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Error Analysis for Mapped Jacobi Spectral Methods
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Approximation properties of mapped Jacobi polynomials and of interpolations
based on mapped Jacobi–Gauss–Lobatto points are established. These results
play an important role in numerical analysis of mapped Jacobi spectral meth-
ods. As examples of applications, optimal error estimates for several popular
regular and singular mappings are derived.
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1. INTRODUCTION

Standard spectral methods are capable of providing very accurate approx-
imations to well-behaved smooth functions with significantly less degrees
of freedom when compared with finite difference or finite element meth-
ods (cf. [6,7,11]). However, if a function exhibits localized behaviors such
as sharp interfaces, very thin internal or boundary layers, using a stan-
dard Gauss-type grid usually fails to produce an accurate approximation
with a reasonable number of degrees of freedom. Thus, it is advisable
to use a grid which is adapted to the local behaviors of the underlying
function. Since spectral methods can not gracefully handle an arbitrarily
locally refined grid, a popular strategy is to use a suitable mapping which
transforms a function having sharp interfaces in the physical domain to
a well behaved function on the computational domain. Thus, to better
understand what are the impacts of the mapping on the approximation,
it is necessary to study the properties of the mapped polynomials.
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In a recent work [25], we studied the mapped Legendre polynomials
and derived optimal error estimates featuring explicit expressions on the
mapping parameters for several popular mappings. However, the analy-
sis in [25] limited to the Legendre case with regular mappings and is not
applicable in some important situations such as: (i) singular mappings (see,
for instance [21,28]) which are very efficient for resolving thin bound-
ary layers; and (ii) Chebyshev mappings which are often used in practice
(see, for instance [3,4,20]). The purpose of this paper is to investigate the
approximate properties of the mapped Jacobi polynomials and apply them
to study the error behaviors of the mapped Jacobi spectral method with
several popular regular and singular mappings.

The paper is organized as follows. In Secs. 2 and 3, we consider
the mapped Jacobi spectral method with regular and singular mappings,
respectively. In Sec. 4, we present some numerical results illustrating our
theoretical estimates. Some useful properties of Jacobi polynomials are
gathered in Appendix A.

2. JACOBI APPROXIMATIONS USING REGULAR MAPPINGS

This section is devoted to the study of the approximation proper-
ties of mapped Jacobi polynomials using general regular mappings, and
explore the dependence of the approximate errors on the parameters of
some given mappings.

We now introduce some notations. Let ω(x) be a given weight function
in I := (−1,1), which is not necessary in L1(I ). We denote by Hr

ω(I) (r =
0,1, . . . ) the weighted Sobolev spaces whose inner products, norms and
semi-norms are (·, ·)r,ω, ‖ · ‖r,ω and | · |r,ω, respectively. For real r > 0, we
define the space Hr

ω(I) by space interpolation. In particular, the norm and
inner product of L2

ω(I )=H 0
ω(I ) are denoted by ‖ ·‖ω and (·, ·)ω, respectively.

The subscript ω will be omitted from the notations in case of ω(x)≡1.
Let N be the set of all non-negative integers. For any N ∈ N, we

denote by PN the set of all algebraic polynomials of degree � N. We
shall use c to denote a generic positive constant independent of any func-
tion and N , and we use the expression A�B to mean that there exists a
generic positive constant c such that A� cB.

2.1. General Setup

We consider the following general one-to-one coordinate transforma-
tion:

x= s(y;µ), dx
dy

= s′(y;µ)>0, s(±1,µ)=±1, x, y ∈ Ī , µ∈Dµ, (2.1)
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where Dµ is the feasible domain of the parameter vector µ. Without loss
of generality, we assume that the inverse of (2.1) exists, and for certain
r� 1,

s, s−1 ∈C(Ī )∩Cr(I ), µ∈Dµ. (2.2)

Indeed, some interesting mappings proposed in [3,4,20,26] are of this gen-
eral type.

For a given mapping, instead of considering the mapped differential
equation which could be cumbersome and case dependent, we consider its
approximation using a new family of orthogonal functions {pk(s−1(x;µ))}
obtained by applying the mapping to a classical orthogonal polynomial
(see, for instance [5,14,17]). The analysis of this approach will require
approximation results by using the new family of orthogonal functions.
A particular advantage of this approach is that once these approximation
results are established, it can be directly (i.e. without using a transform)
applied to a large class of problems.

Let Jα,βk be the k-th degree classical Jacobi polynomials whose prop-
erties are summarized in the appendix, we define the mapped Jacobi poly-
nomials as

jα,βµ,n (x) :=Jα,βn (y), x= s(y;µ), x, y ∈ I, µ∈Dµ, α,β >−1. (2.3)

Throughout this section, the variables x and y are always connected by the
mapping x= s(y;µ).

We infer from (A.3) that (2.3) defines a new family of orthogonal
functions {jα,βµ,n }, i.e.,

∫
I

jα,βµ,n (x)j
α,β
µ,m(x)ω

α,β
µ (x)dx=γ α,βn δm,n, (2.4)

where the weight function

ωα,βµ (x)=ωα,β(y) dy
dx

=ωα,β(y)(s′(y;µ))−1>0 (2.5)

with ωα,β(y)= (1−y)α(1+y)β .
We now consider error estimates of approximations using the orthog-

onal system {jα,βµ,n }. Since {jα,βµ,n } forms a complete orthogonal system in
L2
ω
α,β
µ

(I ), for any u∈L2
ω
α,β
µ

(I ), we write

u(x)=
∞∑
n=0

ûα,βµ,nj
α,β
µ,n (x) with ûα,βµ,n= 1

γ
α,β
n

(u, jα,βµ,n )ωα,βµ
. (2.6)
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We define the approximation space as

V
α,β
µ,N := span{jα,β

µ,0 , j
α,β

µ,1 , · · · jα,βµ,N }. (2.7)

The orthogonal projection π
α,β
µ,N : L2

ω
α,β
µ

(I )→V
α,β
µ,N is defined by

(π
α,β
µ,Nv−v,φ)

ω
α,β
µ

=0, ∀φ ∈V α,βµ,N . (2.8)

For clarity, the following notations will be used in the sequel:

Uµ(y)=u(x), ω̃α,βµ (x)= s′(y;µ)ωα+1,β+1(y), x= s(y;µ), x, y ∈ I,µ∈Dµ,
(2.9)

Am
ω
α,β
µ

(I )={u∈L2
ω
α,β
µ

(I ) :Uµ(y)=u(x) and Uµ ∈Am
ωα,β

(I )}, m∈N

(2.10)

with the semi-norm

|u|Am
ω
α,β
µ

=‖(1−y2)
m
2 ∂my Uµ‖ωα,β , (2.11)

where Am
ωα,β

(I ) is a function space defined in (A.17).
We have the following fundamental approximation results.

Theorem 2.1. For any u∈Am
ω
α,β
µ

(I ), we have

‖∂x(πα,βµ,Nu−u)‖
ω̃
α,β
µ

+N‖πα,βµ,Nu−u‖
ω
α,β
µ

�N1−m|u|Am
ω
α,β
µ

, m�1, (2.12)

|(πα,βµ,Nu−u)(1)|�N1+α−m|u|Am
ω
α,β
µ

, m>α+1, (2.13)

|(πα,βµ,Nu−u)(−1)|�N1+β−m|u|Am
ω
α,β
µ

, m>β+1. (2.14)

Proof. By (A.15), (2.1), and (2.6), we have

ûα,βµ,n= 1

γ
α,β
n

(u, jα,βµ,n )ωα,βµ
= 1

γ
α,β
n

(Uµ, J
α,β
n )ωα,β = Ûα,βµ,n . (2.15)
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Now, let π̂α,βN be the L2
ωα,β

-orthogonal projector as in (A.18). Then, by
(A.3), (2.4), and Lemma A.1,

‖πα,βµ,Nu−u‖2
ω
α,β
µ

=
∞∑

n=N+1

(ûα,βµ,n)
2γ α,βn =

∞∑
n=N+1

(Ûα,βµ,n )
2γ α,βn

=‖π̂α,βN Uµ−Uµ‖2
ωα,β

�N−2m‖∂my Uµ‖2
ωα+m,β+m �N−2m|u|2Am

ω
α,β
µ

.

