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An important class of ordinary differential systems is that whose solutions sat-
isfy a monotonicity property for a given norm. For these problems, a natu-
ral requirement for the numerical solution is the reflection of this monotonicity
property, perhaps under certain stepsize restriction. For Runge-Kutta methods,
when the applied norm is an arbitrary one, the stepsize restrictions depend on
the radius of absolute monotonicity. However for many problems, monotonic-
ity holds for inner product norms and therefore it makes sense to restrict the
analysis to this class of norms to obtain, if possible, less restrictive results. In
this paper, we consider monotonicity issues for Runge-Kutta methods when the
applied norm is an inner product norm.
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1. INTRODUCTION

Given initial value problems for ordinary differential systems (ODEs)

d
E”(t) = f(t,u®) t=>t, (1.1)

u(ty) = ug,

an important class of problems widely studied in the literature is that
whose solutions u(¢) satisfy a monotonicity property of the form

lu@l < lluto)||  for all =1 (1.2)
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for a given norm | - |.

When the ODE (1.1) is solved numerically, a natural requirement for
the numerical solution is the reflection of the qualitative properties of the
exact solution. Thus, if the solutions of the ODE satisfy (1.2), it is natural
to require

lunt1ll < llunll - for all n>0 (1.3)

on the numerical solution. Furthermore, when the numerical monotonic-
ity property (1.3) holds, as the numerical solution depends on the stepsize
h, a natural question is whether (1.3) holds for all stepsizes /& > 0, obtain-
ing thus unconditional monotonicity, or if (1.3) holds only with a stepsize
restriction 4 < H, obtaining conditional monotonicity.

In this paper we consider initial value problems of the form (1.1). We
assume that 7y €R, ug€R™ and

() f is a continuous function from R x R™ to R™;
(i1) for each 1y e R and upeR™ the problem (1.1) has a unique solu-
tion u: [ty, 00) — R™;
(iii) || -]l is an inner product norm on R™ such that for any 7y € R
and any solution u(¢) to (1.1) we have

lu@ < lluo)ll  for all 7> 1. (1.4)

The class of all pairs (f, || - ||) satisfying (i)—(iii) is denoted by F. If (£, ||-]|) €
F we will say that the ODE (1.1) is monotone with respect to || - ||.

Observe that we restrict the study to inner product norms. These are
the applied norms for some important types of problems like semibounded
and coercive ODEs ([9,18]). Usually these ODEs arise from spatial discret-
izations of partial differential equations where the relevant problem norm
is also an inner product norm [7].

Before proceeding, we have to impose some conditions on (f, | -]|) to
ensure that (f, ||-||) € F. The class of problems considered in this paper is
(f, I - 1D such that

1 y)+pyll <pelyll for all reR, for all yeR™. (1.5)

For p >0, the solutions of the ODE (1.1) satisfy (1.4) [10]. As the applied
norm is an inner product norm, inequality (1.5) can be expressed as

Re (f(t,y),y) < — vl ft, V> (1.6)

for v=1/(2p) > 0. Problems of the form (1.6) with f(z, y)=L(t)y are con-
sidered in [4, Sec. 3.2]. Recall that in the most general case, the expression
v in (1.6) may depend on ¢, i.e. v=v(s).
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In particular, if f(¢,y) = Ly, with L a linear and independent of ¢
operator, then inequality (1.6) is

Re (Ly,y) < —v|Ly|?, (1.7)

which is the class of problems considered in [9, Sec. 3.2] and [18, Sec. 3].
These problems are called in [4,9] coercive problems.

As it was pointed out in [8], from the numerical point of view, linear
nonautonomous problems f(¢,y) = L(¢)y, and linear autonomous prob-
lems f(¢t,y) =Ly are completely different. The nonautonomous case is
closer to the nonlinear case than to the linear case, and therefore it should
be considered within the nonlinear case.

Observe that if A; denotes an eigenvalue of L, inequality (1.7) implies

Re 4; < —v[Ail%,
i.e., the eigenvalues of L are in D (1/2v), where
D(r)={zeC:lz+r| <r}, (1.8)

denotes the disk of center —r and radius r. Thus we are considering only
dissipative problems with moderate stiffness where explicit methods may
be used. In our analysis, dissipative problems with eigenvalues A such that
Re A <<0 or Re =0 and the imaginary parts are large, are not included.

