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subtypes. Given the differences between subtypes of breast 
cancer, choice of an accurate breast cancer model is essen-
tial. Due to the high genomic, transcriptomic, and proteomic 
landscape heterogeneity of human breast cancer, choosing 
the optimal model to address breast cancer research can be 
challenging [1]. Currently, a variety of in vivo and in vitro 
research models are available, ranging from cell lines, 3D 
cultures, murine models, mammospheres, patient derived 
xenografts (PDX) to patient derived organoids (PDO). 
With the rapid progress of omics technologies, research-
ers have been now gathering and cataloging information on 
the molecular mechanisms of both cancer and the research 
models used to study it [2]. Recently advances in machine 
learning have been making inroads and are poised to change 
precision medicine [3]. This review will examine the 
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Breast cancer currently represents 30% of new cancer cases 
in American women (American Cancer Society, 2022). 
Therapy is dictated by stage and individual characteris-
tics of each cancer with striking differences in the major 
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Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model 
that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels 
between the various models and human tumors is increasingly intricate. Here we review the various model systems and 
their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, 
breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and 
copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap 
with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification 
of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share 
some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) 
are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and 
molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX 
samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterog-
enous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histol-
ogy. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic 
resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while 
mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study 
of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review 
explores the molecular landscapes and characterization of breast cancer research models by comparing recent published 
multi-omics data and analysis.
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molecular characterization and landscape of breast cancer 
models from a multi-omic perspective (Fig. 1) with particu-
lar attention to how each system resembles human breast 
cancer subtypes and the advantages of each.

Multi-omics Analysis of Human Breast Cancers

Transcriptomics in Human Breast cancer

Prior to the advent of microarrays, breast cancer classi-
fication was determined by the status of markers such as 
BRCA, estrogen receptor (ER), progesterone receptor (PR) 
and HER2. Diagnosis was refined by relying on the histo-
logical description and other tumor characteristics includ-
ing metastasis and invasion of the lymph nodes. The initial 
description of a classification system using transcriptomics 
in a semi-supervised clustering analysis revolutionized the 
field and introduced the now familiar luminal A/luminal 
B / basal / HER2 / normal-like subtypes [4–6]. The initial 
set of classification genes was refined and the claudin low 

subtype was added [7, 8] and eventually was FDA approved 
to predict the subtype of breast cancer. Given the diversity 
of gene expression present within basal tumors, it was not 
surprising that subtypes were noted with differences in sur-
vival outcome [9]. Following this, the basal subtype was 
refined to contain 4 subtypes: two basal-like (BL1, BL2), a 
mesenchymal (M), and a luminal androgen receptor (LAR) 
subtype [10]. In 2012, a large comprehensive multi-omics 
study of 825 human breast cancer samples was published 
revealing novel molecular features of each subtype as part 
of The Cancer Genome Atlas (TCGA) project [11]. This 
revealed gene expression patterns that were characteristic of 
and augmented the intrinsic subtypes, from ESR1, GATA3, 
FOXA1, XBP1 and cMYB, in ER+/luminal-like subtypes to 
high expression of receptor tyrosine kinases like FGFR4, 
HER1/EGFR and loss of PTEN and INPP4B in the HER2 
subtype.

The shift from microarrays to RNAseq has also allowed 
the development of RNA sequencing at the single-cell level. 
This has resulted in new dimensions of mammary gland 

Fig. 1 Multi-omics techniques 
have been uncovering the intrin-
sic features and parallels between 
human breast cancer and research 
models
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development and breast cancer heterogeneity being uncov-
ered. Lineage tracing of mammary epithelium in different 
development stages revealed cell populations and differen-
tially expressed genes for each cell type according to the 
development phase, composing a new cluster of signature 
genes and shedding a light on cell fate decision [12, 13]. 
Although the specific timeline in which the mammary cell 
commits to a lineage (basal, luminal progenitor or mature 
luminal) remains an open area of investigation, it appears 
that embryonic cells are closely related to the basal popula-
tion and commitment starts in early postnatal stages, finish-
ing during puberty. Interestingly, intermediate populations 
arise, and population composition constantly changes dur-
ing development.

