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Abstract This study contributes to the growing complexity
of the impala fossil record through a morphological descrip-
tion and analysis of Aepyceros fossils from late Pleistocene
deposits in Kenya’s Lake Victoria Basin. We show that the
Lake Victoria impala belongs to an extinct species that differs
from modern impala and its fossil predecessors by a combi-
nation of exceptionally deep mandibles and teeth character-
ized by greater hypsodonty and occlusal lengths. Whereas
modern impala (4. melampus') displays substantial ecological
flexibility, these traits in the extinct species suggest a more
dedicated adaptation to grazing in open and dry environments.
Previous phylogeographic observations indicate that A.
melampus was extirpated from East Africa, perhaps during
the middle-to-late Pleistocene, and later recolonized from
southern Africa. The Lake Victoria impala raises the possibil-
ity that the evidence interpreted as extirpation may instead
reflect speciation, with A. melampus giving rise to a novel
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East African species while persisting unchanged in southern
Africa. Increased rainfall and rising atmospheric CO, concen-
trations at the end of the Pleistocene may have played a role in
the disappearance of the extinct form via habitat loss and
possibly competition with the more versatile A. melampus.

Keywords Aepyceros - Aridity - Extirpation - Hypsodonty -
Karungu - Rusinga Island - Quaternary extinctions

Introduction

Impalas (Aepyceros spp.) are distinguished among African
bovids by their long-term evolutionary success (Gentry
1978; Vrba 1980, 1984), persisting with relatively little mor-
phological change for the last >7 million years (Harris 2003).
The continuity of Aepyceros has been linked to ecological
flexibility (Vrba 1980, 1984). Modern impala (4depyceros
melampus) are mixed feeders (30-70 % dicots/grasses)
known to exhibit massive dietary shifts in response to local
resource availability (Meissner et al. 1996; Wronski 2002;
Cerling et al. 2003; Sponheimer et al. 2003a, b; Codron
et al. 2006). Their preferred habitat includes the lightly wood-
ed ecotone between open grasslands and dense woodlands,
where forage from both environments can be exploited
(Kingdon 1982; Skinner and Chimimba 2005). Although the
distribution of grasslands and woodlands expanded and
contracted during past climate oscillations (e.g., DeMenocal
2004), the ecotones between them are likely to have persisted,
providing suitable habitat under a range of paleoclimatic
conditions.

Initial interpretations of the fossil record suggested that
only a single species of impala existed at any time (Gentry
1978; Vrba 1980). However, recent evidence documents a
more speciose evolutionary history (Fig. 1). The earliest rep-
resentatives of the lineage (Aepyceros premelampus) are
known from the late Miocene of Kenya (Harris 2003), and it
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Fig. 1 a The geographic a
distribution of impala (4epyceros

melampus) in Africa (IUCN

2008). b The temporal

distribution of fossil Aepyceros

is now apparent that a handful of younger species overlapped
during the Pliocene (Geraads et al. 2009a, b, 2012; Gentry
2011) and early Pleistocene (Brink et al. 2012). Fossils attrib-
uted to the modern impala (4. melampus ) first appear in East
Africa ~2 million years ago (Harris 1991; Gentry 2010) and
their successors are abundant and widespread throughout
southern and East Africa today (East 1999) (Fig. 1).
Paralleling the growing complexity observed in the fossil
record, recent phylogeographic evidence also indicates a com-
plex history for 4. melampus. Genetic data suggest impala
was extirpated from East Africa one or more times during the
Pleistocene and later recolonized from a southern African
refugium (Nersting and Arctander 2001; Lorenzen et al.
2006, 2012). This scenario is supported by patterns of mor-
phological variation among modern impala (Reynolds 2010),
and is also seen in the phylogeographic histories of wildebeest
(Connochaetes taurinus) and eland (Taurotragus oryx)

Fig. 2 The location of Rusinga 30° 35°
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(Arctander et al. 1999; Lorenzen et al. 2010). The extirpation
of impala and other ungulates from East Africa is thought to
be related to habitat changes driven by Pleistocene glacial
cycles (Lorenzen et al. 2006, 2012; Reynolds 2007, 2010).

Here we contribute to the increasingly complex picture of
impala evolution through the documentation of an extinct
species from late Pleistocene deposits in Kenya’s Lake Victo-
ria Basin. This study provides a morphological description of
the fossil remains and a discussion of their biogeographic and
evolutionary implications.

