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GEOMECHANICS 

EFFECT OF VISCOSITY OF PARTINGS IN BLOCK-HIERARCHICAL MEDIA  
ON PROPAGATION OF LOW-FREQUENCY PENDULUM WAVES 

N. I. Aleksandrova, E. N. Sher, and A. G. Chernikov UDC 539.375 

The study focuses on the pendulum-type wave propagation in an assembly of steel rods parted alternatively 
by rubber and foam plastic and exposed to impulse loading. The proposed numerical model describes this 
system as a chain of masses linked by elastic springs and viscous damping elements. At large times from the 
loading onset, the asymptotical estimates of velocities and accelerations of the masses are obtained. The 
numerical calculations, analytical solutions and experimental data are compared, and the domain of 
applicability of the analytical evaluations is delimited. The authors show that this model adequately describes 
perturbations in the system of rods with alternating visco-elastic partings. 
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The contemporary geomechanical and geophysical sciences describe deformation of a rock mass as 
of a complex hierarchy of block structures. As per this concept, a rock mass is a system of various scale 
blocks embodied into one another [1, 2]. Inter-block layers are usually composed of weaker and 
fissured rocks, and, based on that, deformation of a block rock mass, both statically and dynamically, 
occurs due to deformation of these partings.  

The theoretical and experimental studies into the waveguide properties of one-dimensional block 
models in the form of chains of elastic blocks with friable layers in between them showed that wave 
propagation in such media is sufficiently described by an approximation that the blocks are non-
deformable bodies. And the low-frequency pendulum-type waves that arise under an impact action are 
cleanly enough represented in this case [3 – 7]. We know from experiments that high-frequency waves 
peculiar for natural oscillations of blocks attenuate rather quickly. A good compliance of the theory and 
experiment is reached in a visco-elastic model of the partings [8, 9]. 

This article is a study into the damping effect of the partings of blocks on the propagation of non-
stationary waves in periodical block hierarchies.  

EXPERIMENTAL STUDY OF WAVE PROPAGATION IN ONE-DIMENSIONAL BLOCK MODEL  

An assembly of steel rods with a length 1.0l  m and weight 3822.0m  kg, parted with different 
materials was tested. The rods were installed into a vertical tube with lengthwise cuts for cables of 
accelerometers KD-91 built lengthwise in the 3rd, 4th, 5th, 12th and 13th rod, in the upper part. The 
free upper-rod face was impacted with a force read by an accelerometer attached to the hammer head. 
Due to the 2 m length of the assembly, it was possible to register oscillations of the rods prior to the 
arrival of reflected waves from the lower face of the assembly by analog-to-digital converter E-440 for 
simplifying the data processing and, in particular, FFT.  

Institute of Mining, Siberian Branch, Russian Academy of Sciences, E-mail: vzryvlab@misd.nsc.ru, 
Novosibirsk, Russia. Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 
No. 3, pp. 3-13, May-June, 2008. Original article submitted March 20, 2008. 

1062-7391/08/4403-0225  2008 Springer Science + Business Media, Inc. 



 226

Characteristic experimental oscillograms of rock accelerations )(tu j  ( j is a number of a mass) and 

their spectral densities dtetuG ti
T

jj )()(
0

 plotted for systems with different partings are shown 

as solid lines in Figs.  1 – 3, where dashes and thin solid lines depict the theoretical calculations 
described below. Figures 1 and 2 illustrate the data obtained in the 4th and 12th rods parted by foam 
plastic and porous rubber, respectively; and acceleration oscillograms and spectral densities plotted for 
the 3rd and 13th rods parted alternatively by foam plastic and porous rubber are in Fig. 3. This 
experiment agrees with modeling wave propagation in a second-order hierarchical medium [10], where 
blocks contain sub-blocks as in Born’s chain.  