(2.16)

Next, we deduce from (2.3) and the orthogonality of {∂yJ α,βn } that
{∂xjα,βµ,n } is L2

ω̃
α,β
µ

− orthogonal, and ‖∂xjα,βµ,n‖2
ω̃
α,β
µ

=‖∂yJ α,βn ‖2
ωα,β

=λα,βn γ
α,β
n .

Therefore, by (2.15) and Lemma A.1,

‖∂x(πα,βµ,Nu−u)‖2
ω̃
α,β
µ

=
∞∑

n=N+1

λα,βn γ α,βn (ûα,βµ,n)
2 =

∞∑
n=N+1

λα,βn γ α,βn (Ûα,βµ,n )
2

= ‖∂y(πα,βN Uµ−Uµ)‖2
ωα+1,β+1

�N2(1−m)‖(1−y2)
m
2 ∂my Uµ‖2

ωα,β

� N2(1−m)|u|2Am
ω
α,β
µ

. (2.17)

A combination of (2.16) and (2.17) leads to (2.12).
Now, we prove (2.13). By using the Stirling formula (cf. [8]),

Γ (s+1)=
√

2πssse−s(1+O(s−(1/5))), s
1, (2.18)

we derive from (A.7), (A.4), and (2.1) that

γ α,βn ∼n−1, |jα,βµ,n (1)|∼nα, |jα,βµ,n (−1)|∼nβ, n
1. (2.19)

The above facts, together with (A.16) and (2.15), lead to

|(πα,βµ,Nu−u)(1)| �
∞∑

n=N+1

|ûα,βµ,n||jα,βµ,n (1)|�
∞∑

n=N+1

nα|Ûα,βµ,n |

≤

 ∞∑
n=N+1

n2α(λα,βn )−m(γ α,βn )−1




1/2
 ∞∑
n=N+1

(λα,βn )mγ α,βn (Ûα,βµ,n )
2




1/2

�


 ∞∑
n=N+1

n2α(λα,βn )−m(γ α,βn )−1




1/2

‖∂my Uµ‖ωα+m,β+m.
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By (A.2) and (2.19), we have that for m>α+1,

∞∑
n=N+1

n2α(λα,βn )−m(γ α,βn )−1 �
∞∑

n=N+1

n1+2α−2m�
∫ ∞

N

x1+2α−2mdx�N2(1+α−m).

This leads to (2.13).
Finally, (2.14) can be proved in the same fashion as above.

We now consider Gauss–Lobatto interpolations based on mapped
Jacobi polynomials. We note that the Gauss or Gauss–Radau interpola-
tions are also very useful, especially for problems in unbounded domains
(cf. [13,15,16]), but their treatments are very similar to the Gauss–Lobatto
case and it is straightforward to extend what follows to the Gauss or
Gauss–Radau interpolations.

Applying the mapping (2.1) to the standard Jacobi–Gauss–Lobatto
(JGL) interpolation, we come up with the mapped JGL points and
weights:

ζ
α,β
µ,N,j := s(ξα,βN,j ;µ), ρ

α,β
µ,N,j :=ωα,βN,j , 0� j �N, µ∈Dµ. (2.20)

Due to (A.20), we have the following exactness on the mapped JGL quad-
rature:

∫
I

u(x)ωα,βµ (x)dx=
N∑
j=0

u(ζ
α,β
µ,N,j )ρ

α,β
µ,N,j , ∀u∈V α,β

µ,2N−1. (2.21)

Accordingly, we can define the discrete inner product and discrete norm:

(u, v)
ω
α,β
µ ,N

=
N∑
j=0

u(ζ
α,β
µ,N,j )v(ζ

α,β
µ,N,j )ρ

α,β
µ,N,j ,

‖u‖
ω
α,β
µ ,N

= (u, u)
1/2

ω
α,β
µ ,N

, ∀u, v∈C(Ī ).

As a direct result of (A.26),

‖uN‖
ω
α,β
µ

�‖uN‖
ω
α,β
µ ,N

�
√

2+ α+β+1
N

‖uN‖
ω
α,β
µ
, ∀uN ∈V α,βµ,N . (2.22)

Let Iα,βµ,N be the Lagrange interpolation operator associated with the
mapped JGL points. We have the following result on error estimate of the
mapped JGL interpolation.
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Theorem 2.2. For any u ∈ Am
ω
α,β
µ

(I ) and m > max(α + 1, β + 1), we

have

‖∂x(Iα,βµ,Nu−u)‖
ω̃
α,β
µ

+N‖Iα,βµ,Nu−u‖
ω
α,β
µ

�N1−m|u|Am
ω
α,β
µ

. (2.23)

Proof. By (A.27) and (2.20),

‖Iα,βµ,Nu‖2
ω
α,β
µ ,N

=|u(−1)|2ρα,β
µ,N,0 +|u(1)|2ρα,βµ,N,N +

N−1∑
j=1

|u(ζα,βµ,N )|2ρα,βµ,N,j

=|u(−1)|2ωα,β
N,0 +|u(1)|2ωα,βN,N +

N−1∑
j=1

|Uµ(ξα,βµ,N )|2ωα,βN,j

� |u(−1)|2ωα,β
N,0 +|u(1)|2ωα,βN,N +‖Uµ‖2

ωα,β
+N−2‖∂yUµ‖2

ωα+1,β+1

� |u(−1)|2ωα,β
N,0 +|u(1)|2ωα,βN,N +‖u‖2

ω
α,β
µ

+N−2‖∂xu‖2
ω̃
α,β
µ

. (2.24)

Using the Stirling formula (2.18), we have the asymptotic behaviors of the
weights given in (A.22) and (A.23):

ω
α,β

N,0 ∼N−2−2β, ω
α,β
N,N ∼N−2−2α, N
1. (2.25)

Thus, a combination of (2.22), (2.24), and (2.25) leads to

‖Iα,βµ,Nu‖ωα,βµ � ‖Iα,βµ,Nu‖ωα,βµ ,N
�N−1−β |u(−1)|+N−1−α|u(1)|

+‖u‖
ω
α,β
µ

+N−1‖∂xu‖ω̃α,βµ . (2.26)

Let πα,βµ,N be the orthogonal projector defined in (2.8). Since πα,βµ,Nu∈V α,βµ,N ,

we have from (2.26) and Theorem 2.1 that

‖Iα,βµ,Nu−πα,βµ,Nu‖ωα,βµ =‖Iα,βµ,N (πα,βµ,Nu−u)‖
ω
α,β
µ

�N−1−β |(πα,βµ,Nu−u)(−1)|+N−1−α|(πα,βµ,Nu−u)(1)|
+‖πα,βµ,Nu−u‖

ω
α,β
µ

+N−1‖∂x(πα,βµ,Nu−u)‖
ω̃
α,β
µ

�N−m|u|Am
ω
α,β
µ

. (2.27)

Next, we use the inverse inequality (3.4) in [13] to obtain that

‖∂xu‖ω̃α,βµ =‖∂yUµ‖ωα+1,β+1 �N‖Uµ‖ωα,β �N‖u‖
ω
α,β
µ
, ∀u∈V α,βµ,N . (2.28)



190 Wang and Shen

Therefore, by (2.27) and (2.28),

‖∂x(Iα,βµ,Nu−πα,βµ,Nu)‖ω̃α,βµ �N‖Iα,βµ,Nu−πα,βµ,Nu‖ωα,βµ �N1−m|u|Am
ω
α,β
µ

. (2.29)

Finally, (2.23) follows from (2.27), (2.29) and Theorem 2.1.

