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We describe the application of a local discontinuous Galerkin method to the
numerical solution of the three-dimensional shallow water equations. The shal-
low water equations are used to model surface water flows where the hydro-
static pressure assumption is valid. The authors recently developed a DG
method for the depth-integrated shallow water equations. The method described
here is an extension of these ideas to non-depth-integrated models. The method
and its implementation are discussed, followed by numerical examples on sev-
eral test problems.
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surface.

1. INTRODUCTION

In this paper, we describe a local discontinuous Galerkin (LDG) method
for the three-dimensional (3D) shallow water equations.

The shallow water equations are derived from the incompressible
Navier–Stokes equations defined on a domain with a moving free (top)
surface. The shallow water assumption reduces the vertical momentum
equation to the hydrostatic pressure relation

∂p

∂z
=−ρg,

where p is the hydrostatic pressure, ρ is density, and g is gravitational
acceleration. In many cases of practical importance, vertical effects are
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negligible and one can integrate the horizontal momentum equations and
the continuity equation over the depth, applying appropriate boundary
conditions at the bottom and free surface, to obtain the 2D shallow water
equations. Where eddy viscosity and/or density variations are important,
for example, where salinity and temperature are spatially varying, then the
full 3D model should be employed. See [16,17] for a discussion of shallow
water models in both two and three dimensions.

Shallow water equations are complicated by many nonlinear effects
and are defined on complex domains involving varying bottom topography
and coastal shorelines. Viscosity effects, especially horizontal viscosity, are
usually relatively small, and algorithms which are stable and accurate for
smooth to highly advective flows on general geometries are of interest for
the numerical solution of these models. A substantial literature exists on
the application of various finite difference and finite element methods to
the 3D shallow water equations; see, for example, [3,10,12,13]. The search
is still on, however, for methods which are locally mass conservative, can
handle very general types of elements, and are stable and accurate under
highly varying flow regimes. Recently developed algorithms such as the
discontinuous Galerkin (DG) method are therefore of great interest within
the shallow water community.

DG finite element methods are promising because of their ability to
handle geometrically complex elements, use of shock-capturing numerical
fluxes, adaptivity in polynomial order, and mass conservation properties;
see [7] for a historical overview of DG methods. In [2,4], we investigated
DG and related finite volume methods for the solution of the 2D shal-
low water equations. Viscosity (second-order derivative) terms are handled
in this method through the so-called LDG framework [5], which involves
rewriting the model as a first-order system of equations. In this paper, we
describe the extension of the LDG method to 3D shallow water models.

The rest of this paper is organized as follows. In the next section,
we introduce the governing equations and boundary conditions for our
model. In Sec. 3, we outline our solution strategy, which is described in
detail in Secs. 4 and 5. In Sec. 6, some preliminary numerical results are
given for problems with smooth and rough analytical solutions as well as
for a typical tidal flow problem.

2. MATHEMATICAL FORMULATION

The mathematical model of 3D constant density shallow water flow
includes momentum equations for the horizontal velocity components, a
continuity equation, and boundary and initial conditions. The domain
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over which these equations are defined has a free surface described by a
kinematic boundary condition.

The conservative form of the momentum conservation equations can
be written as follows:

∂uxy

∂t
+∇ ·

(
uxyuT −D∇uxy

)
+g∇xyξ −fck ×uxy =G, (2.1)

where ∇xy =
(

∂
∂x

, ∂
∂y

)
, ξ is the value of the z coordinate at the free surface,

u= (u, v,w)T is the velocity vector, uxy = (u, v)T is the vector of horizontal
velocity components, fc is the Coriolis coefficient, k = (0,0,1) a unit ver-
tical vector, g is acceleration due to gravity, G = (

Gx,Gy

)
is a vector of

body forces (it can include atmospheric pressure terms, tidal forcing, etc.),
and D is a tensor of eddy viscosity coefficients defined as follows:

D =
(

Du 0
0 Dv

)
(2.2)

with Du,Dv being 3×3 symmetric positive-definite matrices.
The continuity equation can be written as

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
=0. (2.3)

We augment the system with the following boundary conditions:

• At the bottom, we have no normal flow

u(zb) ·n =0 (2.4)

and no slip for horizontal velocity components

u(zb)=v(zb)=0, (2.5)

where zb is the value of the z coordinate at the sea bed and
n = (nx, ny, nz)

T is an exterior unit normal to the face.
• The free surface boundary conditions have the form:

∂ξ

∂t
+u(ξ)

∂ξ

∂x
+v(ξ)

∂ξ

∂y
−w(ξ)=0. (2.6)

∂u

∂n
= ∂v

∂n
=0. (2.7)
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On the lateral boundaries, we can have several types of boundary con-
ditions (note that we assume all lateral boundaries to be strictly vertical;
therefore, if n = (nx, ny, nz)