In breast cancer, while bulk RNAseq was found to 
closely resemble single-cell profiling, particularly in the 
Luminal and HER2-enriched subtypes, the single-cell 
approach helped to define other characteristics important to 
the understanding of cancer biology [14]. Within tumors, 
mixed subtypes and cell composition of carcinoma and non-
carcinoma cells, which includes mainly stromal (such as 
fibroblasts) and immune cells (i.e. tumor-associated macro-
phages and different phenotypes of T and B lymphocytes), 
are observed in different proportions. As an example, while 
Luminal subtype tumors are largely composed of carcinoma 
cells expressing high levels of ER and its canonical pathway 
genes, basal breast cancer is marked by immune infiltration, 
which likely contributes to the high heterogeneity of this 
subtype.

In addition to single-cell level work, spatial transcrip-
tomics has allowed the complex interactions of human 
breast cancer, and the subsets of cells that make up a tumor 
to be examined. In a recent analysis, breast cancer was 
stratified into nine ecotypes (E1-E9) with the various cell 
populations defined by a single-cell derived subtype (SC) 
algorithm and then extended to bulk RNAseq data to par-
tially associated it with the PAM50 intrinsic molecular sub-
types [15]. Although a total of 9 major cell types have been 
identified, most ecotypes agglomerate cells from major cell 
lineages, i.e. epithelial, stromal, and immune cells, but in 
different cell states and with unique compositions of the last 
two. Importantly, the spatial organization of the cell states in 
discrete zones of the tumor suggests a role of the microen-
vironment in driving the zone phenotype, such as prolifera-
tive or mesenchymal-like. Different prognoses can also be 
correlated with the ecotype. For instance, E7 and E3, which 
are enriched in HER2_SC and HER2 tumors or basal_SC, 
cycling and luminal progenitor cells, respectively, have a 
worse 5-year survival. The complex interplay between cell 
types in this manuscript provides a unique glimpse of the 
complex interactions seen in cancer biology that were first 
seen through histology.

Proteomics

It is well appreciated that the correlation between mRNA 
and protein abundance may vary greatly, emphasizing the 
importance of validating how well breast cancer mRNA 
subtyping is reflected in proteomics. Overall, unsupervised 
proteomics analysis of breast cancer tumors resembles the 
PAM50 subtypes for the basal-like, luminal A and normal-
like, whereas Luminal B and HER2 + present mingled pro-
files, reflecting similarities between these two phenotypes 
[16]. Furthermore, highly proliferative subtypes (basal-like, 
Luminal B and HER2+) were found to have a greater cor-
relation between transcriptome and proteome in comparison 
to the low-proliferative subtypes (normal-like and Lumi-
nal A). Proteomes from Luminal, HER2 + and basal-like 
contain an enrichment of E2F and MYC targets as well as 
G2M checkpoint proteins, however, basal-like tumors are 
distinguished by immune markers in special MHC class 
proteins. Increased proliferation and glycolysis, features 
of the Warburg effect, are notably observed in HER2 + and 
Luminal B subtypes. Just as was noted with gene expres-
sion for the basal subtype, proteomics and metabolomics 
can divide basal breast cancer into 3 subtypes: C1, enriched 
in sphingolipids and long-chain and unsaturated fatty acids, 
C2, presenting high metabolism of glutamate and carbo-
hydrates and oxidation reaction, and C3, which metabolo-
mics are more closely related to normal breast tissue [17]. 
The mRNA basal breast cancer subtype luminal androgen 
receptor (LAR) fits within the C1 subtype, while basal-
like immune-suppressed (BLIS), immunomodulatory (IM) 
and mesenchymal-like (M) within the C2 and C3. In addi-
tion, LAR tumors are noted by the high activation of the 
ceramides pathway and levels of SP1, while BLIS tumors 
are abundant in NAAG, arising them as potential tumor-
promoting metabolites.