Theorems 2.1 and 2.2 are fundamental results on the mapped Jacobi
approximations. However, the error estimates are bounded by the
semi-norm |u|Am

ω
α,β
µ

, which is defined in terms of the derivatives of Uµ(y).

Next, we apply these results to a specific mapping, estimate the upper
bounds for |u|Am

ω
α,β
µ

and explore the dependence of the error estimates on

the mapping parameters.

2.2. Application to a Specific Mapping

We consider the following mapping introduced in [4]:

x= s(y;µ) :=µ2 + 1
µ1

tan(a1(y−a0)), µ∈Dµ, (2.30)

where Dµ = {(µ1,µ2) : µ1 > 0, −1 �µ2 � 1}. For large values of µ1, this
function is nearly discontinuous with a region of rapid variations near
x=µ2. Consequently, as µ1 increases, more and more points are clustered
near x=µ2. The constants a0 and a1 are chosen to satisfy (2.1), and the
values are

a0 =a0(µ) := κ1 −κ2

κ1 +κ2
, a1 =a1(µ) := κ1 +κ2

2
,

κ1 =arctan(µ1(1+µ2)), κ2 =arctan(µ1(1−µ2)).

(2.31)

With the above choice, we find that

−1�a0 �1, 0<a1<
π

2
. (2.32)

This mapping is explicitly invertible:

y= s−1(x;µ)=a0 + 1
a1

arc tan(µ1(x−µ2)) (2.33)

and sufficiently regular:

dx

dy
= a1(µ1 +1)2

µ1

( 1
(µ1 +1)2

+ µ2
1

(µ1 +1)2
(x−µ2)

2
)

:=Cµ(D1 +D2(x−µ2)
2),

(2.34)
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where

Cµ�µ1 +1, 0<C−1
µ ,D1,D2 �1. (2.35)

Next, let Uµ(y) be the same as in (2.9). Direct calculations yield

∂yUµ(y)= ∂xu(x)dx
dy

=CµQ2(x−µ2)∂xu(x),

∂2
yUµ(y)=

d(∂yUµ(y))

dx

dx

dy
=C2

µ(Q4(x−µ2)∂
2
xu(x)+Q3(x−µ2)∂xu(x)),

where Ql(x −µ2) is some polynomial of degree l with respect to x −µ2
with coefficients in terms of D1,D2 and C−1

µ . Hence, by an induction
argument, we find that for k�1,

∂kyUµ(y)=Ckµ
k∑
j=1

Qk+j (x−µ2)∂
j
x u(x), (2.36)

where Qk+j (x −µ2) (1 � j � k) are uniformly bounded for all x ∈ Ī and
µ∈Dµ. Consequently, we derive from the definition of |u|Am

ω
α,β
µ

and (2.36)

that

|u|Am
ω
α,β
µ

� (1+µ1)
m‖u‖

m,ω̃
α+m,β+m
µ

, ∀u∈Hm

ω̃
α+m,β+m
µ

(I ), (2.37)

where

ω̃α+m,β+m
µ (x)= (1−y2)mωα,β(y), y=a0 + 1

a1
arctan(µ1(x−µ2)).

As a direct result of the above facts and Theorems 2.1 and 2.2, we have
the following Corollary.

Corollary 2.1. For any u∈Hm

ω̃
α+m,β+m
µ

(I ), we have

‖∂x(πα,βµ,Nu−u)‖
ω̃
α,β
µ

+N‖πα,βµ,Nv−v‖
ω
α,β
µ

� (1+µ1)
mN1−m‖u‖

m,ω̃
α+m,β+m
µ

, m�1, (2.38)

‖∂x(Iα,βµ,Nu−u)‖
ω̃
α,β
µ

+N‖Iα,βµ,Nu−u‖
ω
α,β
µ

� (1+µ1)
mN1−m‖u‖

m,ω̃
α+m,β+m
µ

, m>max(α+1, β+1). (2.39)
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Remark 2.1. The general results in Theorems 2.1 and 2.2 are also
applicable to several other interesting mappings in [3,20,26]. In particu-
lar, these results with α=β=−(1/2) can be used to analyze the mapped
Chebyshev methods.

3. JACOBI APPROXIMATIONS USING SINGULAR MAPPINGS

The mapped Jacobi spectral methods using regular mappings are very
useful in the approximation of PDEs’ solutions with localized rapid vari-
ations in the interior of the domain. But for problems with very thin
boundary layers, it is more efficient to use a mapping which is singular at
the boundary (cf. [21–24,28]).

In this section, we analyze a mapped Jacobi spectral method with the
following singular mapping of index-(k, l):

x= s(y; k, l), s(±1; k, l)=±1,
dx

dy
= s′(y; k, l)=g(y; k, l)(1−y)k(1+y)l,

g∈C∞([−1,1]), 0<g0(k, l)�g(y; k, l)�g1(k, l), x, y ∈ Ī , k, l ∈N.

(3.1)

Note that as k (resp. l) increases, the collocation points are increas-
ingly clustered to the boundary x = 1 (resp. x = −1). In particular, the
singular mappings used in [21] and [28] are of index-(k, k) and index-
(2k −1,2k −1), respectively. However, singular mappings can not be ana-
lyzed using the general framework developed in the last section so they
need to be treated separately.

3.1. Generalized Jacobi Polynomials

We study here approximation properties of a family of generalized
Jacobi polynomials, which are essential for the mapped Jacobi spectral
method with singular mappings given in (3.1).

For any k, l ∈N, we define

ψk,ln (y) := (1−y)k+1(1+y)l+1J k+1,l+1
n (y), y ∈ I. (3.2)

Thanks to the orthogonality relation (A.3), we find that
∫
I

ψk,ln (y)ψk,lm (y)ω−k−1,−l−1(y)dy=0 for n 
=m. (3.3)

Hence, ψk,ln can be considered as generalized Jacobi polynomials with neg-
ative parameters α = −k − 1 and β = −l − 1. Although some properties
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of these generalized Jacobi polynomials were studied in [12], additional
results are needed for the analysis of singular mappings.

We note that {ψk,ln } have the following attractive properties:

• By (A.3), {ψk,ln } forms an orthogonal system in L2
ω−k−1,−l−1(I ).

• We have from (A.12) (with α=k, β= l and m=1) that

∂yψ
k,l
n (y)=−2(n+1)(1−y)k(1+y)lJ k,l

n+1(y). (3.4)

Therefore, {∂yψk,ln } forms an orthogonal system in L2
ω−k,−l (I ).

• It is shown in Appendix A.2 that there exists a unique set of con-
stants {ak,ln,j } such that

ψk,ln (y)=
k+l+2∑
j=−k−l

a
k,l
n,j J

k,l
n+j (y) with a

k,l
n,j ≡0 if n+ j <0. (3.5)

• It is also shown in Appendix A.2 that for k� l,

∂my ψ
k,l
n (y)=




A
k,l
m,nω

k−m+1,l−m+1(y)J
k−m+1,l−m+1
n+m (y), m� l+1�k+1,

B
k,l
m,nω

k−m+1,0(y)J
k−m+1,m−l−1
n+l+1 (y), l+1�m�k+1,

C
k,l
m,nJ

m−k−1,m−l−1
n−m+k+l+2 (y), l+1�k+1�m,

(3.6)

where

Ak,lm,n= (−2)m
(n+m)!
n!

,

Bk,lm,n=

(−1)m−l−1

m−l−1∏
j=1

(n+k+2− j)

Ak,l

l+1,n,

Ck,lm,n= (n+m)!
2m−k−1(n+k+1)

B
k,l
k+1,n.

