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In this paper, we continue our investigation of the locally divergence-free
discontinuous Galerkin method, originally developed for the linear Maxwell
equations (J. Comput. Phys. 194 588–610 (2004)), to solve the nonlinear ideal
magnetohydrodynamics (MHD) equations. The distinctive feature of such
method is the use of approximate solutions that are exactly divergence-free
inside each element for the magnetic field. As a consequence, this method
has a smaller computational cost than the traditional discontinuous Galerkin
method with standard piecewise polynomial spaces. We formulate the locally
divergence-free discontinuous Galerkin method for the MHD equations and
perform extensive one and two-dimensional numerical experiments for both
smooth solutions and solutions with discontinuities. Our computational results
demonstrate that the locally divergence-free discontinuous Galerkin
method, with a reduced cost comparing to the traditional discontinuous Galer-
kin method, can maintain the same accuracy for smooth solutions and can
enhance the numerical stability of the scheme and reduce certain nonphysical
features in some of the test cases.

KEY WORDS: Discontinuous Galerkin method; divergence-free solutions;
magnetohydrodynamics (MHD) equations.

1. INTRODUCTION

In this paper we continue our development of the locally divergence-free
discontinuous Galerkin method, studied first in [11] jointly with Cockburn
for solving the linear Maxwell equations, to solve the two dimensional
nonlinear ideal magnetohydrodynamics (MHD) equations. The method
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can be applied to three dimensional cases with no essential difficulty, but
we will not consider it in this paper.

The locally divergence-free discontinuous Galerkin method is based
on the traditional discontinuous Galerkin methods equipped with TVD
Runge–Kutta time discretization (RKDG) [9,12,13]. The distinctive fea-
ture of the locally divergence-free discontinuous Galerkin method is the
use of approximate solutions that are exactly divergence-free inside each
element for certain components which should be divergence-free according
to the PDEs, for example the magnetic field in the MHD equations.

There are many partial differential equations with solutions which are
divergence-free. Examples include the incompressible Euler and
Navier–Stokes equations, the MHD equations, and the Maxwell equa-
tions. For some of the problems, such as the MHD equations and the
Maxwell equations, the solutions of the PDE should automatically satisfy
the divergence-free condition if the initial data is divergence-free, but it is
widely known that negligence in dealing with the divergence-free condition
numerically sometimes can lead to serious defects, see, e.g. [17,20,6].

Attempts have been made in the literature to enforce explicitly the
divergence-free condition. In the following we will review some of the
divergence “cleaning” techniques in the context of MHD equations.

One way for the divergence correction is by projection, which, based
on “Hodge decomposition”, was first suggested by Brackbill and Barnes
[6] in the context of MHD. The numerical magnetic field B is projected
into a zero divergence vector space and the projected B is used in the
next time step. To implement this, usually a Poisson equation needs to be
solved. Another method is Powell’s source term formulation [22], which is
derived from the physical laws if ∇ ·B= 0 is not used. Source terms pro-
portional to ∇ ·B are added to the equations, which makes the system well
behaved but nonconservative. For MHD equations, there is also the gener-
alized Lagrange multiplier method, which was proposed by Dedner et al.
[15]. With this method, the divergence errors could be transported to the
domain boundaries with certain speed and damped at the same time.

Another approach, often referred to as “constrained transport meth-
ods”, was first brought up by Yee [32] in electromagnetics, and then
adapted to MHD equations by Brecht et al. [7], Evans and Hawley [16],
Stone and Norman [29], etc. In this approach, a staggered mesh is used,
and a suitably defined discrete approximation to the divergence of the
solution can be maintained exactly zero. This method has been further
developed recently by combining with the higher order Godunov type
schemes by Dai and Woodward [14], Ryu et al. [25], Balsara and Spicer
[5], etc. In [3,4], Balsara developed such divergence-free reconstruction
strategy in an adaptive mesh setting. In [30], Tóth compared some of the
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methods mentioned above and introduced the field/flux-interpolated cen-
tral difference (CD) approaches, in which no staggered mesh is needed.

In the context of Stokes equations and the stationary Navier–Stokes
equations, Baker et al. [2,19] introduced a discontinuous Galerkin method
by using an interior penalty method with locally divergence-free approxi-
mate solutions. Optimal error estimates were proven.

Similar to [11] for the two-dimensional Maxwell equations, we fol-
low the approach of Baker et al. [2,19] and use the locally divergence-free
piecewise polynomials as the solution space in the discontinuous Galer-
kin method to solve ideal MHD equations. Because the space is smaller,
we can save in computational cost when using the locally divergence-free
piecewise polynomial space compared with the standard piecewise polyno-
mial space for the RKDG method. Theoretical study in [11], and numeri-
cal experiments in [11] and in this paper, indicate that this saving is not
at the price of the degeneration of the solutions in stability and accu-
racy. On the contrary, both accuracy and stability can be enhanced in
many cases. Compared with the Maxwell equations, the nonlinearity gives
the solutions of MHD equations much more complicated features. The
RKDG method with locally divergence-free piecewise polynomial space
can enhance numerical stability in several test cases, such as the Orszag–
Tang vortex example and the shock reflection example. Also, nonphysical
features are reduced in several test cases, such as the rotor example.