Geological Context
The fossils discussed here were recovered from Rusinga Is-

land and Karungu in the Lake Victoria Basin (Fig. 2). Rusinga
Island is located within Lake Victoria and, although now
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connected to the mainland by a causeway, was historically
separated by a narrow channel ~350 m wide and ~5 m deep.
Pleistocene archacological and paleontological deposits have
been noted since the 1930s (Kent 1942; Maclnnes 1956; Van
Couvering 1972; Leakey 1974; Pickford 1984, 1986) and are
now the subject of renewed investigation focusing on the
environmental and ecological context of the Middle Stone
Age (MSA) archaeological sites (Tryon et al. 2010, 2012, in
press; Faith et al. 2011). The poorly consolidated Pleistocene
deposits on Rusinga Island, known as the Wasiriya Beds, are
characterized by weakly-developed paleosols and tuffaceous
fluvial sediments recording a complex cut-and-fill system.
The age of the Wasiriya Beds is constrained to between
100,000 and 33,000 years ago. The maximum age is provided
by geochemical analysis of tephra deposits, which suggests a
derivation from East African Rift System volcanic sources
that began erupting ~100,000 years ago (Tryon et al. 2010).
The minimum age is provided by a suite of calibrated radio-
carbon age estimates on the shells of gastropods that most
likely burrowed into the sediments at some point after depo-
sition (Tryon et al. 2010, 2012).

The fossil mammals from Rusinga Island suggest an ex-
pansion of grasslands distinct from the bushland, thicket, and
forest found in the region today (Faith etal. 2011, 2012; Tryon
et al. 2012). Open grassland species such as alcelaphine
antelopes (wildebeest and allies) are dominant and several
extinct specialized grazers are present, including Rusingoryx
atopocranion, Damaliscus hypsodon, Megalotragus, and
Syncerus antiquus. Fossil remains of arid-adapted oryx (Oryx
beisa) and Grevy’s zebra (Equus grevyi) are found well
outside of their contemporary ranges, suggesting greater arid-
ity relative to the present (Faith et al. 2013). The combination
of diminished rainfall together with the competitive advantage
of C4 vegetation at lower atmospheric CO, concentrations
probably accounts for the grassy paleoenvironment implied
by the fauna, consistent with paleo-vegetation models for
Pleistocene glacial phases (e.g., Cowling et al. 2008;
Prentice et al. 2011). In light of lake level fluctuations ob-
served historically (Nicholson 1998) and documented in the
late Pleistocene and Holocene geological record (Johnson
et al. 1996; Stager et al. 2002, 2011; Stager and Johnson
2008), the presence of large gregarious grazers and arid-
adapted ungulates from Rusinga Island suggests a connection
to the mainland (Faith et al. 2011). This is further supported by
the presence of a similar fauna from roughly contemporane-
ous deposits on nearby Mfangano Island, which imply a
>25 m decline in lake levels (Tryon et al. in press).

Karungu is located on the Kenyan mainland approximately
50 km south of Rusinga Island (Fig. 2). Initial archaeological
and paleontological explorations were conducted by Owen
(1937, 1938) and later by Pickford (1986), who surveyed
and mapped the Pleistocene deposits. Recent investigations
of these deposits in 2011-2012 documented MSA artifacts

and a rich fossil assemblage similar to that recovered from
Rusinga Island (see appendix in Faith et al. 2013). The Pleis-
tocene deposits from Karungu are lithologically similar to
those from Rusinga Island (Beverly et al. 2012), and prelim-
inary analyses of the tephra deposits at Karungu document
stratigraphic correlations between the two sites (Tryon et al.
2013), suggesting that they are of the same age.

The Lake Victoria Impala

Fossil collections over the last several years on Rusinga Island
and Karungu have yielded a modest sample of Aepyceros
dental remains, including isolated teeth, partial mandibles,
and a partial maxilla, that are morphologically distinct from
modern and fossil A. melampus (Table 1, Fig. 3). Due to the
lack of a complete specimen worthy of designation as a type,
we refrain from providing a formal species description here.
However, the existing sample is sufficient to document sub-
stantial morphological departures from 4. melampus and to
indicate the presence of an extinct late Pleistocene impala.
The following analyses make use of comparative measure-
ments on modern impala and Pliocene-to-Pleistocene fossil
remains from West Turkana (Harris et al. 1988), East Turkana
(Harris 1991), and Lainyamok (Potts and Deino 1995)
(Table 2), all housed at the National Museums of Kenya in
Nairobi (NMK). This sample includes representatives of
both 4. melampus and its slightly smaller predecessor A.
shungurae, in addition to specimens identified to genus only.
The modern and fossil samples include individuals from a
range of age classes, with the youngest individuals represent-
ed by specimens with the m2 in eruption and the oldest
individuals including specimens with all molars in an ad-
vanced state of wear (i.c., obliteration of the internal enamel
cavities). Although our sample of modern impala includes