(3.7)

• The derivative relation (3.6), together with (A.3), implies that for
k, l,m ∈ N and m� n+ k + l, {∂my ψk,ln } forms a mutually orthogonal
system in L2

ωm−k−1,m−l−1(I ), and for k� l,

∫ 1

−1
∂my ψ

k,l
n (y)∂my ψ

k,l
n′ (y)ω

m−k−1,m−l−1(y)dy=Dk,lm,nδn,n′ (3.8)
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where

Dk,lm,n=




(Ak,lm,n)
2γ

k−m+1,l−m+1
n+m , m� l+1�k+1,

(Bk,lm,n)
2γ

k−m+1,m−l−1
n+l+1 , l+1�m�k+1,

(Ck,lm,n)
2γ

m−k−1,m−l−1
n−m+k+l+2 , l+1�k+1�m.

(3.9)

For k< l, the constant Dk,lm,n in (3.8) is replaced by Dl,km,n.

Now, we consider the approximation properties of the orthogonal sys-
tem {ψk,ln }, and define the approximation space as

VN :=VN(y; k, l) := span{ψk,l0 ,ψ
k,l
1 , . . . ,ψ

k,l
N }⊆PN+k+l+2. (3.10)

The orthogonal projection P
k,l
N :L2

ω−k−1,−l−1(I )→VN is defined by

(P
k,l
N v−v, vN)ω−k−1,−l−1 =0, ∀vN ∈VN. (3.11)

Theorem 3.1. Let k, l,m∈N. We have

‖P k,lN v−v‖ωk,l �N−m‖∂my v‖ωk+m,l+m, ∀v∈L2
ω−k−1,−l−1(I )∩Amωk,l (I ), (3.12)

‖∂x(P k,lN v−v)‖ω−k,−l �N1−m‖∂my v‖ωm−k−1,m−l−1 ,

∀v∈L2
ω−k−1,−l−1(I )∩Amω−k−1,−l−1(I ), m�1. (3.13)

Proof. For any v∈L2
ω−k−1,−l−1(I ), we write

v(y)=
∞∑
n=0

v̂k,ln ψ
k,l
n (y) with v̂k,ln = 1

‖ψk,ln ‖2
ω−k−1,−l−1

(v,ψk,ln )ω−k−1,−l−1 .

(3.14)

By (3.5), we have

v(y)=
∞∑
n=0

v̂k,ln


 k+l+2∑
j=−k−l

a
k,l
n,j J

k,l
n+j (y)


=

∞∑
n=0

ṽk,ln J
k,l
n (y), (3.15)

where

ṽk,ln =
k+l+2∑
j=−k−l

v̂
k,l
n−j a

k,l
n−j,j , with v̂

k,l
n−j ≡0, if n− j <0.
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Using (A.11) inductively yields

∂my J
k,l
n (y)=ηk,lm,nJ k+m,l+mn−m (y), ηk,lm,n= (m+n+k+ l)!

2m(n+k+ l)! , n�m, (3.16)

which implies {∂my J k,ln } is L2
ωk+m,l+m -orthogonal and ‖∂my J k,ln ‖2

ωk+m,l+m =
(η
k,l
m,n)

2γ
k+m,l+m
n−m . In view of this fact, we have from (3.15) that

‖P k,lN v−v‖2
ωk,l

=
∞∑

n=N ′
(̃vk,ln )

2γ k,ln �Cm,N
∞∑

n=N ′
(̃vk,ln )

2(ηk,lm,n)
2γ

k+m,l+m
n−m

�Cm,N‖∂my v‖2
ωk+m,l+m, (3.17)

where N ′ =N +k+ l+3 and

Cm,N = max
n�N ′{γ

k,l
n (ηk,lm,n)

−2(γ
k+m,l+m
n−m )−1}.

By the Stirling formula (2.18),

γ k,ln ∼γ k+m,l+mn−m ∼n−1, ηk,lm,n∼nm, n
1, m, k, l ∈N. (3.18)

Thus, Cm,N �N−2, and (3.12) follows directly from this fact and (3.17).
We now prove (3.13). By (A.3), (3.4), and (3.14),

‖∂y(P k,lN v−v)‖2
ω−k,−l =

∞∑
n=N+1

4(n+2)2v̂2
nγ

k,l
n+1

� max
n�N+1

{(n+2)2(Dk,lm,n)
−1γ

k,l
n+1}

∞∑
n=N

(̂vk,ln )
2Dk,lm,n

� max
n�N+1

{(n+2)2(Dk,lm,n)
−1γ

k,l
n+1}‖∂my v‖2

ωm−k−1,m−l−1 , (3.19)

where we used the orthogonality (3.8) to derive the last step. Next, by the
Stirling formula (2.18), (3.7), and (3.9),

γ
k,l
n+1 ∼n−1, (Dk,lm,n)

−1 ∼n1−2m, n
1, k, l,m∈N. (3.20)

Therefore, a combination of (3.19) and (3.20) leads to (3.13).
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3.2. Mapped Jacobi Spectral Method with Singular Mappings

Since the singular mappings are commonly used for problems with
thin boundary layers, we now consider, as an example, the singularly per-
turbed differential equation

−εu′′ +pu′ +qu=f, u(±1)=0, x ∈ I, (3.21)

where ε > 0 is a small parameter, and p,q, f are given functions with
‖f (·, ε)‖L∞(I ) <c (independent of ε). This equation in general possesses a
thin boundary layer of width O(εγ )(γ >0).

3.2.1. Spectral-Galerkin Approximation

As suggested in [21] and [22], we define the approximation space as

XN :={u∈H 1
0 (I ) :u(x)=v(y), v(y)∈YN(y; k, l), x= s(y; k, l)}, (3.22)

where

YN :=YN(y; k, l)={v :v′(y)=ωk,l(y)ψ(y), ψ ∈PN }. (3.23)

The spectral-Galerkin approximation to (3.21) is to find uN ∈XN such
that

aε(uN,φ) := ε(u′
N,φ

′)+ (pu′
N,φ)+ (quN,φ)= (f,φ), ∀φ ∈XN. (3.24)

Note that the above scheme using transformed basis functions is equiva-
lent to the weighted spectral-Galerkin scheme for the transformed equa-
tion: find vN ∈YN such that

âε(vN ,ψ) := ε(g−1v′
N,ψ

′)ω−k,−l + (p̂v′
N,ψ)+ (gq̂vN ,ψ)ωk,l

= (gf̂ ,ψ)ωk,l , ∀ψ ∈YN, (3.25)

where p̂(y)= p(x), q̂(y)= q(x), f̂ (y)= f (x) with x = s(y; k, l) and g is
defined in (3.1).

Without loss of generality, we assume that p′, p, q ∈L∞(I ), and sat-
isfy one of the following coercive conditions

(i) ω̂(x) :=−p
′(x)
2

+q(x)�0, x ∈ Ī ;

(ii) ω̂(x) :=−p
′(x)
2

+q(x)�γ >0, x ∈ Ī ,
(3.26)

which ensures the well-posedness of the scheme (3.24).
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Lemma 3.1. Let uN be the solution of (3.24). If (i) of (3.26) holds,
then

ε|uN |21 +‖uN‖2
ω̂� ε−1‖f ‖2. (3.27)

If (ii) of (3.26) holds, then

ε|uN |21 +‖uN‖2
ω̂�‖f ‖2. (3.28)

Proof. We first prove (3.27). Taking φ=uN in (3.24), we have from
(3.26), integration by parts and the Poincaré inequality that

aε(uN,uN) = ε|uN |21 +‖uN‖2
ω̂� |(f, uN)|

� ‖uN‖‖f ‖� |uN |1‖f ‖� ε

2
|uN |21 + c

ε
‖f ‖2. (3.29)

This implies (3.27). Similarly, we can prove (3.28) by using the fact

|(f, uN)|� 1
2
‖uN‖2

ω̂+ 1
2
‖f ‖2

ω̂−1 � 1
2
‖uN‖2

ω̂+ c

2
‖f ‖2. (3.30)

This ends the proof.