A common class of one step methods to solve numerically (1.1) is the
Runge—Kutta methods. An s-stage Runge—Kutta method is defined by an
s x s real matrix A and a real vector b €R®; we will refer to it as (A, b).
We denote by ¢ = Ae, with e=(1,...,1)" € R*. From u,, the numerical
approximation of the solution u(¢) at t =t,, we obtain u,,, the numer-
ical approximation of the solution at ¢, =t, +h from

N
Unp1 =ty +h Y bif(tn+cih, Upi),
i=1

where the internal stages Uy, i=1,...,s are computed from

s
Uyi=u,+h Zaijf(l‘n +th, Unj), i=1,...,s.
j=1

In a Runge-Kutta method, the internal stages U,; are approximations
of the solution at t,; =1, 4+ ¢;h, and for many methods ¢; >0 for all i,
giving t,; >t,. Therefore, if the exact solution is monotone (1.2), it also
makes sense to impose monotonicity for the internal stages. We give the
following definitions.
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Definition 1.1. Consider an ODE (1.1) monotone with respect to the
norm | -|.

1. A Runge-Kutta method is called monotone for the stepsize 4 if
the numerical solution satisfies

lunt1ll < llunll - for all n>0.

2. A Runge—Kutta method is called IS-monotone for the stepsize h
if the internal stages U,; satisfy

1Unill <llunll, i=1,...,s for all n>0.

For Runge-Kutta methods, when the applied norm is an arbitrary
one, the stepsize restrictions to obtain monotonicity and /S-monotonicity
depend on the radius of absolute monotonicity ([3,8]). However for many
problems, the monotonicity properties hold for inner product norms and
therefore it makes sense to restrict the analysis to this class of norms to
obtain, if possible, less restrictive results. The aim of this paper is to study
monotonicity issues for Runge-Kutta methods in the particular case that
the applied norm is an inner product norm.

Monotonicity of Runge-Kutta methods is also studied in [5,6,12,13,
15,17], (see [4,14] for a review on this topic). In these references, high
order monotone and /S-monotone Runge-Kutta methods are constructed
by convex combinations of the forward Euler method. These schemes are
known as strong-stability preserving methods (SSP). As it was pointed
out in [8], the class of problems considered in the SSP context satisfy
(1.5).

The rest of the paper is organized as follows. In Sec. 2, we consider
nonlinear problems. Using the ideas in [2, Chap. 6], we give new results for
monotonicity and IS-monotonicity. Some results obtained in [4] are recov-
ered. Section 3 is devoted to linear problems. In this case, the results come
out from the application of the Von Newmann’s theory of spectral sets [11,
§153]. We give a rigorous justification of the needed stepsize restrictions,
and review the results obtained in [19]. We apply this material to study a
problem in [18] where the optimum stepsize restriction was not obtained.

2. MONOTONICITY FOR RK METHODS: NONLINEAR
PROBLEMS

In this section we consider nonlinear ODEs such that (1.6) holds. We
begin giving sufficient conditions to get monotonicity and IS-monotonicity.
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In the next results, inequalities of the form A >0, with A a real
matrix, should be understood componentwise. When we say that a matrix
A is nonnegative, we mean nonnegative definite.

Theorem 2.1. Consider an ODE such that (1.6) holds. Given a
Runge-Kutta method with coefficients (A, b), we denote by

aj=(a;1, ..., ais),

A; = diag (g1, ... ,a;, Y)

MD = LA+ A A —aid, i=1,...,s,
B= diag (b1, ...,Dby),
M=BA+A'B—bb'.

1. Suppose that the matrix .4 > 0 and there exists r; 20 such that the
matrices

. 1
M(l)—l-—.Ai i=1,...,s
ri

are nonnegative, then the method is IS-monotone under the step-
size restriction

h
—<2v (2.9)
,
with » =min{ry, ..., rg}.
2. Suppose that the matrix B >0, and there exists » #0 such that the
matrix
1
M+ -B
r
is nonnegative, then the method is monotone under the stepsize
restriction
h
— < 2v. (2.10)
-