T is an exterior normal to a lateral boundary
face then nz =0):

• River boundary: Prescribed normal un and tangential uτ velocities

unx +vny =un, −uny +vnx =uτ , (2.8)

and prescribed surface elevation ξr(x, y, t)

ξ = ξr(x, y, t). (2.9)

• Land boundary: No normal flow

un =u ·n =0, (2.10)

and zero shear stress

∂uτ

∂n
=0. (2.11)

• Open sea boundary: Zero normal derivative of the horizontal
velocity components

∂u

∂n
= ∂v

∂n
=0, (2.12)

and prescribed surface elevation ξs(x, y, t)

ξ = ξs(x, y, t). (2.13)

• Radiation boundary: Zero normal derivative of the horizontal
velocity components

∂u

∂n
= ∂v

∂n
=0. (2.14)

Analytically, the free surface elevation can be computed using Eq. (2.6),
but, numerically, a more robust way to do it is to integrate the continuity
Eq. (2.3) over the depth and, taking into account the boundary conditions
at the top and bottom, obtain the following 2D equation for the surface
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elevation commonly called the primitive continuity equation (PCE):

∂ξ

∂t
+ ∂

∂x

∫ ξ

zb

udz+ ∂

∂y

∫ ξ

zb

v dz=0. (2.15)

The equation above or, alternatively, the wave equation derived by
substituting the 2D momentum equations in Eq. (2.15) is a standard part
of just about every 2- and 3D shallow water model in existence today,
though using this equation to compute the position of the free surface
within a framework of a 3D solver based on the DG method is not trivial,
that is unless we resort to solving an auxiliary 2D problem as is done in
many 3D shallow water solvers. We will discuss this issue in some detail
in Sec. 4.

Let us denote h = ξ − zb. Then, we can rewrite conservation Eqs.
(2.15) and (2.1) in the following compact form:

∂h

∂t
+∇xy ·CH =0, (2.16)

∂uxy

∂t
+∇ · (CM −D∇uxy)=F, (2.17)

where

CH =
(∫ ξ

zb
u dz

∫ ξ

zb
v dz

)
, CM =




u2 +gh uv

uv v2 +gh

uw vw


 , F =



Gx +g

∂zb

∂x
+fcv

Gy +g
∂zb

∂y
−fcu


 .

Thus, our system consists of the PCE (2.16), two momentum conser-
vation equations for horizontal velocity components (2.17), and the conti-
nuity equation (2.3).

3. GENERAL ISSUES AND SOLUTION STRATEGY

3.1. Solution Strategy

The general solution strategy employed in our implementation is not
substantially different from ones found in other 3D solvers. The main
differences lie in the fact that all state variables are approximated in space
with functions which are continuous on each element but can be discon-
tinuous across inter-element boundaries. For time stepping, we use explicit
Runge–Kutta methods choosing the time step and scheme order appropri-
ately to keep the error of the time stepping algorithm well within the error
of space discretization.
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Within a time step (substep in case of multistage Runge–Kutta meth-
ods), first, we solve the mass and momentum conservation equations.
These equations are tightly coupled and must be dealt with simulta-
neously. Then, for given values of horizontal velocity components uxy =
(u, v)T, we compute vertical velocity w from the discrete continuity equa-
tion to obtain a divergence-free velocity field. The latter equation is not
time dependent and is solved as an initial value problem layer-by-layer
starting at the bottom and using the solution from the layer below (or
boundary condition (2.4) at the bottom in case of the bottommost layer)
as an initial value.

Every few time steps the mesh geometry is updated using computed
values of the surface elevation. Frequency of mesh update can be chosen
according to the type of problem we are solving.

3.2. Computational Mesh

The most common type of mesh employed in 3D finite element sim-
ulations of shallow water flow is a 2D grid projected vertically and subdi-
vided into layers using a Cartesian or σ -stretched coordinate system. This
approach agrees well with the physical anisotropy of the problem, in which
the vertically directed gravity force usually is the main body force act-
ing on the system. The grids in our implementation also belong to this
type. In our model, we use prismatic elements with triangular cross-sec-
tion, strictly vertical lateral face and flat but not necessarily parallel top
and bottom faces.

An important feature of most modern 3D shallow water solvers, the
dynamic free surface, turns out to be the main stumbling block on the
way to a stable DG implementation. Since the surface elevation is one
of our state variables living in a discontinuous approximation space, the
grid determined by our discrete solution would also have a discontinuous
free surface, thus, the lateral faces shared by neighboring elements in the
uppermost layer of the mesh would, in general, not match. This causes the
boundary integrals over those faces to be ill-defined. In order to avoid this
problem, we smooth the free surface of our mesh (e.g., by the least squares
fit) and compute all 3D integrals on a grid with a globally continuous free
surface. This procedure only affects the geometry of elements and faces in
the uppermost layer of the computational mesh and does not change in
any way the computed values of the state variables or the discontinuous
character of the numerical solution. Thus, the local conservation proper-
ties of the LDG method are not degraded by this mesh smoothing post-
processing. In our experiments, the stability and accuracy of the numerical
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solution did not seem to be significantly influenced by the mesh smooth-
ing algorithm used.