The paper is organized as follows. In Sec. 2, we describe the equa-
tions and introduce the locally divergence-free space as well as the numer-
ical formulation of the algorithm. The numerical results are presented in
Sec. 3. Concluding remarks are made in Sec. 4.

2. EQUATIONS AND LOCALLY DIVERGENCE-FREE
DISCONTINUOUS GALERKIN METHOD

Electrically conducting fluid flow in which the electromagnetic forces
can be of the same order or even greater than the hydrodynamic ones is
often modeled by MHD equations. The ideal MHD equations consist of
a set of nonlinear hyperbolic equations,

∂tρ+∇ · (ρu) = 0,

∂t (ρu)+∇ ·
[
ρuuT +

(
p+ 1

2
|B|2

)
I−BBT

]
= 0,

∂tB+∇ · (uBT −BuT ) = 0,

∂tE+∇ ·
[(

E+p+ 1

2
|B|2

)
u−B(u ·B)

]
= 0 (2.1)
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with the additional divergence constraint

∇ ·B=0. (2.2)

Here ρ, p, u= (ux, uy, uz), B= (Bx,By,Bz) and E denote the mass den-
sity, the hydrodynamic pressure, the velocity field, the magnetic field, and
the total energy, respectively. The ratio of the specific heats is given by γ

and

E= 1

2
ρ|u|2+ 1

2
|B|2+ p

γ −1
.

This system combines the equations of gas dynamics with Maxwell equa-
tions for problems in which relativistic, viscous, and resistive effects can be
neglected; the permeability is set to be unity. If the initial magnetic field
satisfies the divergence-free condition (2.2), the exact solution will auto-
matically satisfy the constraint (2.2) for all time.

We rewrite Eq. (2.1) in the conservative form

Ut +∇ ·F(U)=0, (2.3)

where

U= (ρ, ρux, ρuy, ρuz,Bx,By,Bz,E)T .

F1(U) = (ρux, ρu2
x +p+ 1

2
|B|2−B2

x , ρuxuy

−BxBy, ρuxuz−BxBz,0, uxBy −uyBx, uxBz

−uzBx, ux(E+p+ 1

2
|B|2)−Bx(uxBx +uyBy +uzBz))

T .

F2(U) = (ρuy, ρuyux −ByBx, ρu2
y +p+ 1

2
|B|2−B2

y ,

ρuyuz−ByBz, uyBx −uxBy,0, uyBz−uzBy,

uy(E+p+ 1

2
|B|2)−By(uxBx +uyBy +uzBz))

T .

For notational convenience, we will also use Up = (ρ, ux, uy, uz,Bx,By,

Bz,p)T to denote the primitive variables and use Ũ (or Ũp, F̃1) to denote
a vector which contains all the components of U (or Up, F1) except the
fifth one.

Starting with a triangulation Th of the domain Ω, with the element
being denoted by K, the edge by e, and the outward unit normal by n=
ne,K = (n1, n2), following the usual definition of discontinuous Galerkin
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methods for conservation laws, e.g. [9,12], we obtain the RKDG formu-
lation for (2.3): find Uh ∈Vh, such that for all v∈Vh,

∫
K

Uh t · v dx+
∑
e∈∂K

∫
e

he,K(Uh
int(K),Uh

ext(K),ne,K) · v ds (2.4)

−
∫

K

F(Uh) ·∇v dx=0, ∀K

holds, where Vh is the solution space, which is the same as the test space
and given by

Vh=Vk
h=

{
v : v|K ∈Pk(K),

(
∂v5

∂x
+ ∂v6

∂y

)
|K =0,∀K

}
(2.5)

with Pk(K)= (P k(K))8, and P k(K) denotes the space of polynomials in K

of degree at most k. By this definition, we will have solution spaces which
contain magnetic fields with zero divergence within each element. We call
these spaces the locally divergence-free spaces, and call the discontinuous
Galerkin methods with these solution spaces the locally divergence-free
discontinuous Galerkin methods. Since the solution space is a subspace of
the standard piecewise polynomial space, we expect a saving in computa-
tional cost by using the locally divergence-free spaces. More precisely, the
dimension of Vk

h|K is ((k+1)(k+4)/2)+ 3(k+ 1)(k+ 2), which asymptot-
ically is 7/8 of 4(k+ 1)(k+ 2), the dimension of (P k(K))8. It is easy to
obtain local bases for {(v5, v6) : v={vi}8i=1, v∈Vk

h} within K. For example,
if K is a rectangle, with center (xi, yj ), and width ∆xi,∆yj , if we denote
X̄= (x−xi)/∆xi, Ȳ = (y−yj )/∆yj , one set of orthogonal bases would be,
when k=1,

(
1
0

)
,

(
∆xiX̄

−∆yj Ȳ

)
,

(
Ȳ

0

)
,

(
0
1

)
,

(
0
X̄

)
.