Table 1 Details of Aepyceros specimens recovered from Rusinga Island
and Karungu. All specimens curated at National Museums of Kenya in
Nairobi

Specimen # Locality Element

KNM-RU 10733  Rusinga Island L ml or m2

KNM-RU 10679  Rusinga Island R M2

KNM-RU 56806  Rusinga Island R mandible fragment with m2-m3

KNM-RU 56805A Rusinga Island L mandible fragment with dp4-ml
KNM-RU 56805B Rusinga Island R mandible fragment with m1-m2

KNM-RU 56805C Rusinga Island

R maxilla fragment with dP4-M1

KNM-RU 56807  Rusinga Island R dp4

KNM-RU 56803  Rusinga Island R mandible fragment with m2
KNM-RU 56802  Rusinga Island R mandible fragment with m1-m2
KNM-RU 56804  Rusinga Island L M2

KNM-KA 56808  Karungu R M2
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Fig. 3 Select Aepyceros

specimens from Lake Victoria.
KNM-RU 56803: right mandible
fragment with m2 in (a) buccal
and lingual view, (b) occlusal
view. KNM-RU 56805B: right
mandible fragment with m1 and
erupting m2 in (c¢) buccal view.
KNM-KA 56808: right M2 in (d)
lingual and occlusal view

only East African individuals, Reynolds (2007) showed that
East and southern African impala have comparable cranial-
dental measurements.

The Lake Victoria impala shares several features with mod-
e A. melampus that distinguish their teeth from similarly-
sized Antilopini, such as Gazella or Antidorcas, including a
tendency toward more evenly rounded lingual lobes in upper
molars of middle-to-late wear, outbowing of the lingual walls
and centrally constricted internal enamel cavities of lower
molars, and thickened enamel on the internal enamel cavities
of upper and lower molars (Fig. 4). The tooth enamel of the
Lake Victoria impala tends to be thicker than in A. shungurae
or carly Pleistocene A. melampus. There is some overlap in
tooth size between the Lake Victoria impala and smaller
Alcelaphini, including blesbok (Damaliscus dorcas) and
extinct D. hypsodon, but it can be distinguished from these
and other alcelaphines by its smooth (not rugose) enamel
surfaces, more triangular (less circular) lobes of lower

Table 2 Comparative samples of fossil Aepyceros

Locality Taxa Age Reference
Lainyamok  Aepyceros melampus 392 — 330 Ka Potts and
Deino 1995
East Turkana Aepyceros melampus 2.3 —-1.6 Ma Harris 1991
West Turkana Aepyceros shungurae 4-1.6Ma  Harris 2003

Aepyceros cf. melampus

Aepyceros sp.

@ Springer

molars, flatter or concave labial walls of upper molars
(paracone and metacone), and less complex internal enamel
cavities of the upper and lower molars (Fig. 4). The concave
wall of the metacone is also seen in earlier Aepyceros, includ-
ing A. shungurae, A. dietrichi, and A. datoadeni, whereas it is
more often convex or flat in modern A. melampus.

The Lake Victoria impala is distinguished from modern
impala and fossil A. shungurae-melampus by exceptionally
high-crowned teeth and correspondingly deep mandibles
(Figs. 5 and 6). Figure 5 presents box-plots illustrating the
depth of the mandible anterior to the m1, m2, and m3 for
the Lake Victoria impala, modern impala, and fossil A.
shungurae-melampus (measurements follow von den Driesch
1976). The mandibular depth anterior to the m1 and m2 falls
outside the range of modern impala and its fossil predecessors,
with little overlap for the depth anterior to the m3. One-way
ANOVA shows that the mandibular depths anterior to the m2
and m3 differ significantly across groups (m2: F=17.15,
p<0.001; m3: FF=7.82, p=0.001), with Tukey’s pairwise
comparisons showing that this is driven entirely by the greater
mandibular depths of the Lake Victoria specimens, whereas
modern impala and fossil A. shungurae-melampus are indis-
tinguishable (Table 3). We are unable to provide a comparable
analysis comparing mandibular depths anterior to the m1 as
there is only one specimen where this measurement could be
taken, but we note that this specimen falls 4.07 and 2.76
standard deviations above the mean for modern impala and
fossil A. shungurae-melampus , respectively, suggesting that it
is not likely part of the same population.
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Fig. 4 Occlusal views of the m2
and M2 for Lake Victoria
Aepyceros, modern Grant’s
gazelle (Gazella granti), and
modern blesbok (Damaliscus
dorcas). Scale bar=1 cm