Proof. The proof is similar to Theorem 6.2.2. in [2]. We denote by
w;=h f(ty;, Uyj) and compute

s
2 2
Uil = Nunll® +2 " aijRe(Unj, wj) — E mk] (wi, wj)
j=1 k,j=1



102 Higueras

s s

1

< 2 2§ CRe(Uyiw; _§ wiw;

leen |~ + : lal] ( nj w]H_ri : lal]<wj wj>
J= J=

N
aji h
< lunl?+3 =% (—2v+ ;> llw; 1%,
j=1 ’

where we have used condition (1.6) and the nonnegativity of M® +

(1/r)A;. As a;j >0, we obtain that NUnil> < llunl?, i =1,...,s, pro-
vided that —2v + (h/r;) <0. Proceeding in a similar way we obtain that
lins1ll? < llun|l? under a similar stepsize restriction. |

Remark 2.2. The algebraic conditions on the Runge-Kutta coeffi-
cients obtained in part 2 of Theorem 2.1 to get monotonicity are the same
as the ones obtained for contractivity in [2, Chap. 6]. Observe that con-
tractivity and monotonicity are different concepts. Contractivity deals with
the growth of the difference of solutions whereas monotonicity deals with
the growth of solutions themselves. Only for homogeneous linear problems
both concepts are identical. However the kind of computations done to
obtain monotonicity for Runge-Kutta methods do not differ much from
the kind of computations done to obtain contractivity.

In the contractivity context, the difference of two solutions is consid-
ered, and this is the reason to impose the circle condition [10]

If@. )= ft,+pG—WI<plly—yll forallreR,y, yeR"

with p > 0, that when the applied norm is an inner product norm it
becomes [2, Chap. 6]

Re (f(t, )= ft,5),y=F) < —vlft,y)— @& I (2.11)

with v >0, whereas when monotonicity is studied, as only one solution is
considered, the natural condition to impose is (1.5) or (1.6). Ul

Obviously, if a Runge—Kutta method is monotone (IS-monotone) for
any f(z,y), it is monotone (IS-monotone) for the linear scalar problem
f(t,y)=A(t)y. In this case, the numerical solution is given by

Up+1 = K(&)uy,

with K(§)=14+b'(I — At)"le, £ = diag (&1,...,&) and & =hA(t, +c;h).
Observe that ¢; =c; gives & =§&;. The internal stages are given by

Uni =K (&) uy
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with K; (&) =1 +af§(1 — Ag)~le. We thus get that the method is monotone
with stepsize restriction h/r <2v if and only if

K@<

for all £ = diag (&1, ...,&) such that & =£;, whenever ¢; =cj, and such
that & € D*(r), with D(r) the disk (1.8), and IS-monotone with stepsize
restriction 2/r <2v if and only if

IKi@)|<li=1,....,s

for all & as above.

An important class of Runge-Kutta methods are the nonconfluent
ones. A Runge—Kutta method is called nonconfluent if the coefficients c; #
cj for i # j. For nonconfluent Runge-Kutta methods we have the follow-
ing result.

Proposition 2.3. Consider the linear scalar function f(z,y) =A()y
satisfying (1.6) and a nonconfluent Runge-Kutta method.

1. [2, Lemma 6.2.3] If the method is monotone with stepsize restric-
tion h/r <2v, then the matrix B >0 and the matrix M + %B 1s
nonnegative.

2. If the method is IS-monotone with stepsize restriction h/r <2v,
then the matrix A>0 and the matrices MY + (1/r)A;, j =
1,...,s are nonnegative.

Proof. The proof for the second part can be obtained following the
ideas in the proof of Lemma 6.2.3 in [2]. U

We thus obtain the first main result in this section.

Theorem 2.4. For nonconfluent Runge—Kutta methods, the following
statements are equivalent.

1. The matrices B >0, A>0, and the matrices M +1/rB and M) +
%Aj, j=1,2,...,s are nonnegative;

2. for any function f(¢,y) satisfying (1.6), the method is monotone
and IS-monotone with stepsize restriction i/r < 2v;

3. for any scalar function f(z, y) =A(¢)y satisfying (1.6), the method
is monotone and IS-monotone with stepsize restriction 4/r < 2v.

Proof. Part (1)= (2) is Theorem 2.1. Part (2) = (3) is obvious. Part
(3)= (1) is Proposition 2.3. O
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Remark 2.5.

1. The fact that the method is nonconfluent has only been used to
prove (3) = (1). Observe that (1) gives sufficient conditions for
monotonicity and [S-monotonicity for any Runge-Kutta meth-
ods.