Figures 1 and 2 show the propagation of an impact-excited low-frequency pendulum-type wave in 
the first-order rod system (no sub-blocks). The properties of partings govern the pendulum wave speed, 
spectral composition and attenuation coefficient. The rod system with foam plastic partings has the 
maximum propagation speed (114 m/s), wide frequency band (to 300 Hz) and weak attenuation as 
compared with the rods parted by porous rubber, where the wave propagation speed is 77 m/s, 
frequency band is up to 230 Hz. The rods parted alternatively by foam plastic and porous rubber, as a 
prototype of Born’s chain, are characterized by the more complex wave behavior (Fig. 3). Two waves, 
low-frequency pendulum wave followed by high-frequency pendulum wave, are observed in the first 
rods. While propagating, the high-frequency wave attenuates quickly, unlike in a system of elastic 
springs [10], and is absent on the 13th rod already; only the low-frequency pendulum wave is recorded 
with its propagation speed of 65 m/s, which is less than in the porous rubber parted rod system. 
Accordingly, the wave pattern in the first rods has two maximums for two waves. It is seen that in the 
propagating high-frequency wave, the amplitude weakens quicker than the amplitude in the low-
frequency wave, and there is no second maximum in the 13th rod.  

 

Fig. 1. Acceleration oscillograms for (a) 4th and (b) 12th rod and their spectral densities in a system of 
rods with foam plastic partings exposed to impact loading 
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Fig. 2. Acceleration oscillograms of (a) 4th and (b) 12th rods and their spectral densities under blowing a 
system of rods with porous rubber partings 

We have experimentally obtained that energy dissipation in the partings influences largely the 
wave propagation in a block system, which calls for theoretical modeling of this process. Visco-elastic 
behavior of partings is one of the causes of energy dissipation, which has successfully been taken into 
account in modeling wave propagation in one-dimensional chain of masses with two couples of elastic 
and damping elements inserted in line or in parallel [8, 9]. We analyzed theoretically a model with 
partings and parallel arranged elastic and damping elements.  

 

Fig. 3. Acceleration oscillograms of (a) 3rd and (b) 13th rod and their spectral density for the case when 
an impact is performed on a chain of rods parted in turn by foam plastic and porous rubber 
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Fig. 4. Scheme of a model of the second order hierarchic system of visco-elastically linked masses, 2l  
in length 

Problem Statement. The problem covers a chain of masses interlinked by visco-elastic layers as in 
Fig. 4. A system of masses with two types of partings arranged in turn is described by motion equations 
as below:  

 )()()()( 1,2,11,1,221,2,11,1,22,1 nnnnnnnnn uuuuuukuukum , Nn ...,,2 ,  

 )()()()( ,21,11,1,22,21,11,1,22,2 nnnnnnnnn uuuuuukuukum , 1...,,1 Nn , (1) 

 )()()( 1,11,221,11,221,1 tQuuuukum ,   0,2 Nu . 

Here, nu ,1  and nu ,2  are displacements of the first and second masses, respectively, in an n -th block; 1k  

and 2k  are spring stiffnesses; 1  and 2  are viscosities of damping elements; m is a mass; l is a 

distance between masses. Initial conditions are zero. The chain end mass is rigidly fixed. At 0t  the 
first mass is affected with a half-sine force with an amplitude 0P : 

 )()()sin()( 00 tHtHtPtQ , (2) 

where  is an impact frequency; H  is Heaviside’s function. The difference between this system and 
Born’s chain from [10] is the damping elements.  

Dashed curves in Figs. 1 – 3 are for the finite-difference method solution of (1), (2) by an explicit 

scheme. Connection between the numbers of masses, j, in the chain, of block n and of mass k in the 
blocks is by the formula: knj 22 . Viscosity and stiffness parameters of different partings for 

numerical modeling were chosen on the basis that a pendulum wave propagation speed and its period 

velocity coincide in the vicinity of the wave front, as per the experiments on homogenous systems 
(Figs. 1 and 2). The value of  was also experimentally obtained. Thus, for porous rubber partings: 

2021  kg/s, 6
21 102.0kk  kg/s2, 14.3  Hz; for foam plastic partings: 

3521  kg/s, 6
21 105.0kk  kg/s2, 66.13  Hz. Numerical calculations for an assembly 

interlaid with foam plastic and porous rubber partings were performed with the same viscous and stiff 
parameters as of homogenous systems: 201  kg/s, 352  kg/s 6

1 102.0k  kg/s2, 
6

2 105.0k  kg/s2, the only difference was 71.15  Hz. The other calculation parameters were the 

same as per the experiment: 1.0l  m, 3822.0m  kg, 001.0  ms (  is a time step of the difference 

scheme). Comparison of the numerical and experimental curves shows that the chain model of the 

visco-elastically linked masses gives a good description of the experimental oscillograms and spectra at 
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short distances from the point of attack (3rd – 5th rods). At long distances the experimental pendulum 

wave amplitude decays markedly stronger that the calculated one, though there is no mismatch in the 

wave propagation speed and the signal shape. This circumstance means that the question of energy 

dissipation during wave propagation in a block-structured medium needs a more profound research, 

and the theoretical model should be improved.  