Lake Victoria Aepyceros

HY =y g

Gazella granti Damaliscus dorcas

The deep mandibles of the Lake Victoria impala imply a
substantial increase in dental crown height. This is clearly
seen on mandibular specimen KNM-RU 56803 (Figs. 3 and
6), where exposure of the lingual surface of the m2 allows for
a measurement of the paraconid height (41.5 mm). This spec-
imen is in an early state of medium wear (Klein and Cruz-
Uribe 1984) with the internal enamel cavities of both lobes
separated, suggesting that a moderate amount of the crown has
already worn away. Janis (1988) reports an unworn crown
height for modern impala m3 of 35.2 mm. We lack any
measurable m3s from the Lake Victoria impala, but assuming
a comparable crown height as the m2, this implies a >18 %
increase in crown height. This is likely a conservative esti-
mate, given that m3s in Aepyceros tend to be more high-

Mandibular Depth (mm)
20 25 30 35 40
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——

Modern (22)
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w @]

Fossil (12)

Modern (24)

Anterior to m3

Fig.5 Mandibular depths of the Lake Victoria impala compared to fossil
A. shungurae-melampus and modern Aepyceros melampus. Sample size
in parentheses. See also Table 3

crowned than the m2, as indicated here by greater mandibular
depths anterior to the m3 (Fig. 5).

Molar occlusal lengths show some overlap with modern
impala and fossil A. shungurae-melampus , although they tend
to be somewhat larger and with greater maximum dimensions
(Table 3, Fig. 7). The occlusal widths of the mandibular teeth,
however, are comfortably within the range of modern impala.
Because the molars are more high-crowned, this indicates an
increase in the hypsodonty index (tooth height divided by
width). Based on our tentative estimate of an >18 % increase
in crown height (41.5 mm) and assuming a comparable m3
width as modern impala (0.72 mm, after Janis 1988), this
implies a hypsodonty index of >5.77, a value in excess of
extant African bovids (Janis 1988).

The large molar occlusal lengths of the Lake Victoria impala
raise the possibility that its deep mandibles and high-crowned
teeth are related in part to greater body size. To examine
mandibular depth relative to body size, Fig. 8 illustrates the
relationship between m2 occlusal length, which is tightly cor-
related with body mass in ungulates (Janis 1990), and mandib-
ular depth anterior to the m2. Excluding an outlier from East
Turkana, these variables are correlated across modern impala
and fossil A. shungurae-melampus (r=0.486, p=0.009).

Fig. 6 Right mandibular fragment with m2 (KNM-RU 56803) overlaid
against a modern Aepyceros melampus mandible, illustrating the deep
mandible and high-crowned teeth of the Lake Victoria impala
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Table 3 Results of ANOVA comparing measurements of the Lake
Victoria impala (LV) to modern impala (AM) and fossil A. shungurae-
melampus (ASM). See also Figs. 5 and 7

Measurement ANOVA Tukey’s Pairwise
Comparisons
F P LV-AM LV-ASM AM-ASM
Mandibular depth 17.15 <0.001 <0.001 <0.001  0.57
anterior to m2
Mandibular depth 7.82  0.001 0.018 <0.001 041
anterior to m3
Occlusal length of m1  3.55 0.037 0.038  0.010 0.85
Occlusal width of ml1  2.63  0.085 0.99 0.440 0.48
Occlusal length of m2  7.38  0.002 0.076  0.001 0.28
Occlusal width of m2  14.6  <0.001 0.74 0.002 0.018
Occlusal length of M2 2.943 0.064  0.38 0.046 0.51
Occlusal width of M2 6.271 0.004 0.005 <0.001  0.706