2. For r =00, we obtain in (1) that B>0 and the matrix M is
nonnegative, i.e. the concept of algebraic stability. It is known
that for nonconfluent methods, BN-stability (i.e. contractivity for
nonlinear problems), algebraic stability and AN-stability (i.e. con-
tractivity for scalar linear time dependent problems) are equiva-
lent concepts [2, Theorem 4.3.8]. However this equivalence is also
valid for a wider class of methods: the S-irreducible methods [2,
Corollary 4.5.7]. We conjecture that Theorem 2.4 is also valid if
we consider S-irreducible methods instead of nonconfluent ones.

3. If the above conjecture is true, on the following, we can change
the nonconfluence condition by the irreducibility one.

The radius of absolute monotonicity of a Runge-Kutta method [10]
played an important role in the stepsize restrictions to get contractivity
and monotonicity for Runge—Kutta methods ([3,10], see [8] for a review
on the topic). We remember its definition.

Definition 2.6. An s-stage RK method with coefficients (A, b) is said
to be absolutely monotonic at a given point & if I —&A is nonsingular
and

(i) The stability function ¢(&)=1+£b'(I —£& A)"le>0,
(i) AE)=AUI-eA)"'>0,
(i) bE) =b'(I-EA1>0,
(iv) e@®)=I—-tA)"lex>0,

where e=(1,1,...,1)eR* and the vector inequalities are understood com-
ponent-wise. Further the method is said to be absolutely monotonic on a
given set £2 € R if it is absolutely monotonic at each & € £2. The radius of
absolute monotonicity R(A, b) is defined by

R(A, b)=sup{r|r >0 and (A, b) is absolutely monotonic on [—r, 0]}.

If there is no r >0 such that (A, b) is absolutely monotonic on [-1,0] we
set R(A,b)=0.

An algebraic criteria to obtain R(A, b) >0 is given in the following
theorem. We remember that a method is irreducible if it is neither S-reduc-
ible nor DJ-reducible [2, Definitions 4.4.1 and 4.4.3].
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Theorem 2.7. [10, Theorem 4.2] We denote by Inc(F) the incidence
matrix of the matrix F defined as Inc (F)=1(g;;), where g;; =1 if f;; #0
and g;; =0 if f;; =0. Then, for irreducible coefficient schemes (A, b) we
have R(A,b)>0 if and only if A>0, b>0 and Inc (A?) <Inc (A).

We state a technical Lemma.

Lemma 2.8. Consider a RK method with coefficients (A, b).

1. [2, Lemma 6.2.6] If M +1/rB is nonnegative for some r #0 and
B >0 with B singular, then the RK method is reducible.

2. If MY +(1/rj)A; is nonnegative for some r; #0, j=1,2,...,s,
then the RK method satisfies the condition Inc 4% <Inc A.

Proof. Part (2). We simply have to prove that (A);; =0 implies
(Az),-j =0. Assume that a;; =0. We fix the index i and construct the sets

S'={jlaj=0}, T ={jla;#0}.

Observe that S #¢. We denote by e¢; the vector in R® with all the
components zero except the ith one. For j €S’ we have

. 1 1
e; (M(l)‘f‘:.Ai) ej =2aijajj—a,-2j+r—aij =0.
i

i

As MY +1/r; A; is nonnegative, it implies that w’(M® + (1/ri)Ai)e; =0
for any w [2, Lemma 4.5.1]. In particular for w=¢; with ke T",

N
Oze][c(M(') + 7./4,')6‘1- =a;kai;j -
i

As a;x #0, we thus obtain that ax; =0 for je S, ke T'. We compute
s
(A%);; = Zaikakj = Z ajkaxj + Z ajragj =0
k=1 kesSi keT?
because for k€ §', the terms a;x =0, and for k€ T', the terms a;; =0. [

We can now give the second main result in this section.

Theorem 2.9. Consider a nonconfluent irreducible RK method with
coefficients (A, b). The following three statements are equivalent.

1. The method is monotone and I S-monotone for an arbitrary norm,;
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2. the method is monotone and /S-monotone for inner product
norms;
3. R(A,b)>0.

