-pulses at T =0.25. (b) The computational work and the observed
error versus the prescribed local error tolerance.

block interfaces there are only three block levels at T =0.25, but five levels
initially and later when the two pulses meet after one period.

The measured global error and the total computational work at time
T = 0.5 are plotted in Fig. 6(b) versus log2 of the local error tolerance ε.
The conclusion is that the error is proportional to ε and the work is pro-
portional to ε−1 in the same manner as in Fig. 4.

The solution after 10 periods (T =10) with εT =εS =1/16 is displayed
in Fig. 7. An error has been accumulated in the integration. This is partic-
ularly visible in u2 with the exact solution u2(x,10)=0. The time history
of the number of cells, the time step compared to the space step at the
coarsest level, and the error growth are recorded in Fig. 8. The time series
of the number of cells has a period of 0.5 as expected from the analytical
solution. The time step oscillates in the neighborhood of the CFL-limit.
The global error growth is linear in time.

4.3. Burgers’ Equation

Consider Burgers’ inviscid equation

ut + (u2/2)x =0 (37)

with initial state

u(x,0)=
{

1.1 for x <0.15,

−0.1 for x >0.15.
(38)

The solution for t > 0 is a shock traveling to the right with shock speed
0.5. The equation is discretized in space by the Engquist–Osher scheme
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Fig. 7. The computed solution (dotted) of the wave equation is compared to the exact
solution (solid) at T =10.

[5]. The interval is partitioned into 10 blocks with at most 32 cells in one
block. The solution at T = 1 is found in Fig. 9(a). The block with the
shock has 32 cells while the grids in other blocks in the neighborhood are
determined by the jump conditions.

Figure 9(b) shows the time steps obtained in calculations with differ-
ent values of σ in the filter in (35). With σ =0 the filter is turned off and
∆t/∆x is almost a constant but relatively small. With σ = 10−4 the time
step is approximately doubled and still almost constant. For σ = 10−3 we
are close to the theoretical stability limit ∆t/∆x =1 but the time steps are
more oscillatory.

The L1 and the maximum errors are determined by subtracting the
exact solution from the computed solution at T =1. The results for differ-
ent number of cells in the finest block are collected in Table I. The max-
imum error is not reduced by refining ∆x due to the shock but the
L1-error is of O(∆x). This is in agreememt with theory for a convex flux
function and piecewise smooth solutions [35].
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Fig. 9. Burgers’ equation. (a) Solution with blocked region. (b) Test of filters with different
σ to avoid reduction of the time step at shocks.

The choice of tolerance in space εS does not have a large effect here,
since the number of cells in the finest block at the shock is fixed, and jump
conditions determine the grid size of the adjacent blocks. Experimental
results for σ = 10−4 show that the work has a minimum of 2.7 × 104 at
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Table I. The Accuracy of the Solutions of Burgers’
Equation in L1 and L∞ Norms

Cells L1 Error L∞ Error

32 0.0044 0.53
64 0.0022 0.53
128 0.0011 0.54

εT = 1/8. With a constant time step and the same small step size in all
blocks the minimal work is 1.8×105.

4.4. The Euler Equations

The Euler equations in one space dimension for a compressible fluid
are ⎛

⎝ ρ

ρu

E

⎞
⎠

t

+
⎛
⎝ ρu

ρu2 +p

(E +p)u

⎞
⎠

x

=0.

The variables are the density ρ, the velocity u, the pressure p and the total
energy

E = p

γ −1
+ 1

2
ρu2,

where γ , the ratio of specific heat, is 1.4 in air (see [24]). Let

U = (ρ, ρu,E)T .