For k=2, we need to add

(
∆xi(12X̄2−1)

−24∆yj X̄Ȳ

)
,

( −24∆xiX̄Ȳ

∆yj (12Ȳ 2−1)

)
,

(
12Ȳ 2−1

0

)
,

(
0

12X̄2−1

)
.

In general, the local bases {(v5, v6) : v={vi}8i=1, v∈Vk
h} in K could be gen-

erated by taking the curl of bases of P k+1(K).
In (2.4), he,K (vint(K), vext(K),ne,K ) is the numerical flux, which is an

exact or approximate Riemann solver, consistent with F(U) ·ne,K and con-
servative,
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he,K(vint(K), vext(K),ne,K)+he,K ′(vint(K ′), vext(K ′),ne,K ′)=0, K ∩K ′ = e,

here vint(K), vext(K) are the limits of v at the interface e from the inte-
rior and exterior of K, respectively. The one we will use in our numerical
examples is the local Lax–Friedrichs flux,

he,K(a,b,ne,K)= 1

2
[F(a) ·ne,K +F(b) ·ne,K −αe,K(b−a)], (2.6)

where αe,K is an estimate of the largest absolute value of eigenvalues of
the Jacobi (∂/∂v)F(v) ·ne,K in the neighborhood of the edge e.

For discontinuous Galerkin methods applied to nonlinear systems
such as (2.1), nonlinear limiters are often needed. In this paper we use
the minmod TVB slope limiter by Shu [26] and Cockburn et al. [10,12],
which has a parameter M related to the magnitude of the second deriv-
atives of the solution at smooth extrema. The limiter is implemented in
local characteristic fields and we use the eigenvector system from [18]. We
will not give the details of the limiter but mention that after the limiting
process, the magnetic fields should still be locally divergence-free. It is a
difficult task and an active research area to find good limiters for the dis-
continuous Galerkin methods in the presence of strong shocks, to obtain
nonoscillatory results which are high order accurate in smooth regions.
The emphasis of this paper is not on limiters, thus we will not discuss
the optimal choice of limiters, rather we will use the minmod TVB slope
limiter with suitable M (not necessarily optimal M) in the numerical tests.
We do point out that sometimes the numerical results are sensitive to the
choice of limiters. We refer the readers to [23,24] for a recent effort in
designing a new class of limiters for the discontinuous Galerkin method
based on weighted essentially nonoscillatory (WENO) schemes.

3. NUMERICAL EXAMPLES

In this section, we present the numerical results of the discontinu-
ous Galerkin methods for one dimensional test problems using the stan-
dard piecewise P k elements, and two dimensional test problems using both
the standard piecewise P k elements and locally divergence-free piecewise
P k elements, or just one of them if the results are similar, with k= 1, 2,
namely the second and third-order methods. We include the one dimen-
sional examples here for the sake of completeness. By the notations intro-
duced in Sec. 2, the one-dimensional system could be written as follows

Ũt + (F̃1(Ũ))x =0.
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The divergence-free condition on the magnetic field is reduced to Bx=con-
stant. In all tests, the third-order TVD Runge–Kutta time discretization
[28] will be used. The time step will be dynamically determined by

∆t= Ccf l min(∆x)

max(|ux |+ cf )

in the one dimensional case and by

∆t=Ccf l/

{
max(|ux |+ cx

f )

min(∆x)
+

max(|uy |+ c
y
f )

min(∆y)

}

in the two-dimensional case, where cf (cx
f , c

y
f ) is the fast speed (in x, y

direction, see [18] for the definition), the maxima (minima) are taken over
all the computational cells, and the CFL number Ccf l is taken as 0.3 for
the P 1 case and 0.18 for the P 2 case. In order to compute the integrals
in formulation (2.4) numerically, the proper quadrature rules need to be
used [12]. Uniform rectangular meshes are used in the computation unless
otherwise indicated. The method, however, can be applied on arbitrary tri-
angulation.

3.1. One-Dimensional Riemann Problems

In this Section, we solve standard one-dimensional Riemann prob-
lems, see e.g. [18]. The first Riemann problem is given by

Ũp=
{

(1.000,0,0,0,+1,0,1.0) for x <0,

(0.125,0,0,0,−1,0,0.1) for x >0

with Bx=0.75 and γ =2 on the computational domain [−1,1]. Note that
the hydrodynamic data is the same as the one for Sod’s Riemann problem.
This is the example used by Brio and Wu in [8] to show the formation of
the compound wave in MHD.

The solution at t=0.2 is shown in Fig. 1, which includes the left mov-
ing waves: the fast rarefaction wave, the intermediate shock attached by a
slow rarefaction wave; and the right moving waves: the contact disconti-
nuity, a slow shock, and a fast rarefaction wave. The results obtained with
5000 cells serve as a reference in Fig. 1. We can see that all the waves are
resolved very well.

