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MODELING OF WAVE PROPAGATION IN BLOCK MEDIA

N. I. Aleksandrova and E. N. Sher UDC 550.834 + 622.831

Propagation of strain waves is experimentally investigated under impact loading of a rod system
composed of steel cylinders separated by pliable interlayers. The existence of pendulum-type waves is
confirmed. In order that wave process in the rod system is numerically described, a viscoelastic model of
deforming materials of interlayers used in the experiment is constructed. It is shown that the velocity of
waves and the degree of their attenuation are to a great extent dependent on viscous properties of the
material of interlyers.
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Rocks are characterized by block structure, which is run down on various scale levels from crystal
grains to rock mass block separated by large faults [1]. On some levels, blocks get detached by joints with
weakened mechanical properties, which affects the process of wave propagation in such medium [2].
It has been shown that in block medium, wave groups named pendulum waves propagate with
velocities that are far less than velocities of longitudinal waves [3 — 5]. This is explained by oscillation
developing in a chain of stiff blocks interacting by pliable interlayers. Process of wave propagation in
one-dimensional physical model constructed with the use of silicate bricks and organic glass blocks is
investigated in [4].

In the present paper, block structure was modeled by steel rods 25 mm in diameter and 100 mm in
length separated by interlayers made of dense and porous sheet resin, linoleum, and foam plastic. The
steel rod are advantageous for possible use of one-dimensional deformation schemes when modeling
theoretically wave propagation in the rods — interlayers chain.

EXPERIMENTAL MODELING OF WAVE PROPAGATION IN A COMPOUND ROD SYSTEM

The rods separated by interlayers were arranged in a vertical pipe with longitudinal openings to
outlet cables of sensors recording characteristics of movement. Accelerometers lengthwise embedded
into some rods served as the sensors. The rods were distributed along the upper part of the assemblage.
Impact was delivered on the free end of the upper rod, the impact parameters were recorded by
accelerometer mounted on striker. Due to the assemblage length of 2 m, it was possible to record
oscillations prior to arrival of waves reflected from the lower part of the assemblage.

Material of interlayers, duration of loading impact pulse, and the pulse amplitude were varied.
Some experiments were conducted under conditions when the assemblage of interlayered rods was
tightened by external rubber tractions.

The data obtained in the experiments were characterized by two distinguished types of waves: low-
frequency waves and lagging high-frequency waves. The latter have a frequency of 25 kHz that
coincides with the natural frequency of a steel rod 100 mm in length.
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Fig. 1. Strain in (@) the fifth and (b) the tenth rod in the system after impact

Such behavior of waves in a compound elastic rods — springs system was qualitatively determined
in [6], where propagation of impact-generated waves was investigated analytically and numerically for
linearly elastic springs. Figure 1 demonstrates an example of calculating strains in rods after short-
duration impact.

As distinct from theoretical results, in the experiments, more intensive attenuation of waves is
observed. This is especially particular for the high-frequency waves that attenuate very strongly and are
recorded practically on the first three rods. Under short impact pulse, the amplitudes of the waves are
larger and the waves propagate father as rigidity of interlayers increases. In Fig. 2a, b, c the
oscillograms are presented for accelerations of the first, third, and eleventh rods in a compound system
with dense rubber interlayers.

Another difference between the experimental and theoretical data was a considerable discordance
in the velocities of low-frequency waves. The theoretical results obtained with the static rigidities of
interlayers appeared to be several times less than the experimental ones. This may be explained by
inelastic behavior of interlayers, and their deformation properties were therefore investigated at various
loading rates. Loading was carried out at the strain rate € =500 -1 s™'. The test showed that
linoleum and dense rubber (Fig. 3) are characterized by a nonlinear growth of Young’s modulus,
hysteresis under unload, and a pronounced effect of the strain rate on the loading diagram shape. In
case of porous rubber and foam plastic, the loading rate influence was minor, as well as the branches of
loading and unload differed weakly.

The experimental data for the rigidity of interlayer at the compression force of 120 N are presented

in Table 1. The static rigidity K, corresponds to the minimal loading rate € =50073 s, the dynamic

rigidity K, is determined at £ =1.2 s™'.
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Fig. 2. Experimental oscillograms of accelerations of the first, third, and eleventh rods at short impact
pulse

A faster loading at £ =10-50 s~ was conducted at an impact stand shown schematically in Fig. 4.
Test-subjected interlayer / was placed between two rods 2 and 3; lower rod 3 was able to displace
freely in holder 4. Upper rod 2 was equipped with accelerometer 5. When the system was lifted and
dropped, the lower rod hit on the massive basement, and then the upper rod oscillation began and was
recorded by the accelerometer.
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Fig. 3. Compression diagrams for dense rubber interlayer at different loading rates
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TABLE 1