Proof. The implication (1) = (2) is obvious. To prove that (2) = (3) we rea-
son as follows. If the nonconfluent irreducible method is monotone and
1S-monotone, by Theorem 2.4 and Lemma 2.8, we have that B>0, A>0
and Inc A2 <Inc A. By Theorem 2.7, we get that R(A, b) >0. The impli-
cation 3) = 1) follows Theorem 2.5 in [3] (see too Theorems 2.7 and 2.9
in [8]). U

Remark 2.10. We conjecture that Theorem 2.9 is also valid for con-
fluent irreducible methods.

Observe that Theorem 29 does not state anything on conditional or
unconditional monotonicity and IS-monotonicity. In the following Sec-
tions, we go deeper in these concepts. Before proceeding, we state the fol-
lowing Lemmas that will be used to get stage order and order barriers.

Lemma 2.11. Consider a RK method with coefficients (A, b).

1. [10, Theorem 8.5] If A >0, then the stage order p is at most 2.
Further, if p=2, then A has a zero row.

2. [10, Lemma 8.6] If the vector b > 0 and the order p satisfies
p=>2k+1 for some integer k>0, then the stage order p is at
least k.

We recall that for stiff problems, the stage order is a lower bound, some-
times a sharp one, for the order of convergence. Therefore RK methods
with low stage order are not suitable for them [2].

2.1. Unconditional Monotonicity; Unconditional IS-monotonicity
2.1.1. Unconditional Monotonicity

If r <0 or r =00 then the stepsize restriction (2.10) in Theorem 2.1
disappears obtaining a result on unconditional monotonicity. More pre-
cisely, we have unconditional monotonicity if the matrices B, and M are
nonnegative. This is actually the definition of algebraically stable methods
[2, Definition 4.2.1].

Recall that explicit methods are not algebraically stable. Recall too
that irreducible algebraically stable methods must have b >0 [2, Corollary
4.5.3].
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There are many well known algebraically stable methods. For example
the s-stage Gauss, Radau IA, Radau ITA and Lobatto IIIC methods are
algebraically stable and have orders 2s, 2s — 1, 2s — 1 and 2s — 2, respec-
tively. Thus when we only consider monotonicity, there is not any order
barrier.

2.1.2. Unconditional IS-monotonicity

Similarly, if » <0 or r =00, then the stepsize restriction (2.9) in The-
orem 2.1 disappears obtaining a result on unconditional IS-monotonic-
ity. More precisely, we have unconditional IS-monotonicity if .4 >0, and
the matrices MY, i=1,...,s are nonnegative. Remember that as A >0,
we have the stage order barrier p <2 given by Lemma 2.8. In particular,
as s-stage Gauss, Radau IA, Radau IIA and Lobatto IIIC methods have
stage orders s, s — 1, s and s — 1 respectively, for s > 3, in the case of Gauss
and Radau IIA, and s >4 in the case of Radau IA and Lobatto IIIC we
have not IS-monotonicity. A simple inspection of these methods [2, Sec.
3.3] gives that condition .4 > 0 only holds for the one stage Gauss method,
i.e. the midpoint rule, the one stage Radau ITA method, i.e. the backward
Euler method, and the one stage Radau IA method

1 iF EF
1 1 0

These methods are unconditionally IS-monotone and have orders 2, 1 and
1, respectively.

| =
o |

2.1.3. Unconditional Monotonicity and IS-monotonicity

Nonconfluent irreducible unconditional monotonic and IS-monotonic
methods must have 4>0, B >0, and the matrices M and M), j =
1,2,...,s must be nonnegative. For example, the midpoint rule and the
backward Euler are monotonic and IS-monotonic.

Observe that the midpoint rule is not unconditionally monotonic and
IS-monotonic when any norm is used [8, Sec. 2.5]. It can be easily com-
puted that for this method R(A,b) =2 and hence we have a stepsize
restriction. We have the following stage order and order barriers.

Lemma 2.12.
1. If a RK method satisfies A>0 and b >0, and the matrix M is
nonnegative, then the stage order p < 1.
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2. If a RK method satisfies b> 0, the matrices M), j=1,... s are
nonnegative and the stage order p <1, then the order p <2.

Proof. Part (1). From A >0, we have the stage order barrier p <2
given by Lemma 2.11. Furthermore, if p =2, then .4 must have a zero row,
e.g. the jth row. As the matrix M is nonnegative, we get b; =0. Hence
p<L

Part (2). We left and right multiply the matrix M) by e=(1,..., 1),
and use the nonnegativity of M) to get

etM(j)e=2(aj1,... ,ajs)c—c§>0, j=1,...,s,
and hence
2Ac—c*>0. (2.12)

If the method had order 3, then b'(2Ac —¢?) =0. This equality together
with expression (2.12) and the fact that b> 0 gives that 2Ac —c¢* =0, that
contradicts that p < 1. Therefore the order is at most 2. ]

We have got the following order and stage order barriers.