The second Riemann problem is

Ũp=
{

(1.000,0,0,0,+1,0,1000) for x <0,

(0.125,0,0,0,−1,0,0.10) for x >0



420 Li and Shu

x

ρ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=800
n=5000

FR
SM

C

SS

FR

x

U
x

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

U
y

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

x

B
y

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

p

Fig. 1. The first one-dimensional Riemann example. P 2 with 800 cells (circles) on a back-
ground solid line computed with 5000 cells. t=0.2 and M=1. The symbol FR denotes a fast
rarefaction wave; SM is a compound wave (an intermediate shock followed by a slow rarefac-
tion wave); C is a contact discontinuity; SS is a slow shock. Top: ρ; middle left: ux ; middle
right: uy ; bottom left: By ; bottom right: p.
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Fig. 2. The second one-dimensional Riemann example. P 2 with 600 cells (circles) on a
background solid line of the exact solution. t = 0.012 and M = 1. Top left: ρ; top right: ux ;
bottom left: By ; bottom right: p.

with Bx = 0 and γ = 2. This problem is used to evaluate the code for
high Mach number flow. If one regards the term p + (1/2)|B|2 as the
“hydrodynamic pressure”, the system becomes a standard hydrodynami-
cal Riemann problem, thus the exact solution can be easily obtained. The
computational domain is taken to be [−1,1]. The solution at t = 0.012 is
shown in Fig. 2, with the solid line as the exact solution.

In both problems we have applied the TVB minmod limiter with the
TVB constant M = 1 in the local characteristic fields computed by the
eigenvectors evaluated with the cell averages, see [9,12] for the details of
the implementation of such limiters. Our experience obtained from these
one-dimensional experiments is that the limiter should be used in the local
characteristic fields rather than in the physical fields, in order to effec-
tively control the spurious oscillations. This is consistent with the expe-
rience of hydrodynamic computations using the discontinuous Galerkin
methods [10,12].
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Table I. L2 and L∞ Errors and Orders for ρ in the First Two-Dimensional Smooth Exam-
ple with Initial Condition ρ(x, y)=2+ sin(x+y), ux =uy =1, p=5 at t=7

Mesh L2error Order L∞error Order

P 1

16×16 1.11E−01 1.77E−01
32×32 1.84E−02 2.59 3.19E−02 2.47
64×64 3.36E−03 2.46 5.66E−03 2.50

128×128 7.29E−04 2.20 1.39E−03 2.02

P 2

16×16 1.14E−03 8.34E−03
32×32 1.44E−04 2.98 1.21E−03 2.78
64×64 1.81E−05 2.99 1.58E−04 2.94

128×128 2.27E−06 3.00 1.99E−05 2.99

3.2. Two-Dimensional Examples

3.2.1. Examples with Smooth Solutions

The first example with smooth solutions is essentially a scalar prob-
lem, since there is only one nontrivial component ρ in the solution. The
domain is taken to be [0,2π ]× [0,2π ] and γ =2. The initial data is given
by Up = (ρ0(x, y),1,1,0,0,0,0,5) with ρ0(x, y)= 2+ sin(x + y). Periodic
boundary conditions are used. We compute until t=7, after approximately
two time periods. The exact solution for this problem is simply ρ(x, y, t)=
ρ0(x−uxt, y−uyt) with other components remaining constants.

From Table I, we can see that we obtain second order accuracy for
the P 1 elements, and third order accuracy for the P 2 elements, both in L2

and L∞ norms, which are the optimal orders we expect. The drawback of
this example is that only the hydrodynamical part of the system is tested.

Next we look at a genuinely two dimensional vortex problem, which
was originally suggested by Shu [27] in the hydrodynamical system,
and was adapted to the MHD equations by Balsara [4]. The solu-
tion is a smooth vortex stably convected with the velocity field and
the magnetic field. The unperturbed magnetohydrodynamic flow with
(ρ, ux, uy,Bx,By,p) = (1,1,1,0,0,1) is initialized on the computational
domain [−10,10] × [−10,10] with γ = 5/3. The vortex is introduced
through the fluctuation in the velocity and magnetic fields given by

(δux, δuy)= η

2π
∇× exp{0.5(1− r2)},
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(δBx, δBy)= ξ

2π
∇× exp{0.5(1− r2)},

where r2=x2+y2, and the dynamical balance is obtained through the per-
turbation on pressure by

δp= (ξ2(1− r2)−η2)
1

8π2
exp(1− r2).

We use η = 1, ξ = 1 in our computation. Periodic boundary conditions
are used. The exact solution is just the one obtained from the initial
configuration propagating with speed (1,1), or mathematically given by
Up(x, y, t)=Up

0 (x− t, y− t).
Table II shows the L2 errors and orders of accuracy for some

representative components at t = 20. The errors are computed within
[−5,5]× [−5,5] which contains the vortex. We can see that for both locally
divergence-free piecewise P 1 elements and standard piecewise P 1 elements,
second order accuracy is obtained. When k=2, the locally divergence-free
piecewise polynomial spaces give us better results for magnetic fields, com-
pared with the standard P 2 spaces, though both of the solution spaces
give us comparable results of accuracy order close to three for all com-
ponents.