Material K, ,kN/m K, ,kN/m K, ,kN/m K, ,kNm | C,,m/s | C,,m/s| A, kg/s | Ay, kg/s
Dense rubber 480 620 1200 4400 110 340 10000 500
Porous rubber 16 16 16 170 20 75 1000 10
Linoleum 80 180 500 4600 45 340 10000 500
Foam plastic 350 350 500 93 115 1000 10

To analyze the data of such tests, the impact stand operation was modeled with replacing the rods
by the masses m, and m,, and the interlayer, by a spring with a desired rigidity K, (Fig. 5). Rod 3 had
a spherically rounded lower end, which allowed Hertz’s interaction law, being governed by the
coefficient C, to be used in the calculation scheme [7]. The upper rod acceleration X,;(¢) was found
from a solution of the system of differential equations:

mx, =mg —(x —x)K,,

(1)
myi, =myg =Cx," +(x, = x,)K,

with the following initial conditions at t =0: x; =x, =0, x; =x, =V, where x, is the displacement of
the second rod, and ¥V, is the velocity of rods at the pre-impact moment. By oscillograms of X,(¢), a
period of time from the pulse onset to the signal minimum 7', was determined. With the help of 7', and
solution of (1), the interlayer rigidities K, were calculated, the values of which are cited in Table 1.
It is evident that the rigidity of dense rubber and linoleum increases markedly when the strain rate rises.
This effect is less observed in porous rubber and foam plastic. The nonlinear properties of interlayer
deformation were described using a model combining elastic and viscous elements as is demonstrated
in Fig. 6.

The compression forces F of the elastic and viscous elements are determined by the relations
F =Ko and F =Ad, respectively; here, & is the element extension, K is the rigidity, and A is the
viscosity coefficient. If the elastic and viscous elements are connected consecutively, then F is

calculated from the equation F' /K, + F /A, =0 . After its integration, obtain:
t

F(t) = K, I e odt, a, = % .
0 1

[1—>5
| v ”
L2
B i K,
3 m,
4 4 i C
Fig. 4 Fig. 5
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Fig. 6. Viscoelastic model of interlayer

When the elements in question are connected in parallel to one another, the forces acting from each
element side are summed. As a result, for model in Fig. 6, the force F jr that affects the mass with a

coordinate x; from the right is expressed by the formula:
t
Ff = Ky =)+ Ay =)+ Ko™ [ (50 =)t 2)
0

An analogous equation exists for the force F jl that acts from the left. Using the motion law

. / . [ .
mi; =F jr —F;", asystem of equations describing the movement of masses in a compound assemblage

1s derived:
t

0

When loadings are slow, the forces of the viscous element are small, and the behavior of interlayer is
dependent on the elastic element with K, . Thus, it can be assumed that K, = K ,. When loading rates are
great, interlayer rigidity approaches K, = K, +K,. The parameters K,, A, and A, of the interlayer
model from Fig. 6 are unknown. In the present paper, their values were selected basing on a condition of the
best agreement between the experimental and theoretical data. Peculiar attention was given to
correspondence of values of low-frequency wave propagation velocity, its period, and attenuation
coefficient.

THEORETICAL MODEL OF WAVE PROPAGATION IN A CHAIN OF RODS

Consider a model of a system of identical elastic rods with interlayers between one another. The
rods have the following parameters: p is the density, £ is Young’s modulus, ¢ = E/p 1is the

longitudinal velocity, y is the length, and S is the cross-section. The equations of the rod movement
has the form :

i;=c*u; j=0,.,J, 4)
where u; is the jth rod displacement, the prime denotes a derivative with respect to the coordinate x.
The interlayers are modeled similarly to the case of the chains of masses (Fig. 6). All interlayers
between the rods are identical. According to (2) the forces F; and Fj , that affect the jth rod from the

right and from the left, respectively, are calculated from the formulae:
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Tlx=y(j-1/2) Y
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x=y(j-1/2)
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Tx=y(j-1/2)

__ u.
Jj-1 I x=y(j-1/2)

t

_ —o oyt
K.e Ie (4,

Ydt; j=1..J;

U,
Jlx=y(j-1/2)

J x=y(j-1/2)
(5)
R G Yy IYNYEY gl TS| NPV T YRS
t
—at [ L0, (s _ R —
+Ke Ie (uj+1|x=y(j+1/2) uj|x=y(j+1/2))dt’ j=0,., J-1.
0
Let the (J +1)th rod be replaced by a rigid wall: u,; =0, then:
t
! — - _ — 2 _ —at [ 0,
SEqux:y(J+1/2) =F; = KZqux:y(J+1/2) Az“J|x:y(J+1/2) Kie Ie qux:y(J+1/2)dt‘ (6)

0
The initial conditions are zero, the boundary condition:

Eugl,=_,, =RQO1), Q@) = sin(wqt)H, (T~ 1) Hy (1), (7
where P, is the stress magnitude, w; is the frequency of action, and H, is the step-function of
Heaviside.