Then the initial state is

U(x,0)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0.445

0.311
8.928

⎞
⎠ for x <0,

⎛
⎝ 0.5

0
1.4275

⎞
⎠ for x ≥0

(39)

simulating a shock tube with a membrane separating the two states for
t < 0 as in [31]. A rarefaction wave is moving to the left when t > 0,
and a contact discontinuity and a shock are propagating to the right (see
Fig. 10). The equation is discretized in space by Osher’s method of second
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order [29] and two different tolerances εT = εS = 1/4 and 1/32. The solu-
tion with tolerance 1/32 is interpolated to the coarser grid of the solution
with tolerance 1/4 for a more transparent comparison. The resolution of
the solution with the lower ε is improved where the rarefaction wave ends
in the constant state and at the contact discontinuity. The time series of
the number of cells and ∆t/∆x in Fig. 11 have a smooth behavior with
εT = εS =1/32 in spite of the discontinuities in the solution.

In these calculations, the error control in time primarily ensures the
stability by suppressing small spatial oscillations. When they are detected
then the time step is reduced. The reduction is often relatively large and
may lead to a recalculation of the last time cycle. Too large a tolerance
often incurs repeated recalculations.

The global errors measured in the L1 norm and the maximum norm
are collected in Table II for different tolerances on the spatial error. The
number of cells in the finest block is fixed at 128. As in Table I, the
L1-error is reduced when εS is lowered but the finest step size is fixed
here. This explains why halving εS does not improve the error by two.
The L∞-error is not affected by εS but only by the magnitude of the
discontinuitites.
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(lower) for the solution of the Euler equations with ε =1/32 (bottom).
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Table II. Errors in the Euler Calculations in the L1 and L∞
Norm

Cells εS L1 Error L∞ Error

128 1/4 0.0137 0.43
128 1/8 0.00799 0.47
128 1/16 0.00496 0.47
128 1/32 0.00395 0.47

5. CONCLUSIONS

An algorithm for adaptive coarsening and refinement of grid cells and
selection of time steps has been developed for hyperbolic equations in 1D
approximated by finite volume methods. The grid is refined and coarsened
in blocks based on estimates of the discretization error and the time steps
are chosen with a RKF comparison and PI-control. Time steps that are
fractions of the main time step are taken in blocks with small cells for
stability but only there. The time integration is proved to be stable at the
block interfaces for a model equation. The error estimates break down at
discontinuities in the solution and they are modified there to detect shocks
and to improve the efficiency of the time stepping. The optimal distri-
bution of the errors between the spatial and temporal discretizations is
derived and is in good agreement with the optimum in a numerical exper-
iment. First, the algorithm is applied to the solution of a scalar convec-
tion equation and the wave equation. The measured global error in the
solutions is well controlled by the tolerance on the local error. The chosen
time steps are close to the CFL-limit. When applied to Burgers’ equation
the convergence rate is as expected from theory. Also for Euler’s equation
the L1-error is controlled by the local error tolerance in the algorithm.
The time series of the number of cells and the time steps have a regular
behavior for both smooth and discontinuous solutions.

ACKNOWLEDGMENT

An anonymous referee supplied us with new references on moving
grid methods and he or she and Tao Tang helped us explain the conver-
gence rate for the shock problem in Sec. 4.3. Financial support has been
obtained from the Swedish Research Council and the Swedish Foundation
for Strategic Research.



Space–Time Adaptive Solution 109

REFERENCES

1. Beckett, G., Mackenzie, J. A., Ramage, A., and Sloan, D. M. (2001). On the numerical
solution of one-dimensional PDEs using adaptive methods based on equidistribution. J.
Comput. Phys. 167, 372–392.

2. Berger, M., and Colella, P. (1989). Local adaptive mesh refinement for shock hydrody-
namics, J. Comput. Phys. 82, 64–84.

3. Berger, M., and LeVeque, R. (1998). Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298–2316.

4. Cao, W., Huang, W., and Russell, R. D. (1999). An r-adaptive finite element method
based upon moving mesh PDEs. J. Comput. Phys. 149, 221–244.

5. Engquist, B., and Osher, S. (1980). Stable and entropy satisfying approximations for tran-
sonic flow calculations. Math. Comp. 34, 45–75.
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