Similar to the Maxwell equations [11], we compute the global diver-
gence (see [11] for the definition) of the magnetic fields of the RKDG
solutions using both the standard polynomial spaces and the locally diver-
gence-free spaces in Fig. 3. It shows that in general, the RKDG methods
with the locally divergence-free spaces render smaller global divergence.

3.2.2. Two-Dimensional Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability can arise when two superposed flu-
ids flow one over the other in a relative speed. Here we will use the dis-
continuous Galerkin methods to solve the two dimensional periodic and
convective models with transverse magnetic field configuration (see [18]
and [31] for more details).

The initial stationary configuration is given by Up= (1, ux0,0,0,0,0,

1,0.5), where ux0(x, y)= tanh(y). At t = 0, a small perturbation is intro-
duced to ux by

δux =
{−0.008 sin( 2πx

λ
)/(1+y2) if− λ

2 <x < λ
2 ,

0, otherwise.

The computational domain is [−L
2 , L

2 ] × [0,H ]. γ = 2. In the periodic
model, L=λ=5π , H =10. The periodic boundary condition is used in the
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Table II. L2 Errors and Orders of Accuracy in the Two-Dimensional Smooth Vortex
Example Computed Within [−5,5]× [−5,5] at t=20

ρ ux Bx p

Mesh Error Order Error Order Error Order Error Order

P 1

32×32 3.89E−04 2.12E−02 2.11E−02 2.57E−03
64×64 2.96E−04 0.39 8.56E−03 1.30 8.33E−03 1.34 1.22E−03 1.07

128×128 1.13E−04 1.39 2.08E−03 2.04 2.03E−03 2.04 2.92E−04 2.06
256×256 2.80E−05 2.01 4.65E−04 2.16 4.60E−04 2.14 6.04E−05 2.28

P 1−LDF

32×32 3.35E−04 2.06E−02 2.05E−02 2.63E−03
64×64 2.47E−04 0.44 8.43E−03 1.29 8.06E−03 1.35 1.28E−03 1.04

128×128 9.99E−05 1.31 2.05E−03 2.04 1.94E−03 2.06 3.04E−04 2.07
256×256 2.63E−05 1.93 4.61E−04 2.16 4.51E−04 2.10 6.18E−05 2.30

P 2

32×32 2.06E−04 1.04E−03 1.07E−03 3.63E−04
64×64 2.40E−05 3.10 6.30E−05 4.05 9.36E−05 3.52 4.02E−05 3.17

128×128 3.08E−06 2.96 5.80E−06 3.44 1.53E−05 2.61 4.99E−06 3.01
256×256 6.07E−07 2.34 7.78E−07 2.90 2.65E−06 2.53 9.63E−07 2.37
512×512 1.06E−07 2.52 1.16E−07 2.75 4.28E−07 2.63 1.68E−07 2.52

P 2−LDF

32×32 2.05E−04 1.12E−03 1.14E−03 3.56E−04
64×64 2.59E−05 2.98 6.44E−05 4.12 6.01E−05 4.24 4.27E−05 3.06

128×128 4.48E−06 2.53 6.48E−06 3.31 5.61E−06 3.42 7.35E−06 2.54
256×256 7.33E−07 2.61 8.87E−07 2.87 6.96E−07 3.01 1.20E−06 2.61
512×512 1.05E−07 2.80 1.19E−07 2.89 8.74E−08 2.99 1.72E−07 2.80

x direction, and the characteristic boundary condition is used for the top
boundary. At y= 0, the boundary condition is obtained from the follow-
ing symmetry: under the transformation (x, y)→−(x, y), ρ, p, and Bz are
symmetric and ux , uy are antisymmetric.

Since there are more features developed around y = 0, the Robert
transform

y← H sinh(3y/H)

sinh(3)

is used on the meshes in the y direction, which renders the mesh denser
near y=0 and coarser near y=H .

In the following computation, Bx , By are always zero and there is
not much difference between the results using piecewise P k and locally
divergence-free piecewise P k. In Fig. 4, we show the results at t=144 with
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Fig. 3. The divergence of B against time t for the two-dimensional smooth vortex example.
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Fig. 4. Kelvin–Helmholtz instability in the periodic model. 20 equally spaced contours
of ρ ∈ [0.82,1.17]. P 2 on a 48×30 mesh with Robert transform in the y direction. M=1.

the TVB parameter M = 1. One can see the vortex flow generated from
y = 0, off which there is some weak shock developed. Since there is no
strong structure in this model, the computation is not very sensitive to the
limiter parameter M.