3.3. Treatment of Discontinuities

In order to better understand the issues discussed below we have to
keep in mind the fact that we are solving a system of PDEs by a numer-
ical method in which the approximations to all state variables are discon-
tinuous across inter-element boundaries. This type of discretization gives
rise to a Riemann problem at every Gauss integration point on those
boundaries. In addition, the mass and momentum conservation equations
are tightly coupled. That puts us in a difficult situation: Eq. (2.16) is
a 2D equation and is not well-defined on the lateral boundaries of our
3D elements unlike the momentum Eq. (2.17). Uncoupling these equa-
tions or computing the surface elevation from (2.6) results in an unsta-
ble numerical model because, in that case, the boundary discontinuities
are not resolved properly. Since we did not want to resort to solving an
auxiliary 2D shallow water problem for the surface elevation, we modified
instead the boundary integrals in the discrete mass conservation equation
to bring them in a 3D form, thus obtaining a well defined Riemann prob-
lem at every Gauss point on the lateral 3D faces.

Here, it must be also noted that the Riemann problems corresponding
to the horizontal faces are significantly less demanding in terms of stabil-
ity than the ones on lateral faces. This situation is due to the fact that the
surface elevation is continuous across horizontal inter-element interfaces.
Our experience shows that computing nonlinear boundary fluxes on those
faces by upwinding or central differences does not cause any instability.
The more complex Riemann problems on lateral interfaces are handled in
our implementation with the help of Roe’s solver that will be discussed in
some detail in a separate section.

4. SPACE DISCRETIZATION, THE LDG METHOD

To discretize our problem in space using the LDG method, we first
introduce an auxiliary flux variable Q and rewrite the momentum conser-
vation equations in the mixed form:

∂uxy

∂t
+∇ · (CM +

√
DQ)=F, (4.1)

Q=−√
D∇uxy. (4.2)

Let Th be a general partition of our 3D domain Ω and let Ωe ∈ Th.
To obtain a weak formulation we multiply the equations above by smooth
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test functions φ,Ψ ; integrate them on each element Ωe ∈ Th; and, finally,
integrate by parts obtaining the following expressions:

∫

Ωe

∂uxy

∂t
φ dx dy dz+

∫

∂Ωe

(CM +
√

DQ) ·n φ ds

−
∫

Ωe

(CM +
√

DQ) ·∇φ dx dy dz=
∫

Ωe

F φ dx dy dz, (4.3)
∫

Ωe

√
D−1 Q Ψ dx dy dz=−

∫

∂Ωe

uxy Ψ ·n ds

+
∫

Ωe

uxy ∇ ·Ψ dx dy dz, (4.4)

where n is a unit exterior normal to Ωe. This weak formulation is well
defined for any uxy(t, x, y, z)∈H 1(0, T ; V d−1); w(t, x, y, z)∈V, ∀t ∈ [0, T ];
φ(x, y, z) ∈ V d−1; Q(t, x, y, z) ∈ Yd−1, ∀t ∈ [0, T ]; and Ψ (x, y, z) ∈ Yd−1,
where

V
def= L2(Ω)

⋂
{u :u|Ωe

∈H 1(Ωe), ∀Ωe ∈Th}, (4.5)

Y
def= L2(Ω)d

⋂
{q : q|Ωe

∈H 1(Ωe)
d , ∀Ωe ∈Th}. (4.6)

Next, we seek to approximate (uxy(t, ·),w(t, ·),Q(t, ·)), the solution to
the weak problem, with a function (Uxy(t, ·),W(t, ·),Q(t, ·)) ∈ Uh × Wh ×
Zh, where Uh ⊂V d−1, Wh ⊂V , and Zh ⊂Yd−1 are some finite-dimensional
subspaces. In order to do so we can use our weak formulation with one
important modification. Since our approximation space does not guaran-
tee continuity across the inter-element boundaries, the integrands in the
boundary integrals have to be replaced by suitably chosen numerical fluxes
preserving consistency and stability of the method. The semi-discrete finite
element solution (Uxy(t, ·),Q(t, ·)) is obtained by requiring that for any
t ∈ [0, T ], all Ωe ∈Th, and for all (φ,Ψ )∈Uh ×Zh the following holds:

∫

Ωe

∂Uxy

∂t
φ dx dy dz+

∫

∂Ωe

(ĈM,n +
√

DQ̂ ·n) φ ds

−
∫

Ωe

(CM +
√

DQ) ·∇φ dx dy dz=
∫

Ωe

F φ dx dy dz, (4.7)
∫

Ωe

√
D−1 Q Ψ dx dy dz=−

∫

∂Ωe

Ûxy Ψ ·n ds

+
∫

Ωe

Uxy ∇ ·Ψ dx dy dz, (4.8)

where ĈM,n is a solution to the Riemann problem for the nonlin-
ear boundary flux CM · n. We set Ûxy, Q̂ equal to the averages of the
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corresponding variables on both sides of the discontinuity. (Note that there
are other possible choices of Ûxy and Q̂.)