For the chain of masses, system of equations (3) for j=1,...,J —1 and equations for zero and

the Jth masses were used:
t

mi, = K, (x, = x) + Ay (%, — %) + K&~ J’ e (%, = %, )dt — SPO(1);

0

t (®)
mi; = Ky (x,o =2x,) + Ay (0 = 2%,) + K1e_a‘tJ’ e (X, = 2%, )dr .

0

Study dispersion properties of the chain of masses with springs and viscous elements. Take the Laplace
transform (p is a parameter) of Eq. (3) at zero initial conditions with respect to time:

a+io

fHp)= J’f(t)e Pt f(t)—L IfL(p)e"’dp

o —ioo

and the discrete Fourier transform (g is a parameter):

j=oo iy
- 1
Sg) = Yy S o [/ @edg.
JEme —ﬂ/y
The problem is solved in the following way:
P,SO* mp®  mp? qv A, p K, K,
w2028 p, gy =T g2 D %LWB LTS E )
D(p,q) K; A 2 0K 0O K AQ

where D(p, q) 1s the dispersion operator of the system. Substitute ¢ =c, +ic, into the dispersion
equation D(igc,q) =0, where ¢, and ¢, take only real values: ¢, is the phase velocity of waves, and
¢, characterizes attenuation. It follows from an analysis of the dispersion equation that at ¢, the
inequality:
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K, +K
c, <y #:5 (10)

is satisfied, and the phase velocity of infinite-long waves (g — 0) equals:

K,

cl|q%0—y 7:5. (11)

The dependence c¢;(g) was determined numerically from the dispersion equations. The calculated
results are shown in Fig. 7 (A, =10° kgfs, K, =K, =5 a0° kg/sz, y=0.1 m, and m =0.3822 kg).
Curves / —5 correspond to A, = 10° , 104, 10° , 5007, and 102~kg/s, respectively.

It is seen from the graph that at some parameters, the wave propagation velocity maximum cp, is
reached on medium-long waves (0 < g,y <277), and it can be higher than the long wave velocity (for
example, curves /, 2, and 3). This difference may be great depending on the problem parameters. By
change in A,, it is possible to make the propagation velocity of the dispersion-free wave packet vary
within ¢ < ¢;< ¢ . Note that ¢ is approximately 10 times less than the longitudinal velocity in a rod.

NUMERICAL CALCULATIONS AND COMPARISON WITH THE EXPERIMENTS

System of equations (4) was solved with zero initial (5) and boundary (6) conditions using the
finite-difference method. Approximation error was minimized by an optimal selection of grid steps
with respect to space (#) and time (T ): ¢T =h. System of equations (3) and (8) was solved with the
same method.

The experimental time-dependences of acceleration of the second and the tenth rods in the system
with rigid rubber interlayers are illustrated in Fig. 8a, b by lines /. Lines 2 correspond to the calculated
dependences of acceleration on time, that were obtained using an elastoplastic interlayer model with the
parameters selected so that the theoretical and experimental data be in satisfactory compliance (Fig. 6,
Table 1). Curves 3 were plotted for K, =A, =A, =0, K, =K, . Under such loading, the calculated

results for the rod system and the mass chain coincide. It is evident from a comparison of the
theoretical and experimental curves that if only static rigidity of rubber interlayers is taken into
account, the theory and experiment show a significant discrepancy.

In this case, the theoretical wave velocity C,, is much less than the experimental one C) . The

same is related to the wave attenuation coefficient and the main oscillation frequency.
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Fig. 7. Phase velocity-to-wave number dependence ¢;(q)
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Fig. 8. Time-dependences of acceleration of rods in system with dense rubber interlayers

The values of K, A, and A, can be found so that the experimental and theoretical results be

close. These parameters are cited in Table 1 together with the propagation velocities of slow waves.
The same calculations were performed using the data of the experiments with interlayers made of
porous rubber, linoleum, and foam plastic (Table 1). It is obvious that C,, and C,, are rather close only

for foam plastic. These values differ to the highest extent in linoleum and dense rubber, where attenuation
is also maximal. Note that in these materials, the uniaxial compression curves (similar to those in Fig. 3)
have the best pronounced hysteresis under unload. Such hysteresis in porous rubber and foam plastic is
far less, and the wave attenuation dependent on A, is weaker.

Finally, the following conclusions can be drawn:

— experimental investigations into the wave propagation in one-dimensional models of block
media confirmed the existence of pendulum waves in such media [2];

— velocity, period, and attenuation coefficient of the pendulum waves are heavily dependent on
rheological properties of interlayers, such as hysteresis in the extension — compression cycles.

Satisfactory compliance between the theory and experiment has been obtained with the use of
viscoelastic model of deformation of interlayers composed of two pairs of elastic and viscous elements
that are connected consecutively and in parallel.

The study was conducted with financial support from the Siberian Branch of the Russian Academy
of Sciences, Integration Project No. 129, 2003 — 2005.
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