Proposition 2.13. If an irreducible nonconfluent method is uncondi-
tionally monotonic and IS-monotonic, then its order p satisfies p <2, and
its stage order p satisfies p < 1.

Observe that there are unconditionally monotone and IS-monotone
methods with order 2, e.g. the midpoint rule. We remark that in [8, Sec.
2.5], when any norm is considered, we had the order barrier p <1.

2.2. Conditional Monotonicity; Conditional IS-monotonicity
2.2.1. Conditional Monotonicity

We require the matrix B >0 and the matrix M + (1/r)B to be non-
negative for some r >0. As B>0, by Lemma 2.11, a given order of the
method implies certain stage order. Thus for explicit methods, as the stage
order is p <1, we get that for nonconfluent irreducible explicit monotone
methods, the order p is p <4. This result is similar to the one obtained
for contractive RK methods [2, Corollary 6.2.8]. For implicit methods we
do not get any order barrier.

Observe that condition A >0 is not needed for monotonicity. As we
will see in the examples below, when inner product norms are used, we can
have a conditional monotone method with r >0 and negative elements in
the matrix A.



Monotonicity for RK Methods 109

2.2.2. Conditional 1S-monotonicity

In this case, we require A >0 and the matrices M) + (1/r)A;, j=
1,2,...,s to be nonnegative for some r >0. As A >0, by Lemma 2.11, for
nonconfluent irreducible /S-monotone methods, we have the stage order
restriction p < 2.

2.2.3. Conditional Monotonicity and IS-monotonicity

In this case, as B >0 and A >0, we have the restrictions given by
Lemma 2.11. For implicit methods, the order p <6, and for explicit ones,
p <4. Observe that we get the same order barriers as when any norm is
used [8, Sec. 2.6]. A detailed lecture of [10] shows that the order barriers
for any norm came from the conditions A >0 and b >0 (see [10, Theorem
8.5, Lemma 8.6, and Corollary 8.7]).

Remember that if » > 0, the stepsize restriction (2.9) in Theorem 2.1 is

h<2vr.

For the forward Euler method, the matrix B = (1) is nonnegative and M +
(1/r)B=—1+ (1/r) is nonnegative for r < 1. Therefore, for the forward Euler
method we obtain monotonicity and IS-monotonicity with stepsize restriction

h< Atrg

with Atpg = 2v. For any other RK method, the stepsize restriction
h <2vr can be written as

h<rAtpg.
When an arbitrary norm is used, the stepsize restriction is given by [3,8§]
h<R(A,b) Atpg .

If R(A, b) <r, less restrictive results are obtained for inner product norms.

2.2.4. Computation of the CFL Coefficient: Examples

The next step is to get RK methods with the highest CFL coefficients
for monotonicity and IS-monotonicity. With respect to monotonicity, the
aim is to find the largest r such that M + (1/r)B is nonnegative. Since B >
0, we can compute B!/? and thus the largest r is given by

r=—x_!

min

[B_l/zMB_l/z] : (2.13)

where Apin[-] denotes the smallest eigenvalue of the matrix in [-].
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Concerning to IS-monotonicity, if the matrix .4 >0 we can compute
in a similar way

_ a1
rj= )“min

[A]Tl/zMA;“z] . =125 (2.14)

Observe that for explicit methods, al? =(ai1,.--,aii-1,0,...,0). If
we denote by A;[i —1]= diag (a;1,...,a;;—1) and M®O[i —1] the matrix
obtained by taking the first i — I rows and columns in the matrix M), we
get

MO+ 4= MO 1]+ Ali-1] 0
r 0 O5—i+1

Hence M® 4 (1/r).A; is nonnegative if and only if the matrix MO[i — 1]+
(1/r)A;[i —1] is nonnegative. We can thus use the above procedure (2.13)
with the lower dimension matrices.

This way of computing r is quite simple for some given methods.