Next, we check the numerical convergence of this method by looking
at the cuts for ρ at y= (3/10)H on uniform meshes: 48×30, 80×100 and
100×150. M=1 and piecewise P 2 are used. In Fig. 5, the convergence is
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Fig. 5. Kelvin–Helmholtz instability in the periodic model. Cuts of ρ at y= (3/10)H to see
convergence. P 2 on uniform meshes with M= 1. Dotted line: 48× 30; dashed line: 80× 100;
solid line: 100×150. Zoom-in plot is on the right.
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Fig. 6. Kelvin–Helmholtz instability in the periodic model. Time evolution of the transverse
kinetic energy to see convergence. P 2 on uniform meshes with M = 1. Dotted line: 48× 30;
dashed line: 80×100; solid line: 100×150.

seen clearly, even around the rough area near the left boundary. Another
way to see the convergence is to look at the time evolution curves of the
total transverse kinetic energy over [−L/2,L/2]× [−H,H ], which, for this

example, is defined as
∫ L

2

−L
2

∫ H

−H
( 1

2ρu2
y)dx dy (see Fig. 6). All the curves on

the given meshes coincide with each other very well.
For the convective model, the same initial profile is used as in the

periodic case. In contrast to the periodic model, the domain is enlarged,
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Fig. 7. Kelvin–Helmholtz instability in the convective model at t = 120. 15 equally spaced
contours for ρ∈ [0.67,1.24] (top) and for p∈ [0.24,0.79] (bottom). P 2 with M=0 on a 528×
96 mesh. Robert transform is used in the y direction.

and the features developed as time evolves are allowed to convect away
freely in the x direction. Using the same notation as in the periodic case,
L= 11λ= 55π , H = 20. A 528× 48 mesh is used with the same Robert
transform in the y direction as in the periodic model. We observe the for-
mation of larger vortices, and the shocks formed off these vortices are
much stronger than the one found in the periodic system. Contour plots
for density and pressure at t=120 and t=145 are shown in Figs 7 and 8,
respectively. The overall features in this calculation are similar to those
obtained in [18] and [31].

3.2.3. Two-Dimensional Riemann Problem

The initial data for this two-dimensional Riemann problem is chosen so
that the solutions of the three of the four one-dimensional Riemann prob-
lems are simple waves: if one denotes the quadrants by Roman numbers
counter-clockwisely starting from {(x, y) : x > 0, y > 0}, we have shocks for
the problem II↔III and III↔IV and a rarefaction wave for I↔II (see [15]).
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Fig. 8. Kelvin–Helmholtz instability in the convective model at t = 145. 15 equally spaced
contours for ρ ∈ [0.44,1.19] (top) and for p ∈ [0.11,0.73] (bottom). P 2 with M = 0 on a
528×96 mesh. Robert transform is used in the y direction.

The initial condition is given as follows:

U=




(0.9308,1.4557,−0.4633,

0.0575,0.3501,0.9830,0.3050,5.0838) for x >0, y >0
(1.0304,1.5774,−1.0455,

−0.1016,0.3501,0.5078,0.1576,5.7813) for x <0, y >0
(1.0000,1.7500,−1.0000,

0.0000,0.5642,0.5078,0.2539,6.0000) for x <0, y <0
(1.8887,0.2334,−1.7422,

0.0733,0.5642,0.9830,0.4915,12.999) for x >0, y <0

and the computational domain is taken to be [−1,1]× [−1,1]. γ = 5/3.
For the boundary conditions, instead of using the Dirichlet boundary
conditions from numerical solutions of the one dimensional Riemann
problems as in Dedner et al. [15], we simply use the Neumann boundary
conditions.

Contours of Bx and By obtained with the standard piecewise P 2

elements and locally divergence-free piecewise P 2 elements are shown in
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Fig. 9. Two-dimensional Riemann problem. 15 equally spaced contours of Bx ∈ [0.40,1.16]
(top) and of By ∈ [0.54,1.31] (bottom) at t = 0.2. 100× 100 mesh size with M = 1. Left col-
umn: P 2; right column: P 2-LDF.

Fig. 9. We do not seem to have any problem in keeping By constant
across the shock in the II↔III Riemann problem, or causing any strong
distortions in the magnetic field components behind the rarefaction wave
of the I↔II Riemann problem, as in some methods described in [15]. We
also look at the similar cuts as in Fig. 7 from [15], shown in our Fig. 10,
and we observe much smaller oscillations in our results.

3.2.4. Orszag–Tang Vortex Example

In this section, we will consider the development of the Orszag–Tang
vortex example [21], which is a widely used test example in the literature
because of the complex interaction between several shocks generated as
the whole system evolves. Starting from a smooth state, after the transi-
tion period, the system will go to turbulence. The initial setup is the same
as the one used in [18]
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Fig. 10. Two-dimensional Riemann problem. Cuts at x=0.93 and t=0.2 on 100×100 mesh
with M = 1. Dotted line: P 2-LDF; solid line: one-dimensional reference results. Top left: ρ;
top right: ux ; bottom left: Bx ; bottom right: By .

Up= (γ 2,− sin y, sin x,0,− sin y, sin 2x,0, γ )

with γ =5/3, and the computational domain is [0,2π ]× [0,2π ] with peri-
odic boundary conditions.

The time development of density is shown in Fig. 11. One can see
that in the early stage, the solution is quite smooth. At t=2, shocks have
already appeared. At later times, for example, at t=3,4, the shocks inter-
act with each other and the structure gets quite complicated.