Asymptotic Estimates. The analytical solution to be obtained, let the chain of masses be infinite. 

Applying the Laplace transform in time and the Fourier transform in longitudinal coordinate n (  and q 

are the corresponding parameters) to a system of equations (1) with force (2) yields the solution in as 

the Laplace – Fourier representation:  
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Here, ),( qpD  is a dispersion operator of the system.  

Analyzing equation 0),( qiqcD , we study the first two modes of the dispersion curves. Figure 5 

shows the relationships of modes I and II of the frequency qc , phase and group velocities and the 

wave number q, calculated with the same parameters as in Fig. 3. Similarly to the case of no viscosity 
( 021 ) [10], there are two frequency cut-off zones (propagation of harmonic waves with such 

frequencies is impossible): 21  and 3 , where 1 , 2  at low viscous parameters 

coincide with high accuracy with the analogous values for Born’s chain without damping elements [10]: 

1102,1 ,   
m

kk 21
0 ,   

2

2
2121

3
)(2

mm
kk

,   
2

21

21

)(

4

kk
kk

. (3) 

The vertical dashed lines in the spectral density graphs in Fig. 3 and horizontal dashed line in Fig. 5 
correspond to 1 , 2 , 3  calculated from (3). Analysis of the graphs shows a concordance of estimates 

(3) and both the experimental and theoretical spectra obtained with the finite-difference method.  

 

Fig. 5. Dispersion curves  
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Analysis of )(q  produced the formulas below to find asymptotics of the infinite-long waves 
)0(q : 
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Evident is the independence of velocity 1  of long-wave excitations forming a quasi-front from the 

viscosity of damping elements.  
Using Slepyan’s method of inverse of two-to-one integral transforms in the vicinity of the ray 

tcx 1  [11], we have obtained the asymptotics of low-frequency excitations near the quasi-front tcx 1  

at infinitely large time from the process onset:  
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When 021 , there is no an exponential factor under integrals )0(  and formulas (5) take 

on the form of:  
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Here, Ai  is Airy’s function [2]. When the viscosity is zero, lowering of the maximal acceleration 
amplitude near the quasi-front as the number of a block grows is proportional to 3/2n , the same 
decrease for the velocities is proportional to 3/1n : 

 3/2

*

10
,1 )22(

52.0
max n

lm
cP

u nt
,   3/1

*

0
,1 )22(

07.1
max n

m
Pu nt

,  n .  

The viscosity present causes higher damping. When 0, 21  and n  at the same time, 

formulas (5) get simpler:  
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The decrease of the maximal amplitudes of the velocities of masses is proportional to 2/1t , the 
same decrease for the accelerations is proportional to 1t : 
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It follows from a comparison with an analytical solutions obtained for homogenous assembly [8] 
that with high viscosity parameters 0, 21  and when n  the long-wave excitations behave in 

the same way as in the equivalent homogenous assembly with the reduced stiffness k  and viscosity : 
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If partings have low or no viscosity, the equivalent homogenous assembly parameters are found 
based on the condition of equality of long wave velocities and coefficient  in formulae (4):  
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With the purpose of deriving the analytical expression for the spectral density, we apply the 

transform dtetff tiL )(
0

~
 to (1) and (2). The linear system of equations yields expressions for 

representation of the displacements:  
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The spectral densities are derived from (8):  
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The value of r is selected so that the condition that 1z  holds true, which corresponds to solutions 
decreasing at the infinity.  

The boundaries of the domain of applicability for the derived analytical solutions were determined 
from comparing them with the finite-difference solutions of the system of equations (1), (2). 