We now turn to the error estimates. Let u and uN be respectively the
solutions of (3.21) and (3.24), and denote e=u−uN .

Theorem 3.2. Let u(x) = v(y) with x = s(y; k, l). Suppose that u ∈
H 1

0 (I ) and v∈Am
ω−k−1,−l−1(I ) with m,k, l ∈N and m�1.

If (i) or (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂� ε−1N−2m‖∂my v‖ωk+m,l+m + εN2−2m‖∂my v‖2

ωm−k−1,m−l−1 .

(3.31)

If, in addition, p≡0 and (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂�N−2m‖∂my v‖ωk+m,l+m + εN2−2m‖∂my v‖2

ωm−k−1,m−l−1 . (3.32)

Proof. By (3.21) and (3.24), we have

aε(e, vN)=0, ∀vN ∈XN. (3.33)

For any ΦN ∈XN, we denote eN =ΦN −uN . Then (3.33) implies

aε(eN , vN)=aε(ΦN −u, vN), ∀vN ∈XN. (3.34)
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Taking vN = eN in (3.34) and using integration by parts, we have from
(3.26) that

ε|eN |21 +‖eN‖2
ω̂ � ε|ΦNu−u|1|eN |1 +‖p‖∞‖ΦNu−u‖|eN |1

+(‖p′‖∞ +‖q‖∞)‖ΦNu−u‖‖eN‖. (3.35)

By the Poincaré inequality and Cauchy–Schwartz inequality, we have

ε

2
|eN |21 +‖eN‖2

ω̂� ε|ΦN −u|21 + ε−1‖ΦN −u‖2. (3.36)

Thus, using the triangle inequality gives

ε

2
|e|21 +‖e‖2

ω̂ � ε

2
|eN |21 +‖eN‖2

ω̂+ ε

2
|ΦN −u|21 +‖ΦN −u‖2

ω̂

� ε‖ΦN −u‖2
1 + ε−1‖ΦN −u‖2. (3.37)

Then it remains to choose ΦN ∈XN such that the upper bound for the
right-hand side of (3.37) is as sharp as possible.

For u∈H 1
0 (I ), we have v(±1)=0 and ∂yv∈L2

ω−k,−l (I ). Now, we take
ΦN(x)= (P k,lN−1v)(y)∈YN, and obtain from (3.1) and Lemma 3.1 that

‖ΦN −u‖2 �g1‖P k,lN−1v−v‖2
ωk,l

�N−2m‖∂my v‖ωk+m,l+m, (3.38)

and

‖∂x(ΦN −u)‖2 �g−1
0 ‖∂y(P k,lN−1v−v)‖2

ω−k,−l �N2−2m‖∂my v‖ωm−k−1,m−l−1 ,

(3.39)

A combination of (3.37)–(3.39) leads to (3.31).
We now prove (3.32). Since p ≡ 0 and (ii) of (3.26) holds, we have

from (3.34) with vN = eN that

ε|eN |21 +‖eN‖2
ω̃� ε|ΦN −u|1|eN |1 +‖q‖∞‖ΦN −u‖ω̂−1‖eN‖ω̂

� ε

2
|eN |21 + ε

2
|ΦN −u|21 + 1

2
‖eN‖2

ω̂+ c‖ΦN −u‖2. (3.40)

The rest of the proof is straightforward.

For problems with very thin boundary layers, the dominated terms in
error estimates are usually associated with higher-order of derivatives of
the solutions (cf. [21,22]). To see the error bounds in Theorem 3.2 more
clearly, we assume that the solution of (3.21) satisfies (cf. [19]):

|∂nx u(x)|�C1 +C2ε
−n/2

(
e−µ1(1−x)/√ε+ e−µ2(1+x)/√ε

)
, n=1,2,3, . . . ,

(3.41)
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where C1,C2,µ1 and µ2 are generic positive constants independent of ε.
By (3.1), we have

dnx

dyn
=gn(y; k, l)(1−y)k+1−n(1+y)l+1−n, k, l�n−1, (3.42)

where {gn} are some sufficiently smooth and uniformly bounded functions
for all y ∈ Ī and k, l, n∈N. Let v(y)=u(x) with x= s(y; k, l) be the same
as before. Then by (3.42),

∂yv= ∂xudx
dy

=g1ω
k,l∂xu,

∂2
y v= ∂2

xu
(dx
dy

)2 + ∂xud
2x

dy2
=g2

1ω
2k,2l∂2

xu+g2ω
k−1,l−1∂xu,

∂3
yv= ∂3

xu
(dx
dy

)3 +3∂2
xu
dx

dy

d2x

dy2
+ ∂xud

3x

dy3

=g3
1ω

3k,3l∂3
xu+g1g2ω

2k−1,2l−1∂2
xu+g3ω

k−2,l−2∂xu.

(3.43)

Consequently,

‖∂3
yv‖2

ωk+3,l+3 �‖∂xu‖2
ω̃2k−1,2l−1 +‖∂2

xu‖2
ω̃4k+1,4l+1 +‖∂3

xu‖ω̃6k+3,6l+3 ,

‖∂3
yv‖2

ω2−k,2−l �‖∂xu‖2
ω̃−2,−2 +‖∂2

xu‖2
ω̃2k,2l +‖∂3

xu‖2
ω̃4k+2,4l+2 ,

(3.44)

where the weight function ω̃α,β(x)=ωα,β(y) with x= s(y; k, l). We observe
from (3.1) the following relation:

ω̃α,β(x) = (1−y)α(1+y)β � (1−x) α
k+1 (1+x) β

l+1 ,

α>−k−1, β >−l−1, k, l�1, k, l ∈N. (3.45)

If the solution satisfies (3.41), then we have from (3.45) that
∫
I

(∂nx u)
2ω̃α,β(x)dx�

∫
I

(∂nx u)
2ω

α
k+1 ,

β
l+1 (x)dx

�C2
1 +C2

2ε
−n
∫
I

(
e−µ1(1−x)/√ε+ e−µ2(1+x)/√ε

)2
ω

α
k+1 ,

β
l+1 (x)dx

�1+ ε−n
∫
I

(
e−2µ1(1−x)/√ε+ e−2µ2(1+x)/√ε

)
ω

α
k+1 ,

β
l+1 (x)dx

�1+ ε−n+ 1
2 + α

2(k+1)

∫ 2√
ε

0
e−2µ1t t

α
k+1 dt+ ε−n+ 1

2 + β
2(l+1)

∫ 2√
ε

0
e−2µ2t t

β
l+1 dt

�1+ ε−n+ 1
2

(
ε

α
2(k+1) + ε β

2(l+1)

)
. (3.46)
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A combination of (3.44), (3.46) and Theorem 3.2 with m= 3 (other
cases can be considered accordingly) leads to the following convergence
result.

Corollary 3.1. Let k, l�2 and k, l∈N, and assume that the solution
of (3.21) satisfies (3.41). If (i) or (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂� ε−1/2

(
ε
− 3

2(k+1) + ε− 3
2(l+1)

)
N−6 + ε1/2

(
ε
− 1
k+1 + ε− 1

l+1

)
N−4.

(3.47)

If, in addition, p≡0 and (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂� ε1/2

(
ε
− 3

2(k+1) + ε− 3
2(l+1)

)
N−6 + ε1/2

(
ε
− 1
k+1 + ε− 1

l+1

)
N−4.

(3.48)

3.2.2. Applications to Two Specific Mappings

We first consider the following two-parameter mapping:

x= s(y; k, l)=−1+σk,l
∫ y

−1
(1− t)k(1+ t)ldt, x, y ∈ Ī , k, l ∈N (3.49)

with

σk,l =2
/∫ 1

−1
(1−y)k(1+y)ldy. (3.50)

Clearly, we have

dx

dy
= s′(y; k, l)=σk,l(1−y)k(1+y)l =σk,lωk,l(y), y ∈ I. (3.51)

Note that the symmetric cases (i.e., k= l) was used in [21,22]. As indicated
by the numerical results in Sec. 5, the non-symmetric cases with k or l=0
are very effective in resolving one-side boundary layers.