Genomic Alterations

Underlying the transcriptomic and proteomic character-
istics are genomic alterations. An obvious example is the 
amplification of HER2 that results in overexpression and 
signaling. However, a more nuanced examination reveals 
that the amplification of HER2 includes other neighboring 
genes, with resulting gene expression alterations [18]. Since 
approximately 62% of gene amplifications result in elevated 
gene expression, this allows for copy number alterations to 
be predicted from gene expression data [19, 20]. Aside from 
predicting alterations, the TCGA project resulted in exten-
sive sequencing data. As expected, a majority of tumors 
were noted to have p53 alterations with a substantial frac-
tion also harboring PIK3CA mutations [11]. The TCGA data 
does permit a detailed view of events in specific subtypes. 
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through an interesting series of discoveries, from MMTV to 
the genes misregulated at the integration sites [25, 26]. Mod-
eling cancer in mice was revolutionized with the description 
of some of the first transgenic mouse models of breast can-
cer expressing well known oncogenes like Myc [27], Ras 
[28] and Neu [29] under the control of the MMTV gluco-
corticoid regulated promoter enhancer [30]. In addition to 
overexpression models, there were also a series of knock-
outs used to study breast cancer with early knockouts often 
suffering from embryonic lethality [31–33] or in a surpris-
ing finding for BRCA1 heterozygous mice, lacking tumor 
formation [34, 35]. Development of independent MMTV-
Cre transgenics in the Hennighausen [36] and Muller [37] 
labs allowed for tissue specific control of gene expression, 
including expression of the activated Neu allele under the 
control of the endogenous promoter [37]. Today, the design 
of mouse models of breast cancer has evolved to be induced 
/ de-induced through tet-on systems [38], can be lineage 
traced [39, 40], can have multiple transgenes with an IRES 
system [41] and numerous other technical advances that 
allow for precise questions to be addressed. These advances 
allow for many aspects of tumor biology to be addressed, 
from metastasis in widely used models like MMTV-PyMT 
[42] to tumor heterogeneity [43, 44]. Indeed, the heteroge-
neity is present across many mouse models [45] and while 
this mimics human breast cancer, at the same time it con-
founds the analysis as the overexpression of an oncogene is 
too reductionist of an approach. Hence, understanding the 
molecular landscape of murine models and their variety of 
tumors becomes crucial.

Histological Subtypes

Early in the analysis of mouse mammary tumor models 
it was noted that there were specific histological char-
acteristics that were associated with expression of given 
oncogenes. This was encapsulated in a review of various 
initiating oncogenes and the physical characteristics of their 
tumors [46]. While the hypothesis that there are defining 
histological subtypes associated with specific oncogenes 
holds, an analysis of larger number of samples revealed 
the heterogeneity within individual models. Here a domi-
nant histology was noted with other subtypes arising in a 
smaller population [43, 44]. More recently, it was noted 
that there were specific gene expression programs associ-
ated with the various subtypes that were predictive in nature 
[45]. While human breast cancer is not associated with the 
same subtypes noted in the mouse models, there are patterns 
that do hold, including an epithelial to mesenchymal transi-
tion (EMT). However, the EMT noted in primary tumors 
in mouse models is not associated with metastasis [44], a 
marked difference from the prevailing opinion in human 

For example, the Luminal B subtype is overrepresented 
with ATM loss and Cyclin D1 and MDM2 amplification.

While the TCGA data and other large scale sequencing 
studies such as COSMIC [21] have revealed individual 
tumors with single nucleotide variations relative to the ref-
erence genome, many of them remain variants of unknown 
significance. Other mutants that result in frameshifts and 
missense mutations can have additional information about 
their potential importance gained from combining this 
mutation data with the cancer dependency atlas [22]. This 
integrative approach is essential in combining the multiple 
data streams with a combined analysis of transcriptomic and 
sequence data being a much more powerful analysis.

Summary of the multi-omic Analysis of Human 
Breast cancer

Recent publications of multi-omic analysis highlight the 
utility of data intensive biology, but also illustrate the com-
plexity of analysis. A recent manuscript detailing the work-
flow illustrates the effort required for a single patient with 
multiple biopsies, but also reveals how the multiple data 
streams can be successfully integrated [23]. Classification 
of breast cancer tumors according to the classic PAM50 
mRNA subtypes reflects the transcriptomic landscape, but 
interrogating each of these subtypes from a multiomics 
perspective reveals novel molecular features, helping to 
understand their heterogeneity [11]. For instance, stratify-
ing the basal-like subtype into new groups according to the 
different nuances of proteomics and transcriptomics land-
scapes emphasizes the complexity of these cancers [10, 17]. 
Alongside, unique genomic alterations have been found in 
normal-like, basal-like, luminal, HER2+, and claudin-low 
subtypes [11, 19–21]. These observations provide us with a 
comprehensive spectrum of breast tumors. Hence, acknowl-
edging the intrinsic subgroups and underlying molecular 
features can enlighten how cancer behavior and response to 
therapy are dictated.