During the computation, we notice that schemes with different solu-
tion spaces behave quite differently, in the sense that they are able to keep
the computation from blowing up or delay the blowing up. For example,
by using the 192× 192 mesh with M = 1, computation with piecewise P 1

elements could reach t = 3.45, yet using locally divergence-free piecewise
P 1 elements, we could do the computation at least until t = 30 (and it
seems that the computation could go on forever). This seems to indicate
that the elimination of numerical divergence inside each element by the
locally divergence-free discontinuous Galerkin method has enhanced the
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Fig. 11. Orszag–Tang vortex example. The development of ρ with time: Top left: t = 0.5;
top right: t=2; bottom left: t=3; bottom right: t=4. 15 equally spaced contours with ranges
[2.33,5.58], [0.96,5.87], [1.56,5.74] and [1.33,5.45], respectively. P 2-LDF on 192× 192 mesh
with M=1.

numerical stability. When k=2, we do not have the same luck, but still by
using locally divergence-free piecewise P 2 elements, the computation could
go on until t=4.14, instead of t=3.60 when the piecewise P 2 elements are
used. The instability is probably still due to numerical divergence, as even
the locally divergence-free discontinuous Galerkin solution has numerical
divergence manifested by the jumps of the normal component of the mag-
netic field across cell interfaces. Notice that for this example, computation
with WENO methods also blows up without divergence correction [18].
This stability problem might also be related to the choice of the limiters
(see, e.g. [30]). Further investigations are needed to clarify these issues and
these will be left for future work.

For this example, we also compare the results using locally diver-
gence-free and globally divergence-free [11] piecewise polynomial solution
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spaces, see Fig. 12, as well as the results using locally divergence-free and
standard piecewise polynomial solution spaces, see Fig. 13, by looking at
the cuts of pressure at different times when y = 0.8π . One can see that
when the solutions are smooth, these solution spaces give almost the same
results. Although there are slight differences in the solutions as shocks are
developed and interact with each other at later time, the main structures
captured by these three solution spaces are still basically the same.

We again, as in the smooth vortex example, monitor the size of the
global divergence of the magnetic fields in the RKDG solutions using
both the standard polynomial spaces and the locally divergence-free spaces
in Fig. 14. Though the actual curves depend on the limiter parameter M,
in general, the RKDG methods with the locally divergence-free spaces give
smaller global divergence.

3.2.5. Shock Reflection

In this section, the shock reflection example suggested in [1] is con-
sidered. This problem was originally constructed such that a 29◦ reflected
shock is the equilibrium solution across a Cartesian tube. The setup here
is the same as in [15]. We take [−1,1]× [−0.5,0.5] as the computational
domain, and γ =1.4. Setting

Up
l = (1.0,2.9,0.0,0.0,0.5,0.0,0.0,5/7),

Up
t = (1.4598,2.7170,−0.4049,0.0,0.6838,−0.1019,0.0,1.2229),

we use Up =Up
l as the initial data, Up =Up

t and Up =Up
l as Dirichlet

boundary conditions on top and left, and reflective and outgoing bound-
ary conditions for the lower and right boundaries, respectively.

The results for density at t = 2 are shown in Fig. 15 on a 100× 100
mesh with M = 1. The result on the left is from the computation using
standard piecewise P 2 elements, which is very oscillatory compared with
the one using locally divergence-free piecewise P 2 elements. Similar oscil-
latory features were also observed in [1] and were attributed to the lack
of the divergence cleaning (see also [15]). The oscillatory features using
the standard piecewise P k elements finally make the computation blow up.
For example, for k= 1, the blowing up happens at t=3.64. Computation
using locally divergence-free P k could however continue stably.

To see more details, we plot the contours for ρ at different times in
Fig. 16. One could see that at early time, for example at t = 0.2, when
the shock is not fully developed, the two solutions behave quite simi-
larly. There are some small numerical structures around the top left corner,
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Fig. 12. Orszag–Tang vortex example. The pressure distribution along y = 0.8π on 100×
100 mesh with M=1. From top to bottom: t=0.5, t=2.0, t=3.0, t=4.0. Solid line: globally
divergence-free P 2; dash-dotted line: locally divergence-free P 2.
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Fig. 13. Orszag–Tang vortex example. The pressure distribution along y = 0.8π on 100×
100 mesh with M=1. From top to bottom: t=0.5, t=2.0, t=3.0, t=4.0. Solid line: locally
divergence-free P 2; dash-dotted line: standard solution space P 2.
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Fig. 14. The divergence of B against time t for the Orszag–Tang vortex example on
100×100 mesh with M=0 when k=2.
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Fig. 15. Shock reflection. 15 equally spaced contours of ρ∈ [0.86,2.18] at t=2 on 100×100
mesh with M=1. Left: P 2; right: P 2-LDF.