Since the mapping (3.49) is a singular mapping of index-(k, l) so the
general results in Theorem 3.2 and Corollary 3.1 can be applied directly.
Moreover, repeating a procedure as in (3.42)–(3.46), we can also derive a
convergence result for k� 2 and l= 0. Indeed, assuming that the solution
of (3.21) satisfies (3.41), if (i) or (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂� ε−

k+4
2(k+1) N−6 + ε k−1

2(k+1) N−4. (3.52)
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If, in addition, p≡0 and (ii) of (3.26) holds, then

ε‖∂xe‖2 +‖e‖2
ω̂� ε

k−2
2(k+1) N−6 + ε k−1

2(k+1) N−4. (3.53)

We also note that under the mapping (3.49), the system of (3.24) with
p(x)≡ p̄ and q(x)≡ q̄ is sparse. We choose the basis for XN as

φk,ln (x) :=ψk,ln (y), x= s(y; k, l).
Then

XN = span{φk,l0 , φ
k,l
1 , . . . , φ

k,l
N }

and we deduce from (3.5) and (3.8) that

aij :=aij (k, l)= (∂xφk,lj , ∂xφk,li )=σ−1
k,l (∂yψ

k,l
j , ∂yψ

k,l
i )ω−k,−l =0, ∀i 
= j,

bij :=bij (k, l)= (φk,lj , φk,li )=σk,l(ψk,lj ,ψ
k,l
i )ωk,l =0, ∀|i− j |>2k+2l+2,

cij := cij (k, l)= (∂xφk,lj , φk,li )= (∂yψk,lj ,ψ
k,l
i )=0, ∀|i− j |>k+ l+1.

(3.54)

Setting

A= (aij )i,j=0,... ,N−1, B= (bij )i,j=0,... ,N−1, C= (cij )i,j=0,... ,N−1,

uN(x)=
N−1∑
j=0

ûj φ
k,l
j (x), u = (û0, û1, . . . , ûN−1)

t ,

f̂i = (f,φk,li ), f = (f̂0, f̂1, . . . , f̂N−1)
t ,

the linear system of (3.24) with constant coefficients p(x)≡ p̄ and q(x)≡ q̄
becomes

(εA+ p̄C+ q̄B)u = f . (3.55)

We see that the band-widths of the matrices A,B, and C are independent
of N, A,B are symmetric positive, and C is skew-symmetric. The entries
of them can be explicitly determined by using properties of the Jacobi
polynomials in Appendix.

As a second example, we consider the iterated mappings introduced
by Tang and Trummer [28]:

x0 =y, xj = sin
(π

2
xj−1

)
, y ∈ Ī , j �1, j ∈N, (3.56)

which are very effective mappings for problems with thin boundary layers.
This mapping with j =1 was discussed in Kosloff and Tal-Ezer [20]. This
mapping has the following property.
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Lemma 3.2. We have

1±xj =
(π2

23

)j
(1±y)2j (1+o(1)), y→±1, j ∈N, (3.57)

dxj

dy
=
(π

2

)2j
(
π2

23

) j (j−1)
2

(1±y)2j−1(1+o(1)), y→±1, j ∈N. (3.58)

Proof. Since xj (±1)=±1, we have from the Taylor expansion theo-
rem that

1±xj =1± sin
(π

2
xj−1

)
= π2

23
(1±xj−1)

2(1+o(1)), y→±1. (3.59)

In particular,

1±x1 = π2

23
(1±y)2(1+o(1)), y→±1. (3.60)

Thus, (3.57) follows from (3.59) to (3.60) and an induction argument.
We now prove (3.58). By (3.56),

dx1

dy
= π

2
cos

(π
2
y
)

=
(π

2

)2
(1±y)(1+o(1)), y→±1. (3.61)

and

dxj

dy
= π

2
cos

(π
2
xj−1

)dxj−1

dy
, j �1. (3.62)

Inductively, we have from (3.57) and (3.62) that

dxj

dy
=
(π

2

)j j−1∏
k=0

cos
(π

2
xk

)
=
(π

2

)j j−1∏
k=0

(π
2
(1±xk)(1+o(1))

)

=
(π

2

)2j
j−1∏
k=0

[(π2

23

)k
(1±y)2k (1+o(1))

]

=
(π

2

)2j(π2

23

) j (j−1)
2
(1±y)2j−1(1+o(1)). (3.63)

This ends the proof.
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The above lemma indicates that (3.56) is a singular mapping of
index–(2j −1,2j −1). Therefore, the results in Theorem 3.2 and Corollary
3.1 with k= l=2j −1 and j >1 are applicable for this mapping.

We note that Liu and Tang [22] carried out an error analysis of (3.25)
with these two mappings. Our results in this section are more general, and
in many cases, improve the results in [22].

4. NUMERICAL RESULTS AND DISCUSSION

We next present some numerical results with emphasis on how the
accuracy depends on the mapping and its parameters.

4.1. Example 1

We consider the approximation of the function

u(x)= exp(−σ(x−x0)
2), σ >0, x0 ∈ I. (4.1)

This function and its derivatives exhibit rapid variations near the region
of x=x0, when σ is large.

We now apply a Jacobi approximation to (4.1) using the mapping
(2.30), and set

v(y)=u(x), vN(y)=uN(x)= (πα,βµ,Nu)(x), x= s(y;µ), (4.2)

where πα,βµ,Nu is the orthogonal projection defined in (2.8). In the following
computations, we take σ = 2000, x0 = 0 in (4.1), and µ1 = 30,µ2 = 0, α=
β=1 in (4.2).

In Figs. 1 and 2, we plot the test function u (resp. v) and its deriv-
atives u′ (resp. v′) vs. the approximations uN (resp. vN ) and u′

N (resp.
v′
N ) with N = 100 in physical domain (resp. computational domain). By

using the mapping (2.30), the mapped JGL points {ξα,βµ,N } are clustered to
the region with rapid variations, and consequently, the test function with
strong local behaviors in x becomes very smooth in the computational
domain (in y).

To illustrate the theoretical results presented in Sec. 2, we plot
in Fig. 3 the discrete weighted L2− and H 1− norms of u − uN and
∂x(u−uN) with mapping (the below two lines) and without mapping
(the above two lines), respectively. It indicates an exponential convergence
of the mapped Jacobi approximation as predicted by Theorem 2.1 and
Corollary 2.1.
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Fig. 1. Test function vs. its approximations in x and y.

We see that the use of mapping leads to significant reduction in the num-
ber of collocation points required in order to obtain a given level of accu-
racy.

Next, we examine how the accuracy depends on the parameters of
the mapping (2.30). In Fig. 4, we plot the errors ‖∂x(Iα,βµ,Nu−u)‖ω̃α,β ,N vs.
various µ1 and µ2 with N = 100 and α=β= 1. As predicted in Theorem
2.1 and Corollary 2.1, the errors increase as the intensity µ1 increases. We
also note that the accuracy is sensitive to the values of µ2 (the location of
the large variation), but less sensitive to the choices of µ1 (the intensity of
clustering the points).

4.2. Example 2

We consider the initial-value Fisher equation (cf. [9]):

∂tu= ∂2
xu+u(1−u), u(x,0)=u0(x) (4.3)
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Fig. 2. Derivative of test function vs. its approximation in x and y.

with the travelling solution

u(x, t)=
(

1+ exp
( x√

6
− 5

6
t
))−2

, (4.4)

and the wave speed c=5/
√

6.
Since u(x, t) tends to 0 (resp. 1) exponentially as x → +∞ (resp.

x→ −∞), we can approximate the initial-value problem (4.3) by an ini-
tial-boundary-value problem in (−L,L) as long as the wave front doesn’t
reach the boundaries.