Figure 6 depicts accelerations of the 20th and 80th masses in the composite assembly with the 
same parameters as in Fig. 3. The solid curve is calculated by the finite difference method (explicit 
scheme, 001.0  ms), dashed curve 1 shows asymptotics (7), and 2 is for asymptotics (5). It  
follows from the comparison that for the composite assembly the finite-difference solution and 
asymptotics (5) come to a concordance much far from the point of attack (n ~ 10) than for the 
homogenous assembly (n ~ 5). Asymptotics (7), derived from (5) with the assumption that n , 
satisfactorily describes the finite-difference solution results starting from n ~ 40. Comparing (7) and the 
numerical calculations indicates that the higher is the viscosity parameter, the faster the both solutions 
come into accordance.  

In Fig. 3 there are graphs of the spectral densities of accelerations in the 3rd and 13th masses, that 
correspond the analytical solution (9). Analysis of the theoretical graphs yields that in the system with 
viscosity, similarly to the experiment, the high-frequency oscillations versus the low-frequency ones 
decay faster as perturbations propagate over the system. With such values of viscous parameters and 
when 10n , the maximal high-frequency oscillation amplitude in the range 32  is less than 

1 % of the maximum in the range 1 . 

 

Fig. 6. Accelerations of (a) 20th and (b) 80th masses in z composite assembly with viscosity  
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Fig. 7. Oscillogram of acceleration and the acceleration spectrum density for the 20th mass in a composite 
assembly, disregarding viscosity of the partings 

To illustrate the effect of viscosity of partings, we performed calculations disregarding this 
property. Oscillograms of acceleration and the acceleration spectrum density of the 20th mass when 

021  are presented in Fig. 7 with the other parameters as in Fig. 6. The solid curve in the graph 

of the acceleration spectrum densities is calculated for the finite-difference solution, the dashed curve is 
for analytical solution (9), and the vertical line is shows values k  from (3). Comparison of the 

acceleration oscillograms for the 20th mass in Figs. 6 and 7 shows that viscosity causes a very strong 
(by orders of magnitude) decay of the high-frequency oscillations behind the quasi-front tcx 1  and a 

decrease of the maximal acceleration amplitude of the low-frequency pendulum wave near the quasi-
front (for these parameters the reduction factor is 1.5). The same fact is confirmed by the graphs of the 
density spectra (Figs. 3 and 7): in the system without viscosity the high-frequency oscillations attenuate 
with growing n much slower than in the system with viscosity. The analytical solution presents a good 
qualitative and quantitative description of the spectrum densities obtained from the finite-difference 
solution. A slight difference in these solutions is due to the numerical dispersion.  

CONCLUSION 

Using an assembly of steel rods linked in turn via partings with different properties as an example, 
the authors have demonstrated the feasibility of modeling propagation of one-dimensional waves in 
block-hierarchical media based on the model of a chain of masses linked via visco-elastic springs. As a 
result, the authors have obtained the asymptotic regularities of a decay of the low-frequency pendulum 
waves excited by an impact in the second-order block-hierarchical medium with visco-elastic partings 
and the analytical formulas describing the spectral density of excitations in this system.  

It has been determined experimentally and theoretically that when perturbations propagate over a 
block-hierarchical medium, both low-frequency pendulum waves and high-frequency waves arise in it. 
The dissipation properties of partings cause that the high-frequency waves decay quickly, the low-
frequency pendulum waves attenuate faster as well. For instance, a decrease in the maximal amplitudes 
of velocities of masses and strains in the system with viscous partings is proportional to 2/1t , the same 
decrease for the accelerations is proportional to 1t ; at the same time, for the system without viscosity, 
this proportionality is 3/1t  and 3/2t , respectively. It has theoretically been confirmed that given the 
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partings possess the viscosity, the long-wave excitations in a hierarchical medium, as in the case with 
ideal springs, exhibit the same asymptotical behavior as in the equivalent homogenous chain of masses 
with the reduced viscosity and stiffness parameters.  

The study was conducted with financial support from the Russian Foundation for Basic Research, 
Project No. 06-05-64738, and from the Siberian Branch of the Russian Academy of Sciences, Integration 
Project No. 93.  
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