which is quite common in the computation of such problems. When time
goes on, the situation is changed: in the case with the locally divergence-
free solution space, those small numerical structures stemming from the
corner are slowly smoothed out, and convected away through the right
boundary, so the whole computation moves on stably. For the standard
piecewise P k computation, however, there are small scale structures gener-
ated to the right of the shocks, for example at t = 0.6, which accumulate,
form oscillations and make the computation unstable eventually. What we
see here is quite similar to what we have seen in the Orszag–Tang vortex
example: the locally divergence-free space has some “smoothing” effect in
the computation, which could enhance the stability of the scheme. Notice
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Fig. 16. Shock reflection. Thirty equally spaced contours of ρ at different times on 100×
100 mesh with M=1. From top to bottom: ρ∈ [1.03,1.50] at t=0.2, ρ∈ [1.02,1.52] at t=0.6,
ρ ∈ [1.05,1.92] at t=1.0, and ρ ∈ [1.05,2.10] at t=1.4. Left: P 2; right: P 2-LDF.

there is some boundary-layer-like structure near the top boundary of the
domain (see the right column in Fig. 16) which is some intermediate struc-
ture in the transition period and will disappear as time goes on. This inter-
mediate feature is related to the actual boundary treatment as well as the
solution spaces we are using.

Moreover, the computation using the standard piecewise P k is very
sensitive to the limiter parameter M; the larger M is, the earlier the com-
putation blows up. As for the computation with locally divergence-free P k,
the parameter M has no apparent influence to the stability.
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3.2.6. Rotor

In this section, we study the rotor example from [30].
The setup of this problem is as follows. There is a dense rotating disk

of fluid located in the central area, while the ambient fluid is at rest. A
“taper” function is used between these two areas, which helps to reduce
initial transient.

The computational domain is taken as [0,1]× [0,1]. γ =5/3. The ini-
tial condition is given by

Up= (ρ0, ux0, uy0,0,2.5/
√

4π,0,0,0.5)

with

(ρ0(x), ux0(x), uy0(x))=


(10,−(y−0.5)/r0, (x−0.5)/r0) if r <r0,

(1+9f,−f · (y−0.5)/r, f · (x−0.5)/r) if r0<r<r1,

(1,0,0) if r >r1,

where r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0), r = [(x − 0.5)2 + (y −
0.5)2]1/2. Note that the rotor is not in equilibrium, since the centrifugal
forces are not balanced. The magnetic field will confine the rotating dense
fluid into an oblate shape. Periodic boundary conditions are used.

The results at t=0.295 on a 100×100 mesh with M=10 are shown in
Fig. 17, which are the density ρ, pressure p, hydrodynamic Mach number
|u|/c with sound speed c=√γp/ρ, and also the magnetic pressure B2/2.
The solutions are very well resolved (see the results in [30] for a reference).

Similarly to what the authors of [5] and [30] have observed, when we
zoom in the central part of Mach number obtained by using the standard
piecewise P k (left column in Fig. 18), we see some “distortion” around the
central rotating area, for example near the points (0.40, 0.45) and (0.60,
0.55). Besides, we also find some extra features around the points (0.50,
0.35) and (0.50, 0.65). We say these features are “extra” since they are not
observed in [5] and [30], nor in our results using the locally divergence-free
P k (right column in Fig. 18). There is no distortion in our locally diver-
gence-free solutions, which are quite comparable with the “good” results
in [5] and [30]. This indicates that using the locally divergence-free space
can reduce nonphysical features in the computation.

We also plot cuts from Mach number to see the convergence of the
methods and the different behavior of the two solution spaces, in Fig. 19.
These cuts are at x= 0.413 and x= 0.545. It can be seen that the results
using locally divergence-free solution space behave better in convergence,
and they give relatively smoother solutions.



438 Li and Shu

0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 17. Rotor. From top to bottom: 15 equally spaced contours of density ρ ∈
[0.730,7.330]; pressure p ∈ [0.058,0.733]; Mach number |u|/c ∈ [0.147,2.270]; magnetic
pressure B2/2∈ [0.059,0.655]. At t = 0.295 on 100× 100 mesh with M = 10. Left: P 2; right:
P 2-LDF.
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Fig. 18. Rotor. Zoom-in central part for Mach number. 30 equally spaced contours with
range [0.18,3.12] at t = 0.295 with M = 10. From top to bottom: 100× 100 mesh, 200× 200
mesh, 400×400 mesh, 800×800 mesh. Left: P 2; right: P 2-LDF.
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Fig. 19. Rotors. Cuts of Mach number. Left column: at x = 0.413; right column: at x =
0.545. The first two rows are for convergence: dotted lines are for 400×400 mesh, solid lines
are for 800× 800 mesh; the top row is for P 2, the middle row is for P 2-LDF. The last row
is for comparison of P 2 and P 2-LDF: dotted lines are for P 2, solid lines are for P 2-LDF.
M=10.
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4. CONCLUDING REMARKS

Discontinuous Galerkin method using locally divergence-free piece-
wise polynomial solution spaces seems to be very effective for solving the
ideal MHD equations. It produces results no worse than the ones obtained
from the discontinuous Galerkin methods using the standard piecewise
polynomial spaces with the same polynomial degree, yet has a smaller
computational cost. More importantly, this locally divergence-free discon-
tinuous Galerkin method could enhance the numerical stability and reduce
some nonphysical features in the solutions.
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