Discretization of the primitive continuity equation is done in a similar
way. Let Ωe,xy be the orthogonal projection of Ωe into the xy-plane. We
multiply Eq. (2.16) by a smooth test function δ = δ(x, y), integrate it over
Ωe,xy , and integrate by parts. Then, the mass balance in the water column
corresponding to the 2D element Ωe,xy can be expressed as

∫

Ωe,xy

∂h

∂t
δ dx dy +

∫

∂Ωe,xy

CH ·n δ ds −
∫

Ωe,xy

CH ·∇xy δdx dy =0.

(4.9)

Noting that CH =
(∫ ξ

zb
udz,

∫ ξ

zb
vdz

)
T and using the facts that δ is indepen-

dent of z and that h>0 we can transform the equation above as follows:
∫

Ωe,xy

∂h

∂t
δ dx dy +

∑
Ωe∈col(Ωe,xy )

∫

∂Ωe,lat

uxyh ·n
h

δ ds

−
∑

Ωe∈col(Ωe,xy)

∫

Ωe

uxyh ·∇xy

h
δ dx dy dz=0, (4.10)

where ∂Ωe,lat denotes the lateral boundary faces of prism Ωe, and
col(Ωe,xy) is the set of 3D elements in the water column corresponding to

Ωe,xy . Note that the expression above is well defined for any δ(x, y)∈H def=
L2(Ωxy)

⋂{h : h|Ωe,xy
∈ H 1(Ωe,xy),∀Ωe ∈ Th} and h(t, x, y) ∈ H 1(0, T ;H),

where Ωxy is the orthogonal projection of the domain Ω into the xy-
plane.

Analogous to the momentum conservation equations, we seek an
approximation H(t, ·) ∈ Hh to the solution of the weak problem H(t, ·),
where Hh ⊂ H is some finite dimensional subspace. Using the weak for-
mulation (4.10) and replacing integrands in the boundary integrals by a
suitable numerical flux we obtain our semi-discrete finite element solution
H(t, ·) ∈ Hh by requiring that for any t ∈ [0, T ], all Ωe ∈ Th, and for all
δ ∈Hh the following holds:

∫

Ωe,xy

∂H

∂t
δ dx dy +

∑
Ωe∈col(Ωe,xy )

∫

∂Ωe,lat

ĈH

ξs − zb
δ ds

−
∑

Ωe∈col(Ωe,xy )

∫

Ωe

UxyH ·∇xy

ξs − zb
δ dx dy dz=0, (4.11)

where ĈH is a solution to the Riemann problem for the normal bound-
ary flux UxyH ·n, and ξs denotes the value of the z coordinate at the free
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surface of the smoothed mesh. This boundary flux formulation has several
important advantages. It transforms integrals over 2D edges into integrals
over lateral faces of 3D elements, thus allowing us to solve the Riemann
problem for elevation simultaneously with the corresponding problem for
the momentum equations; it is consistent with the continuous formula-
tion; and it takes into account the coupling between velocity and elevation
which is crucial for stability of our numerical scheme.

Finally, we turn to the space discretization for continuity Eq. (2.3).
Unlike the mass and momentum conservation equations it is not time-
dependent, its main role being computation of the vertical velocity
component w to maintain a divergence-free velocity field. Regarding the
continuity equation with the boundary condition at the bottom as an ini-
tial value problem for w, we can solve it element by element in each water
column starting at the bottom and using the solution from the element
below to provide an initial condition.

Multiplying (2.3) by a smooth test function σ , integrating it over Ωe,
integrating by parts, and re-ordering terms we obtain a weak formulation
(recall that nz =0 on the lateral faces):

∫

∂Ωe,top

w nz σ ds −
∫

Ωe

w

(
∂σ

∂z

)
dx dy dz

=
∫

Ωe

uxy ·∇xyσ dx dy dz−
∫

∂Ωe,bot

w nz σ ds −
∫

∂Ωe

uxy ·n σ ds,

(4.12)

where ∂Ωe,top, ∂Ωe,bot denote the top and bottom boundaries of element
Ωe.