Compared to these samples, the Lake Victoria impala is char-
acterized by deeper mandibles for its tooth size (i.e., body
mass). The mandibular depth of the smaller specimen (KNM-
RU 56802: 32.2 mm), which has a tooth size within the range
of modern A. melampus (Fig. 8), is 4.9 mm (18 %) deeper than
predicted by the regression for modern impala and A.
shungurae-melampus (27.3 mm). A similar shift is seen in
the mandibular depth of the larger specimen (KNM-RU
56803: 34.3 mm), which is 5.0 mm (17 %) greater than
predicted (29.3 mm), although the predicted value should be
treated with caution as its m2 occlusal length exceeds the limits
of the regression. These patterns suggest that when body size is
taken into account, the mandibles of the Lake Victoria impala

Fig. 7 Molar lengths and widths
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Fig. 8 The relationship between m2 occlusal length and mandibular
depth anterior to the m2 in Aepyceros. Least-squares regression line is
calculated for modern A. melampus and fossil A. shungurae-melampus

are 17-18 % deeper than modern impala or its fossil predeces-
sors, a figure that is in agreement with our estimate of a >18 %
increase in hypsodonty.

Discussion

The Aepyceros remains from Lake Victoria differ from mod-

emn impala and its fossil predecessors by a combination of
deep mandibles and molars characterized by elevated
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hypsodonty and greater occlusal lengths, with many of the
measurements reported here falling well outside the range of
modern and fossil impala. The fact that these morphological
traits are not seen in modern impala or several million years of
A. shungurae-melampus strongly suggests that the Lake Vic-
toria impala represents an extinct late Pleistocene Aepyceros.
The features characteristic of the Lake Victoria form have not
been described in any previously known Aepyceros (Cooke
1974; Gentry 1985, 2011; Harris 1991, 2003; Geraads et al.
2009b, 2012; Brink et al. 2012), suggesting that it represents a
novel species. The recovery of more complete specimens,
particularly horn cores, will be needed to more fully under-
stand how it differs from known impalas. There is no evidence
that A. melampus is present in the Lake Victoria sample.

It was previously thought that only a single species of
Aepyceros existed at any time in its evolutionary history
(Gentry 1978; Vrba 1984), but this viewpoint has been
overturned by recent discoveries of several temporally
overlapping Pliocene species (Fig. 1) (Harris 2003; Geraads
et al. 2009b, 2012; Gentry 2011) and the recognition of A.
helmoedi in the early Pleistocene of southern Africa (Brink
et al. 2012). Geraads et al. (2009b:68) note that rather than
consisting of a single lineage leading to modern impala, fossil
Aepyceros seems to have included numerous variants of a
basic impala pattern. In light of the diversity of earlier
Aepyceros, the presence of an extinct form in the late Pleisto-
cene is not unexpected.

The increase in mandibular depth and hypsodonty implies
significant ecological differences between the Lake Victoria
impala and modern impala. Both features are strongly corre-
lated with diet in African bovids (Janis 1988; Spencer 1995;
Sponheimer et al. 2003b; Damuth and Janis 2011), and the
increases in the Lake Victoria impala are suggestive of a
greater reliance on grassy forage. Although a rough estimate,
the estimated hypsodonty index (>5.77) falls solely within the
range of grazing ungulates that inhabit open grasslands
(Damuth and Janis 2011). A greater reliance on grasses and
grassland habitats is consistent with the associated faunal
communities at Rusinga Island and Karungu, which suggest
the presence of open and seasonally arid grassland habitats
(Tryon et al. 2010, 2012, in press; Faith et al. 2011, 2012,
2013).

Phylogeographic data suggest that A. melampus was extir-
pated from East Africa and later recolonized by a southern
African population (Nersting and Arctander 2001; Lorenzen
et al. 2006, 2012). The precise timing of these events remains
unclear, but the phylogeographic histories of other ungulates
show a convergent pattern of genetic substructuring between
East and southern African populations dating to the middle-to-
late Pleistocene (Flagstad et al. 2001; Brown et al. 2007;
Lorenzen et al. 2012). The presence of 4. melampus from late
Pleistocene and Holocene deposits (Beds IIT and V: <57 ka,
Gliganic et al. 2012) at Mumba rockshelter in Tanzania

(Mehlman 1989) suggests that the extirpation probably pre-
dates 57,000 years ago. The extinct late Pleistocene impala
raises the possibility that the proposed extirpation from East
Africa instead reflects allopatric speciation, with East African
A. melampus giving rise to a novel species and southern
African 4. melampus remaining unchanged (Fig. 9). This
scenario is consistent with arguments that dynamic climate
changes in East Africa contributed to high rates of evolution-
ary change (speciation and extinction) while relatively muted
climate fluctuations in southern Africa fostered a refugium
that conserved ungulate populations over evolutionary time-
scales (Reynolds 2007; Lorenzen et al. 2010, 2012).