Example 1. We consider the optimal explicit s-stage order 1 meth-
ods (A, b) with a;;=1/s, 1 <j<i<s, and b;=1/s, 1 <j<s considered
in [8, Sec. 2.7]. For these methods B = (1/s)I;, M = —(1/s®)I; and thus
B~12MB~1/2=—(1/s)I,. Therefore the method is monotone under step-
size restriction i <2vs. Furthermore, as

A/—;(o 0)’ M7==51"%0 o)

| 1 1 Ii_ 0
() By S e T j—1
M +rA,—< +>( ; 0)

and thus r;=s, j=2...,s. Therefore this method is IS-monotone under
stepsize restriction A <2vs. As R(A, b)=s, the stepsize restriction is the
same as for the general case. |

we get

Example 2. For the 3-stage order 3 method

0

1 1 0

1 1 1

slz 7 © (2.15)
1 1 2
6 6 3
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the eigenvalues of B~1/2MB~1/2 are
A[Bl/zMBl/z]:‘—l 1 L‘
9 /\/E! ﬁ b
and thus the method is monotone under stepsize restriction 2 <2v. For
the internal stages,
AP M@ A ] = -1y

1

A [A;1/2[21M<3>[2] A;l/z[z]] - '—1, 5|

and thus r, =1, r3 =1. Hence the method is IS-monotone under step-
size restriction h <2v. This stepsize restrictions is the same as the one
obtained for an arbitrary norm because R(A, b)=1. We remark that (2.15)

is the 3-stage order 3 optimal method obtained when any norm is used
[12,8]. Ul

Example 3. For the 3-stage order 3 method

00
2|2
g s 0
313
2 2_1 1
313 48 4p
1 3
1 i

with ﬂ:(—l+ﬁ)/16, the eigenvalues of B~1/2MB~1/2 are
A [B’I/ZMB’W] —{—0.939062, —0.320286, 0.259349 } ,

and thus the method is monotone under stepsize restriction iz <2vr with
r=1/0.939062~1.06489. For the internal stages,

A PmM @A ] = (-2/3y

1

AT PRIM 1A )] = ‘—1, 3|

and thus r, =3/2, r3=1. Hence the method is IS-monotone under stepsize
restriction A <2vr, with r=1.
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The method is monotone and IS-monotone under stepsize restriction
h<2vr, with r =1. For this method, R(A, b)=1/4(—-7++/97)~0.712214.

Therefore with inner products norms, we can use greater stepsizes.

Example 4. For the classical 4-stage order 4 method

00
1 1
2o
212
1 1
1o =
2 2
1170 O 0
1 1 1
6 3 6
the eigenvalues of the matrix B~'/>?MB~1/2 are
1
12 p-12]_ |y 1
/\[B MB ] ‘ L3

O

and thus the method is monotone under stepsize restriction iz <2v. As
condition Inc A%< Inc A does not hold, the matrices M) +1/rA; are
not nonnegative, and hence we cannot ensure IS-monotonicity. Observe
that this method is confluent. We remark that this method is not mono-
tone and /S-monotone when any norm is considered (see [8, Sec.2]).

In [4, Proposition 3.3], this method is proved to be monotone under
the same stepsize restriction, 4 < 2v, for the particular case f (¢, y)=L(t) y.
However the proof given in [4] is much more complicated than the proof
given here. Furthermore, the result is also valid for nonlinear problems. []

Example 5. [2, Example 6.3.3] For the 3-stage order 3 method

0]0
11
212
1l-1 2 0
121
6 3 6

the eigenvalues of B~1/2MB~1/2 are

A[B~V2MB~1={-2,0,1},
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and thus the method is monotone under stepsize restriction & <2vr, with
r=0.5. Observe that for this method the coefficient matrix .4 has negative
values and conditions for IS-monotonicity do not hold for any r. |

Example 6. For the optimal 5-stage order 4 method given in [10]
and [17] with R(A, b)=1.508180, when inner products norms are consid-
ered, we obtain that the method is monotone for r =1.834970 and IS-
monotone for r = 1.775844. Thus for inner product norms, the stepsize
restriction is slightly milder. U

3. MONOTONICITY FOR RK METHODS: LINEAR CONSTANT
COEFFICIENT PROBLEMS

We consider now linear constant coefficient ODEs, i.e. f(f,y)=Ly
with L such that (1.7) holds,