We seek W(t, ·) ∈ Wh, where Wh is some finite dimensional subspace
of V , such that for given values of Uxy(t, ·)∈Uh, for all Ωe ∈Th, and for
all σ ∈Wh the following holds:

∫

∂Ωe,top

W nz σ ds −
∫

Ωe

W

(
∂σ

∂z

)
dx dy dz

=
∫

Ωe

Uxy ·∇xyσ dx dy dz−
∫

∂Ωe,bot

W− nz σ ds −
∫

∂Ωe

Ĉw σ ds,

(4.13)

where W− is an initial value for W taken from the element below (or
a boundary condition at the bottom in the case of the bottommost ele-
ment), and Ĉw is a numerical flux for the normal boundary flux function
Uxy ·n. On the lateral boundaries Ĉw should be set equal to ĈH/ξs − zb (cf.
(4.11)) in order to preserve the local mass conservation properties of our
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numerical scheme. On horizontal faces it can be taken equal to the average
or upwinded value of the corresponding variables.

5. SOLUTION OF THE RIEMANN PROBLEM

In this section, we will see the main advantage of our formulation
for the surface elevation. Since we were able to modify the discrete form
of the primitive continuity equation to transform the boundary integrals
into 3D form, we end up with well-posed Riemann problems on the inter-
element boundaries. This allows us to tap into an extensive literature on
approximate Riemann solvers (see, e.g., Ref. [15]). Here, we demonstrate
how to compute nonlinear boundary fluxes using Roe’s solver [14]. Com-
pared to other Riemann solvers we tested [1] (Lax–Friedrichs, HLL), this
solver provided the sharpest resolution of discontinuities, and its well-
documented limitations with regard to resolution of certain rarefaction
waves did not appear to cause any problems in any of our test cases.

Let x be a point on Γ , where Γ is an interior lateral boundary face
in our 3D mesh. Let n = (nx, ny, nz) be a unit normal to Γ at x. We
denote c = (h, u, v)T the vector of state variables (we do not include w in
c because it enters the normal fluxes only multiplied by nz, and nz =0 for
lateral boundary faces). Then, we define the left and right states cL, cR at
x as follows:

cL = lim
ε→0−

c(x + εn), cR = lim
ε→0+

c(x + εn). (5.1)

Our task is to compute an approximation to nonlinear boundary flux Cn =
(uxyh ·n, cu ·n, cv ·n) at x.

In Roe’s solver, an approximation to the normal boundary flux is
given by

Ĉn(cL, cR)=Cn(cL)+
3∑

i=1

αiλ̂
−
i r̂i , (5.2)

where λ̂i are the eigenvalues and r̂i the corresponding eigenvectors of a
constant-coefficient matrix R̂n(cL, cR) defined below, x− = min{0, x}, and
αi are calculated from

3∑
i=1

αi r̂i = cR − cL. (5.3)

The matrix R̂n(cL, cR) has to satisfy the following three conditions [14]:
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(i) R̂n(cL, cR)(cR − cL)=Cn(cR)−Cn(cL);
(ii) R̂n(cL, cR) is diagonalizable with real eigenvalues;
(iii) R̂n(cL, cR)→C′

n(c) smoothly as cL, cR → c, where

C′
n(c)=




unx +vny hnx hny

gnx 2unx +vny uny

gny vnx unx +2vny


 . (5.4)

We claim that setting R̂n(cL, cR) equal to C′
n(c), where c = 1/2(cL +

cR), satisfies conditions on R̂n. Indeed, we obtain the following eigenvalues
and corresponding eigenvectors for C′

n(c):

λ1(c)= 3
2un − 1

2a, r1(c)=




h

u− nx

2 (un +a)

v − ny

2 (un +a)


 ;

λ2(c)= 3
2un, r2(c)=




0
−ny

nx


 ; (5.5)

λ3(c)= 3
2un + 1

2a, r3(c)=




h

u− nx

2 (un −a)

v − ny

2 (un −a)


 ;

where un =unx +vny and a =
√

u2
n +4gh. Therefore, condition (ii) is satis-

fied. Clearly, C′
n(c)→C′

n(c) smoothly as cL, cR → c. Finally, the first con-
dition can be verified by simply substituting the appropriate values in (i).

6. NUMERICAL RESULTS

Now, we will present some preliminary numerical results obtained
with our 3D solver. In the first test, we use a problem with a known
smooth analytical solution to obtain convergence rates. Next, we compute
a steady-state solution to a supercritical flow problem to demonstrate sta-
bility of the method in a case involving discontinuities. Our last example
is a standard tidal flow simulation on a domain with complex boundary
and bathymetry. In all runs, the time stepping was performed using explicit
TVD Runge–Kutta schemes described in Ref. [6] of the order matching the
order of the space discretization. The mesh smoothing, mentioned in Sec.
3.2, was carried out by simply averaging the values of the elevation from
the elements incident to each node and then connecting the nodes in the
surface layer with a piecewise linear globally continuous surface mesh. The
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Riemann problems on the lateral boundary faces were handled by Roe’s
solver and those on horizontal faces by an upwind flux.