The grassland adaptations of the Lake Victoria impala
suggest that vegetation change across East Africa may have
played a role in its divergence from A. melampus. Paleo-
vegetation models show that the combination of reduced
precipitation and lower atmospheric CO, concentrations dur-
ing Pleistocene glacial phases would have contributed to an
expansion of dry grasslands or shrublands and a contraction of
forests in equatorial East Africa (Cowling et al. 2008; Prentice
et al. 2011). These models are consistent with vegetation
reconstructions derived from pollen records (e.g., Elenga
et al. 2001; Prentice et al. 2011) and fossil leaf waxes
(Sinninghe Damsté¢ et al. 2011). Faunal evidence is consistent
with these changes, with equatorial East African faunas from
the last 400,000 years including several extremely hypsodont
or large-bodied grassland specialists, such as Damaliscus
hypsodon, Rusingoryx atopocranion, Megalotragus, and

. Aepyceros
melampus

. Aepyceros
sp. nov.

Contraction

Expansion

Glacial Interglacial -+«ssssseseeseess

Contraction &
extinction

Allopatric
speciation

Fig. 9 Hypothetical evolutionary histories suggested by genetic data
(top) and the combination of genetic and fossil data (bottom)
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Syncerus antiqguus (Marean and Gifford-Gonzalez, 1991;
Marean, 1992; Potts and Deino, 1995; Faith et al., 2011,
2012; Tryon et al., 2012). Their presence alongside arid-
adapted ungulates such as Grevy’s zebra and oryx is thought
to signal a more arid environment characterized by dry grasses
and scrub vegetation. The expansion of such vegetation dur-
ing middle-to-late Pleistocene glacial phases may have trans-
lated to selective pressure for a grassland-adapted impala, a
hypothesis consistent with the adaptive implications of elevat-
ed hypsodonty (Marean 1992; Damuth and Janis 2011; Faith
et al. 2012; Jardine et al. 2012). Such evolutionary change
could reflect a greater reliance on open habitats compared to
A. melampus or the mechanical demands of consuming dry
grasses and grit.

Although the extinction chronology is only secure for D.
hypsodon and S. antiquus , it has been proposed that increased
rainfall at the onset of the Holocene contributed to a loss of
arid grasslands and increased competition with mesic-adapted
species, leading to extinctions across the arid grassland com-
munity (Marean and Gifford-Gonzalez 1991; Marean 1992;
Faith et al. 2011, 2012, 2013). In addition, the expansion of
the equatorial forest belt (e.g., Cowling et al. 2008), driven by
increased precipitation and rising atmospheric CO, levels,
may have fragmented populations of grassland species and
increased the likelihood of their extinction (see also Lorenzen
et al. 2012). The morphological evidence for dietary special-
ization in the Lake Victoria impala indicates a less flexible
ecology, in which case competition with ecologically flexible
A. melampus may have also contributed to its demise. How-
ever, a refined chronology is clearly needed to test these
hypotheses in detail.

Conclusions

The Lake Victoria impala fossils represent an extinct late
Pleistocene species of Aepyceros that is morphologically dis-
tinct from modern A. melampus and its fossil predecessors. In
contrast to the ecological flexibility characteristic of modern
impala, its deep mandibles and more hypsodont dentition are
consistent with a specialized adaptation to grassland environ-
ments. The presence of an extinct late Pleistocene impala
contributes to the increasingly speciose fossil record of impala
evolution and is consistent with the dynamic history suggested
by phylogeographic data. We suggest that the previously
proposed extirpation of East African 4. melampus may reflect
cladogenetic speciation related to the expansion of seasonally
arid grasslands during middle-to-late Pleistocene glacial
phases. Habitat loss mediated by increased rainfall and rising
atmospheric CO, concentrations at the end of the Pleistocene
may have played an important role in the extinction of the
Lake Victoria impala, perhaps exacerbated by competition
with more versatile 4. melampus .
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