In actual computation, we rescale the problem (4.3): x→Lx, t→L2t,

and consider the scaled equation:

∂tu= ∂2
xu+L2u(1−u), x ∈ (−1,1),

u(−1, t)=1, u(1, t)=0,

u(x,0)=u0(x)

(4.5)

with the wave speed c=5L/
√

6.
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By setting w=u− (1−x)/2, we convert (4.5) to the following homo-
geneous problem:

∂tw= ∂2
xw+L2F(w), x ∈ (−1,1)

w(±1, t)=0, w(x,0)=w0(x) :=u0(x)− (1−x)/2, (4.6)

where the nonlinear term F(w) := ((1−x)/2+w)((1+x)/2−w).
For a given time step τ, we set tk = kτ and vk = v(x, tk). We still use

the mapping (2.30), and take µ1 =30 and µ2 =ctk= 5L√
6
tk to track the wave

front. We define the approximation space:

V
µ
N := span{j0,0

µ,n+2(x)− j0,0
µ,n(x) : n=0,1, . . . ,N −2}. (4.7)

The fully-discrete Crank–Nicolson leap-frog mapped spectral-Galerkin
approximation to (4.6) is to find wk+1

N ∈V µN such that

1
2τ
(wk+1

N −wk−1
N , vN)− 1

2
(∂x(w

k+1
N +wk−1

N ), ∂xvN) = L2(F (wkN), vN),

∀vN ∈V µN (4.8)



Error Analysis 207

−0.2
−0.1

0
0.1

0.2

0

10

20

30

40

50

10
−15

10
−10

10
−5

10
0

µ
2

µ
1

E
rr

or
s

Fig. 4. Errors vs. parameters µ1 &µ2.

with w0
N = π

0,0
µ,Nw0, and w1

N being a suitable approximation to w(·, t1),
which for instance, can be computed by using a one-step semi-implicit
scheme.

Then the numerical solution of (4.3) can be evaluated by

uN(x,L
2tk+1)=wN(L−1x, tk+1)+ 1−L−1x

2
, x ∈ (−L,L). (4.9)

We plot the exact solution (4.4) vs. the numerical solution uN (N =
100 and L= 100) without mapping (see Fig. 5) and with mapping (see
Fig. 6). It is obvious that the use of an appropriate mapping can provide
not only a very good approximation, but also a high resolution.

4.3. Example 3

We now present some numerical results on the mapped Jacobi spec-
tral methods using singular mapping (3.49) and (3.50). As an example, we
consider the following diffusion equation:

−ε∂2
xu+u=−x+1

2
, x ∈ I, u(±1)=0 (4.10)



208 Wang and Shen

0
2

4
6

8
10

12

−100

−50

0

50

100

−0.5

0

0.5

1

t
x

Fig. 5. Exact solution vs. numerical solutions without mapping.

with the exact solution

u(x)=
exp

(
1+x√
ε

)
− exp

(
− 1+x√

ε

)

exp
(

2√
ε

)
− exp

(
− 2√

ε

) − 1+x
2

. (4.11)

This solution has a boundary layer of width O(
√
ε) at x=1.

Let v(y)=u(x) and x= s(y; k, l) be the mapping given in (3.49) and
(3.50). We use the scheme (3.24) to solve (4.10) numerically, and obtain
the numerical solutions: uN(x) in physical domain and vN(y) in computa-
tional domain. In Fig. 7, we plot the exact solution vs. the numerical solu-
tion in x and y with N=128, ε=10−12, k=4 and l=0. We see that the use
of the singular mapping (3.49) and (3.50) stretches the boundary layer and
the corresponding mapped Jacobi spectral method provides a high accu-
racy in resolving very thin boundary layer.

In Fig. 8, we plot the maximum point-wise errors (on the mapped
Gauss–Legendre–Lobatto points) vs. N with k=4, l=0 and various ε. We
observe a fast convergence is achieved even for very small ε, which is in
agreement with the theoretical results in Sec. 4.2.
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In Figs. 9 and 10, we plot the maximum point-wise errors of mapped
Jacobi spectral method using a symmetric mapping k= l= 4, and of the
standard spectral method (without mapping: k = l = 0). Compared with
the errors in Fig. 8, we find that a much better accuracy can be obtained
by using a non-symmetric singular mapping for problems with one-side
boundary layers, and that the standard spectral method does not converge
when the boundary layers are very thin.

APPENDIX A. SOME PROPERTIES OF JACOBI POLYNOMIALS

The classical Jacobi polynomials {Jα,βn } are the eigenfunctions of the
Sturm–Liouville problem:

∂y((1−y)α+1(1+y)β+1∂yJ
α,β
n (y))+λα,βn (1−y)α(1+y)βJ α,βn (y)=0 (A.1)

with the eigenvalues:

λα,βn =n(n+α+β+1), n�0, α, β >−1. (A.2)
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Let ωα,β(y)=(1−y)α(1+y)β be the Jacobi weight function. For α,β>−1,
the Jacobi polynomials are mutually orthogonal in L2

ωα,β
(I ), i.e.,

∫
I

J α,βn (y)J α,βm (y)ωα,β(y)dy=γ α,βn δn,m, (A.3)

where δn,m is the Kronecker function, and

γ α,βn = 2α+β+1Γ (n+α+1)Γ (n+β+1)
(2n+α+β+1)Γ (n+1)Γ (n+α+β+1)

. (A.4)

They satisfy the following recurrence relations (see Szegö [27] and
Askey [1]):

yJα,βn (y)=a(1)n J
α,β

n−1(y)+b(1)n J α,βn (y)+ c(1)n J
α,β

n+1(y),

J
α,β

0 (y)=1, J
α,β

1 (y)= 1
2 (α+β+2)y+ 1

2 (α−β),
(A.5)

(1−y2)∂yJ
α,β
n (y)=a(2)n J

α,β

n−1(y)+b(2)n J (α,β)n (y)+ c(2)n J
α,β

n+1(y), (A.6)
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J α,βn (−y)= (−1)nJ β,αn (y), J α,βn (1)= Γ (n+α+1)
n!Γ (α+1)

, (A.7)

J
α,β

n−1(y)=Jα,β−1
n (y)−Jα−1,β

n (y), α,β >0 n�1, (A.8)

Jα,βn (y)= 1
n+α+β [(n+β)J α,β−1

n (y)+ (n+α)J α−1,β
n (y)], α, β >0,

(A.9)

(1−y)J α+1,β
n (y)= 2

2n+α+β+2
[(n+α+1)J α,βn (y)− (n+1)J α,β

n+1(y)],

(A.10)

∂yJ
α,β
n (y)= 1

2 (n+α+β+1)J α+1,β+1
n−1 (y), n�1, (A.11)
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(1−y)α(1+y)βJ α,βn (y)= (−1)m(n−m)!
2mn!

dm

dym
{(1−y)α+m(1+y)β+mJα+m,β+m

n−m (y)}, n�m�0. (A.12)

Here, a(i)n , b
(i)
n and c

(i)
n (i= 1,2) in (A.5) and (A.6) are constants in terms

of α,β and n, whose explicit expressions are given in [27].
Using the above properties, we can show

∂y((1−y)αJ α,βn (y))=−(n+α)(1−y)α−1Jα−1,β+1
n (y), α>0, β >−1,

(A.13)

∂y((1+y)βJ α,βn (y))= (n−β)(1+y)β−1Jα+1,β−1
n (y), α>−1, β >0.