6.1. Analytical Test Problem with a Forcing Term

In this section, we will show the results of convergence studies for
a test problem with a smooth analytical solution. Since designing a non-
trivial function satisfying our nonlinear system and boundary conditions
at the same time is not a trivial task, we chose a slightly different
approach. We had the true solution satisfy the continuity equation and
solved a Dirichlet problem for a modified system that included a forcing
term.

The 3D solver was tested on the following analytical test example:

ξ(t, x, y) = e (sin(ω(x + t))+ sin(ω(y + t))) ,

u(t, x, y, z) = d (z− zb) sin(ω(x + t)),

v(t, x, y, z) = d (z− zb) sin(ω(y + t)),

w(t, x, y, z) = d (z− zb)

(
∂zb

∂x
sin(ω(x + t))+ ∂zb

∂y
sin(ω(y + t))

)

− 1
2 d ω (z− zb)2 (cos(ω(x + t))+ cos(ω(y + t))) ,

where e=0.01, d =0.1, and ω=0.01. ξ(t, x, y) and zb(x, y) are the values
of the z coordinate at the surface and bottom, respectively, and (u,v,w) is
the velocity vector. The 3D domain Ω is a [0,100] × [0,100] square with
a dynamic free surface and the bathymetry varying linearly as zb(x, y) =
−(2−0.005(x +y)).

The problem was solved for t ∈ [0, T ] with T =0.001 days using 64-bit
floating point arithmetic. In Tables I–III below, we list the L2 norm of the
error at time T for the surface elevation and velocity. We denote by Ne
the number of surface triangles, Nl the maximum number of vertical lay-
ers, ∆t the time step in seconds, Er(·) the norm of the error, and C(·) the
convergence rate. The second-order diffusion terms were set equal to zero
for these test runs.

The convergence rates we observed for the surface elevation and hor-
izontal velocity components were similar to those obtained with the LDG
method for linear problems. (∆xk+ 1

2 for approximations with complete
polynomials of order k on irregular meshes.) However, we have to empha-
size that we are dealing here with a much more involved situation than a
linear hyperbolic problem. For example, note a slight degradation of the
convergence order for the surface elevation in the piecewise quadratic case.
The probable reason for this phenomenon is the meshing error at the free
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Table I. Piecewise Constant Approximation, Forward Euler

N Ne Nl Er(ξ ) C(ξ ) Er(u) C(u) Er(v) C(v) Er(w) C(w) ∆t

1 2 1 8.69×10−1 5.20×10−1 5.20×10−1 5.31×10−2 16
2 8 2 4.97×10−1 0.81 7.99×10−1 −0.62 7.99×10−1 −0.62 4.52×10−2 0.23 8
3 32 4 2.82×10−1 0.82 4.08×10−1 0.97 4.08×10−1 0.97 2.60×10−2 0.80 4
4 128 8 1.47×10−1 0.94 2.72×10−1 0.58 2.72×10−1 0.58 1.44×10−2 0.85 2
5 512 16 7.362×10−2 1.00 1.73×10−1 0.65 1.73×10−1 0.65 8.23×10−3 0.81 1
6 2048 32 3.67×10−2 1.00 1.11×10−1 0.64 1.11×10−1 0.64 4.77×10−3 0.79 0.5

Table II. Piecewise Linear Approximation, Two-Stage Runge–Kutta

N Ne Nl Er(ξ ) C(ξ ) Er(u) C(u) Er(v) C(v) Er(w) C(w) ∆t

1 2 1 3.36×10−1 5.28×10−1 5.49×10−1 3.61×10−2 8
2 8 2 1.11×10−1 1.60 2.04×10−1 1.37 2.07×10−1 1.41 1.24×10−2 1.54 4
3 32 4 2.98×10−2 1.90 7.53×10−2 1.44 7.58×10−2 1.45 4.40×10−3 1.49 2
4 128 8 7.63×10−3 1.97 2.39×10−2 1.66 2.40×10−2 1.66 1.72×10−3 1.36 1
5 512 16 1.94×10−3 1.98 7.27×10−3 1.72 7.29×10−3 1.72 7.49×10−4 1.20 0.5
6 2048 32 4.92×10−4 1.98 2.15×10−3 1.76 2.16×10−3 1.76 3.27×10−4 1.20 0.25

surface boundary, where the geometry was approximated by a piecewise
linear (globally continuous) surface mesh generated by our smoothing
algorithm.