Re (Lu,u)< —v|[Lul®>, with v>0.
Remember that this condition is the expression of inequality
IL+plll<p
for inner product norms.
For linear problems, the numerical approximation with a RK method
(A, b) is given by
upy1=¢h Lyuy,,

where ¢ (z)=142zb' (I —zA)"'e is the stability function of the method. We
immediately obtain that

[Ynt1ll < llynll - for h<ho
if and only if
l¢hL)|| <1 forh<ho (3.16)

holds. This kind of issues, namely, inequalities of the form |u(T)| <1
where T is a linear transformation and u(z) is a rational function, are
studied in the Von Newmann’s theory of spectral sets [11, Section 153]
developed for linear transformations in Hilbert spaces. To state the main
theorem in this theory, we need the definition of spectral set.
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Definition 3.1. A set Z of points of the complex plane (completed by
the point at infinity) will be called a spectral set of the linear transforma-
tion T if it is closed, and if for every rational function u(z) satisfying in
Z the inequality

lu@l <1,
the transformation u(T) exits and satisfies the inequality
lu(M)<1.

We can state the relevant part of the Von Neumann’s Theorem [11, p. 442]
for the class of problems we deal with in this section.

Theorem 3.2. A necessary and sufficient condition that the closed
domain

lz—al<r
be a spectral set of the linear transformation 7 is
|\ T —al||<r.
We recall that in [11, p. 442] necessary and sufficient conditions so
that the sets |[z—a|>r and Re z>0 be spectral sets are also given.
We can thus state the following theorem whose proof is immediate

from Theorem 3.2.

Theorem 3.3. Assume that the linear transformation L satisfies the
condition

Re (Lu,u) < —v || Lul>, v>0

and the stability function satisfies

1
$I<1 for all Z€D<2_>’

Vv

then

oD <T.
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This is essentially Theorem 6.1 in [16].
Thus, given the method (A, b), if we denote by R the radius of the
largest disk contained in the stability region

S={zeC:|R(@)|<1},
we obtain that ||¢(h L)|| <1 under the stepsize restriction
h<2vR.

This radius R is defined in [16] as the stability radius.
In particular, for the forward Euler method, it holds that R =1 and
thus we obtain contractivity under the stepsize restriction

h < Atpg

with Atpg =2v. Therefore the CFL coefficient given in terms of the step-
size restrictions of the forward Euler method is precisely R.

In order to obtain these CFL coefficients, we simply have to compute
the radius of the largest disk contained in the stability region R. In [19]
they are computed for s-stage methods with linear order p; we show them
in Table I.

We remark that for s =3,4, the s-stage linear order s optimal CFL
coefficients are given in [1, Corollary 7.0.10]. We remark too that for
these methods, the stepsize restriction given in [18, Proposition 1], namely
h<2v is not optimal. It is optimal for an arbitrary norm (see [8, Table
3.1)).

Table I. Radius of the Maximum Disk Contained in the Stability Region

p
s 1 2 3 4 5 6 7 8 9 10
1 1
2 21
3 3 2 1.2564
4 4 3 20731 1.3926
5 5 4 29488 22295 1.6085
6 6 5 3.80649 3.0598 23766 1.7767
7 7 6 3.9037 3.1739 2.5554 1.9771
&8 8 7 3.9920 3.3232 2.7249 2.1568
9 98 4.1059 3.4802 2.9086 2.3504
10 10 9 4.2466 3.6461 3.0877 2.5348
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Remark 3.4. As it is pointed out in [16, Sec. 5], the threshold factor
of the RK method r, that dictates the stepsize restrictions when an arbi-
trary norm is used, satisfies r <R.

We finish this section with a simple example showing the applicability of
these results. It has been taken from [18, Sec. 5.1].

Example 7. We consider the advection equation
ur(x,t)=auy(x,t) —1<x<1, a=Constant>0

together with the zero boundary condition u(x,?),=1 =0. We consider
spatial equidistant points x; =—1+ jAx, Ax:=2/N, and one-sided differ-
ences for spatial differencing to obtain

.'~1
—1

It can be checked that condition (1.7) holds for v=Ax/(2a). Thus for
example for third order 3-stage explicit RK methods we have contractivity
under the stepsize restriction

A
Ar<1.2564 2%
a

which coincides with stepsize restriction obtained with the von Newmann
stability condition. Recall that with the analysis done in [18, Corollary 3],
the CFL condition obtained is more restrictive, namely, At < Ax/a. U
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