(A.14)

Indeed, by (A.8)–(A.11),

∂y((1−y)αJ α,βn (y))
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(A.11)= (1−y)α−1(−αJα,βn (y)+ 1
2
(n+α+β+1)(1−y)J α+1,β+1

n−1 (y))

(A.10)= (1−y)α−1
(
−αJα,βn (y)+ n+α+β+1

2n+α+β+1

(
(n+α)J α,β+1

n−1 (y)−nJα,β+1
n (y)

))

(A.8)= (1−y)α−1
(

−αJα,βn (y)+ n+α+β+1
2n+α+β+1

(
(n+α)J α,βn (y)

−(n+α)J α−1,β+1
n (y)−nJα,β+1

n (y)
))

= (1−y)α−1
( n

2n+α+β+1

(
(n+β+1)J α,βn (y)

−(n+α+β+1)J α,β+1
n (y)

)

− (n+α)(n+α+β+1)
2n+α+β+1

Jα−1,β+1
n (y)

)

(A.9)= (1−y)α−1
( −n(n+α)

2n+α+β+1
Jα−1,β+1
n (y)

− (n+α)(n+α+β+1)
2n+α+β+1

Jα−1,β+1
n (y)

)

= −(n+α)(1−y)α−1Jα−1,β+1
n (y).
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This leads to (A.13). Similarly, we can prove (A.14).

A.1. Some Results on Jacobi Approximations

For any v∈L2
ωα,β

(I ), we write

v(y)=
∞∑
n=0

v̂α,βn J α,βn (y), with v̂α,βn = 1

γ
α,β
n

(v, J α,βn )ωα,β . (A.15)

As pointed out in [15], we have the following equivalence:

‖∂my v‖ωα+m,β+m ∼
( ∞∑
n=m

(λα,βn )mγ α,βn (v̂α,βn )2
)1/2

, ∀v∈Am
ωα,β

(I ), m∈N,

(A.16)

where

Am
ωα,β

(I ) :={v∈L2
ωα,β

(I ) : ∂ky v∈L2
ωα+k,β+k (I ), 0�k�m}. (A.17)

Now, we define the L2
ωα,β

(I )-orthogonal projection: π̂α,βN : L2
ωα,β

(I )→
PN, such that

(π̂
α,β
N v−v, vN)ωα,β =0, ∀vN ∈PN. (A.18)

The following result was proved in [10] (also see [2,18]):

Lemma A.1.

‖∂ly(π̂α,βN v−v)‖ωα+l,β+l �Nl−m‖∂my v‖ωα+m,β+m, 0� l�m, ∀v∈Am
ωα,β

(I ).

(A.19)

Next, let {ξα,βN,j }Nj=0 be the set of JGL points, which are the zeros of

the Jacobi polynomials (1 − y2)∂yJ
α,β
N (y). We assume that {ξα,βN,j }Nj=0 are

arranged in ascending order. Then, there exists a unique set of quadrature
weights {ωα,βN,j }Nj=0 (cf. [27]) such that

∫
I

v(y)ωα,β(y)dy=
N∑
j=0

v(ξ
α,β
N,j )ω

α,β
N,j , ∀v∈P2N−1. (A.20)
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We have the following explicit expressions for the weights:

ω
α,β
N,j =−2α+β(2N +α+β)Γ (N +α)Γ (N +β)

(N +α+β+1)N !Γ (N +α+β)
(
(J
α,β
N ∂yJ

α,β

N−1)(ξ
α,β
N,j )

)−1
,

1� j �N −1,
(A.21)

ω
α,β

N,0 = 2α+β+1(β+1)Γ 2(β+1)Γ (N)Γ (N +α+1)
Γ (N +β+1)Γ (N +α+β+2)

, (A.22)

ω
α,β
N,N = 2α+β+1(α+1)Γ 2(α+1)Γ (N)Γ (N +β+1)

Γ (N +α+1)Γ (N +α+β+2)
. (A.23)

Indeed, the formula (A.21) comes from (3.5.2) of [10], we now prove
(A.22) and (A.23) below.

Let

φ(y) := (1−y)∂yJ α,βN (y)

2∂yJ
α,β
N (−1)

.

Clearly, φ ∈ PN and φ(ξ
α,β

N,0) = 1. Since {ξα,βN,j }Nj=1 are the zeros of (1 −
y)∂yJ

α,β
N (y), we have φ(ξα,βN,j )=0, 1� j �N. Actually, φ is the Lagrangian

base function corresponding to the node y= ξα,β
N,0. Then the weight

ω
α,β

N,0 =
∫
I

φ(y)ωα,β(y)dy= 1

2∂yJ
α,β
N (−1)

∫
I

∂yJ
α,β
N (y)ωα+1,β(y)dy

(A.11)= 1

2Jα+1,β+1
N−1 (−1)

∫
I

J
α+1,β+1
N−1 (y)ωα+1,β(y)dy

= 1

2Jα+1,β+1
N−1 (−1)

(J
α+1,β+1
N−1 ,1)ωα+1,β . (A.24)

As pointed out in [1], Jα+1,β+1
N−1 is a linear combination of {Jα+1,β

n }N−1
n=0 :

J
α+1,β+1
N−1 (y)=a0 +

N−1∑
n=1

anJ
α+1,β
n (y) (A.25)

with

a0 = (−1)N−1(α+β+2)Γ (α+β+2)Γ (N +α+1)
Γ (α+2)Γ (N +α+β+2)

.
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Plugging (A.25) into (A.24), we obtain from (A.7) and (A.3) that

ω
α,β

N,0 = a0γ
α+1,β
0

2Jα+1,β+1
N−1 (−1)

= 2α+β+1(β+1)Γ 2(β+1)Γ (N)Γ (N +α+1)
Γ (N +β+1)Γ (N +α+β+2)

.

To prove (A.23), we take

φ(y)= (1+y)∂yJ α,βN (y)

2∂yJ
α,β
N (1)

,

and then

ω
α,β
N,N =

∫
I

φ(y)ωα,β(y)dy.

A similar procedure as for (A.22) leads to (A.23).
For notational convenience, we introduce the discrete inner product

and norm associated with the quadrature rule (A.20):

(u, v)ωα,β ,N=
N∑
j=0

u(ξ
α,β
N,j )v(ξ

α,β
N,j )ω

α,β
N,j , ‖v‖ωα,β ,N=(v, v)1/2

ωα,β ,N
, ∀u, v∈C(Ī ).

As shown in (2.26) of [13], we have

‖vN‖ωα,β �‖vN‖ωα,β ,N �
√

2+ α+β+1
N

‖vN‖ωα,β , ∀vN ∈PN. (A.26)

Besides, by Theorem 4.9 of [13],
N−1∑
j=1

|v(ξα,βN,j )|2ωα,βN,j




1/2

�‖v‖ωα,β +N−1‖∂yv‖ωα+1,β+1 , ∀v∈A1
ωα,β

(I ).

(A.27)

A.2. Proofs of (3.5) and (3.6)

We first prove (3.5). By (A.6) and (A.11),

ψk,ln (y)
(A.11)= 2

n+k+ l+2
(1−y)k+1(1+y)l+1∂yJ

k,l
n+1(y)

(A.6)= 2
n+k+ l+2

(1−y)k(1+y)l(a(2)
n+1J

k,l
n (y)+b(2)

n+1J
k,l
n+1(y)+ c(2)n+1J

k,l
n+2(y)).
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Since (1 − y)k(1 + y)l is a polynomial of y with degree � k + l, we can
use(A.5) repeatedly to obtain (3.5).

Now, we consider (3.6). If (i) m� l+ 1 � k+ 1, then we take α= k−
m+1, β= l−m+1, replace n by n+m in (A.12), and derive (3.6) directly.

In case of (ii) l+1�m�k+1, we obtain from the above proved case
(i) (with m= l+1) that

∂my ψ
k,l
n (y)= ∂m−l−1

y {∂l+1
y ψk,ln (y)}=Ak,l

l+1,n∂
m−l−1
y {(1−y)k−lJ k−l,0

n+l+1(y)}.
Thus, by using (A.13) inductively, we can obtain (3.6) with l+1�m�k+1.

Similarly, if (iii) l+ 1 � k+ 1 �m, then (3.6) follows from the proved
case (ii) and using (A.11) inductively.
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