In the case of the vertical velocity component the situation is even
more complicated because w is computed from the numerical approxima-
tions for u and v using continuity Eq. (4.13). Therefore, it should not
come as a surprise that w converges at a slower rate than u and v.
Another important thing to note in this context is the fact that the ratio of
vertical to horizontal velocity components corresponds to the ratio of ver-
tical to horizontal length scales (this is one of the fundamental properties
of the shallow water model). The same property is also seen for the mag-

Table III. Piecewise Quadratic Approximation, Three-Stage Runge–Kutta.

N Ne Nl Er(ξ ) C(ξ ) Er(u) C(u) Er(v) C(v) Er(w) C(w) ∆t

1 2 1 1.57×10−2 1.34×100 1.34×100 4.35×10−2 2
2 8 2 3.42×10−3 2.20 2.18×10−1 2.62 2.18×10−1 2.62 1.18×10−2 1.88 1
3 32 4 4.61×10−4 2.89 2.80×10−2 2.96 2.80×10−2 2.96 2.28×10−3 2.37 0.5
4 128 8 6.96×10−5 2.73 3.65×10−3 2.94 3.65×10−3 2.94 5.57×10−4 2.03 0.25
5 512 16 1.30×10−5 2.42 4.90×10−4 2.90 4.90×10−4 2.90 1.73×10−4 1.69 0.125
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nitude of the error for the corresponding terms. Thus, the error for w is in
absolute terms much lower than the error for u and v. Hence, at realistic
grid resolutions and domain aspect ratios, a somewhat slower convergence
for w should not degrade the accuracy of the scheme for other variables.

6.2. Supercritical Flow Problem

In this section, we test our numerical model on a 2D problem with
a known analytical solution and compare results from 2D and 3D sim-
ulations. Supercritical channel flows subject to a change in cross-section
can lead to formation of shock and rarefaction waves. Here, we take
one particular configuration given in Zienkiewicz and Ortiz [18]. We are
given a channel of uniform depth whose boundary wall is constricted on
both sides with a constriction angle of 5◦ resulting in a cross-wave pat-
tern. Flow is induced through the left boundary with no flow through
the top and bottom boundaries. The inlet Froude number is defined by
Fr = U/

√
gH , where U and H are the mean velocity and total depth

of the fluid at the inlet, respectively. When Fr > 1, the flow is said to
be supercritical. For our test, we chose Fr = 2.5. This problem can be
solved analytically using methods presented by Ippen in Ref. [9]. The
discontinuous true solution projected on our (smoothed) mesh is demon-
strated in Fig. 1.

The coarse 2D mesh consists of 3155 triangular elements with no par-
ticular orientation. We project these elements vertically to obtain a 3D
grid with prismatic elements. The 3D mesh can be refined horizontally by
subdividing every triangle in four using edge bisection, or/and vertically
by subdividing into layers. In our test runs, we set vertical and horizon-
tal eddy viscosities equal to zero and used a free-slip boundary condition
at the bottom.

As we can see in Figs. 2 and 3, the numerical solutions for this prob-
lem, certainly very challenging for traditional methods, show no insta-
bility. This fact is especially interesting in the case of piecewise linear
approximation because no slope limiters or any other stabilization tech-
niques were employed (or needed) in the course of the simulation. We also
verified that increasing the number of layers does not affect the solution
of this problems substantially (cf. Table IV) just as expected in case of an
essentially 2D problem.

In Table IV, we demonstrate the L2 norm of the error in surface
elevation for numerical solutions computed with different meshes and
approximation spaces. For comparison, we also list the errors for solutions
obtained using our 2D LDG simulator.
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Fig. 1. Constricted channel flow problem: true solution, one layer.

-1

-0.5

0

0.5

Z

-20
-10

0
10

20
30

40
50

60
70

X

0
10

20
30

40
Y

Z
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

-0.05
-0.15
-0.25
-0.35
-0.45
-0.55
-0.65
-0.75
-0.85
-0.95

Fig. 2. Constricted channel flow problem: piecewise constants, 10 layers.
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Fig. 3. Constricted channel flow problem: piecewise linears, 10 layers.

6.3. Tidal Flow near Bahamas Islands

In this test run, we simulate tide-driven flow near the Bahamas
Islands. The domain geometry and the coarse finite element mesh consist-
ing of 1696 elements are shown in Fig. 4. Finer meshes were obtained by
subdividing each triangle into four using edge bisection (we refer to this
mesh as “refined”) and by subdividing into vertical layers. The bathyme-
try is shown in Fig. 5.

Table IV. Error in Surface Elevation for Supercritical Flow Problem

Coarse Coarse Refined twice Coarse Coarse
mesh, mesh, mesh, mesh, mesh,

Model constants, constants, constants, linears, linears,
type one layer 10 layers one layer one layer 10 layers

3D 2.85 2.85 1.74 1.53 1.57
2D 2.75 N/A 1.61 1.42 N/A
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Fig. 4. Bathymetry for tide-driven flow past an island (Bahamas). Lengths are in meters.

The following tidal forcing with time (t) in hours was imposed at the
open sea boundary:

ξ̂ (t) = 0.075 cos
( t

25.82
+3.40

)

+0.095 cos
( t

23.94
+3.60

)

+0.100 cos
( t

12.66
+5.93

)

+0.395 cos
( t

12.42
+0.00

)

+0.060 cos
( t

12.00
+0.75

)
(meters). (6.1)

The simulations were cold-started and the tidal forcing was imposed grad-
ually over a period of 2 days. The Coriolis parameter was set to 3.19 ×
10−5s−1. The horizontal eddy viscosity was set equal to zero, the vertical
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eddy viscosity was modeled using a quadratic formula given by Davies in

Ref. [8]: vt = Kt
(ū2+v̄2)

1
2

ωa
, where ū, v̄ are depth averaged horizontal veloc-

ity components, ωa a typical long wave frequency taken as 10−4s−1, and
Kt =2×10−5 a dimensionless coefficient.

The elevation and velocities were monitored at four different stations,
whose coordinates in meters are (38666.66,49333.32), (56097.79,9612.94),
(41262.60,29775.73), and (59594.66,41149.62), for the duration of days 11
and 12 of the simulation at an increment of 600 s. A constant time step of
20 s was used in the runs performed on the coarse mesh, and a time step
of 10 s was taken for the refined mesh.

In Ref. [2], we simulated this tidal flow problem in 2D using UT-
BEST, our LDG solver for the depth-integrated shallow water equations,
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Fig. 6. Elevation and velocity approximations at Bahamas station 3 for days 11–12.

and compared the results to the 2D ADCIRC model of Luettich et al.
[12]. This time, we undertook a number of numerical experiments with our
3D solver utilizing different approximation spaces and meshes. In Figs. 6
and 7, we present the surface elevation and horizontal velocity time series
for the 3D LDG model together with those of ADCIRC and UTBEST.

For readability, we plotted data for each recording station on two sep-
arate graphs, the first one containing the results from both 2D models, the
3D LDG model with piecewise constants on various meshes, and the 3D
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LDG with piecewise linears on the coarse mesh. The second graph com-
pares several higher order 3D LDG solutions. For sake of conciseness, we
only included output from recording stations 3 and 4 noting that the other
two stations displayed good agreement similar to station 3.

Commenting on the results of these numerical experiments, we first
want to note that the 3D model is very sensitive to the choice of vertical
eddy viscosity closure, whereas the 2D models are just as sensitive to the
bottom friction formulation. Nevertheless, the results of 2- and 3D models
displayed an excellent agreement in phase and a good agreement in ampli-
tude — the last one with an exception of the anomaly at recording station
4 (see middle left graph in Fig. 7). The reason for this anomaly at velocity
recording station 4 is not quite clear, although we have to note that AD-
CIRC and UTBEST solutions, which virtually lie on top of each other
in all other plots, also show some disagreement in amplitude in this
particular graph. However, the agreement between higher order 3D solu-
tions is very good leading us to conclude that the piecewise linear solu-
tion on the coarse mesh is sufficiently close to the converged result. This
type of behavior was also seen in our 2D test runs, where the graphs
for piecewise quadratic solutions were almost indistinguishable from those
for piecewise linear approximations. The results of the simulation that
employs piecewise constants for elevation and piecewise linear polynomi-
als for velocity are also very close to the fully linear solution. This fact is
very encouraging since we want to have an option of using piecewise con-
stants for problems with “rough” surface elevation.

The graphs for piecewise constant polynomial spaces merit a closer
look. Though rather similar to the piecewise linear solution in most cases,
they can be a poor approximation at some points in space and time, and
even refining the mesh does not guarantee convergence to the linear solu-
tion at every point (compare the middle left graph in Fig. 7). The theory
of LDG methods for linear convection–diffusion problems states conver-
gence of order ∆xk for general triangulations, where k�1 is the order of
the polynomial space [5]. Thus, there is no guarantee of convergence for
piecewise constant approximations. Based on the results of our numeri-
cal experiments for the piecewise constant approximation, we can conclude
that our model displays behavior in agreement with the linear theory.

7. CONCLUSIONS

In this paper, we have described an implementation of the LDG
method for the 3D shallow water equations, and given some prelimi-
nary numerical results. The methodology shows promise for modeling
both high Froude number and tidal flows. More extensive testing of this
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Fig. 7. Elevation and velocity approximations at Bahamas station 4 for days 11–12.

algorithm and analysis of its convergence properties is underway and will
be reported in future papers.
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