In order to study human breast cancer, there are a num-
ber of model systems. Each system (Fig. 2), has strengths 
and weaknesses and are usually suited for particular experi-
ments. However, recent omic data has allowed a more 
detailed examination of the suitability of these model 
systems.

Murine Models

Subtypes of Mouse Models

The description of inbred strains of mice that were suscep-
tible to mammary tumors after fostering pups [24] led to 
the discovery of mouse mammary tumor virus (MMTV) 
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engineered mice are lacking in this regard. This is poised to 
change with the development of lines such as the activated 
ESR1 mice [50] that can be interbred with other GEMs, 
which should allow for the development of ER positive 
mouse models of breast cancer.

Transcriptomics in Mouse Mammary Tumors

Transcriptomics profiles of murine mammary tumor models 
have now been detailed by a number of groups. Aside from 
individual characterization of models, three studies have 
completed larger cohort analyses spanning many mouse 

breast cancer [47]. The examination of the histological sub-
type is a key component in the analysis of mouse mammary 
tumor models as they are reflected in the gene expression 
patterns that were noted to occur [44].

A key difference between mouse models and human 
breast cancer is noted at the immunohistochemical level. A 
substantial fraction of human breast cancers stain positively 
for the ER and the PR but there is a paucity of mouse mod-
els that are ER or PR positive. Stat1 deficient mice develop 
ER positive mammary tumors [48] and the MMTV-PyMT 
tumors [42] begin as ER positive but transition to ER nega-
tive during tumor progression [49], but other genetically 

Fig. 2 Simplified representation 
of breast cancer (BC) models 
generation. (a) Transgenic mice: 
one common approach for BC 
genetically engineered mice 
model generation is to overex-
press an oncogene driven by a 
specific promoter targeting the 
mammary gland, such as MMTV. 
(b) 3D culture: the combina-
tion of a supporting scaffold 
(scaffold-dependent model), such 
as hydrogels and inert matrices, 
and different cell types allow 
cell growth and cell-extracellular 
matrix and cell-cell interactions. 
(c) Mammospheres (MM): these 
spheroids can be originated either 
from breast cancer cell lines 
(BCCL) or from BC biopsy. A 
single-cell suspension is obtained 
from the material, cell pheno-
types are sorted for stem and 
progenitor cells, followed by 
culture in an ultra-low adherent 
surface for MM formation. (d) 
Patient-derived xenograft (PDX): 
tissue fragments from patient’s 
tumor are directly transplanted 
onto the immunodeficient mice 
heterotopically or orthotopi-
cally, with no need of an in vitro 
preparation step (F0). Once 
tumor reaches appropriate size, 
it can be dissected and expanded 
by reimplanting it onto another 
mice recipient (F1). The tumor 
expansion can go on for multiple 
generations (Fn). Patient-derived 
organoid (PDO): tissue fragments 
from patient’s tumor are digested 
and cultured in a 3D extracellular 
matrix hydrogel, giving rise to 
organoids
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has elevated B-cateninin signaling. EMT was noted for high 
expression of the Ras pathway, but low expression of Myc. 
Given the dominance of KRas over Myc [54] the induction 
of KRas mutations in the MMTV-Myc model and the sub-
sequent development was not surprising. The mouse EMT 
subgroup appears to resemble human data more closely, and 
elevation of EMT signature is found in the triple negative 
subtype, which is also associated with greater metastasis 
potential.

The histological disconnect between ER positive human 
breast cancer and the mouse models that fail to develop 
ER positive tumors was again observed in the transcrip-
tomic data [52, 53]. However, this analysis did identify an 
association of human ER positive luminal tumors with the 
WAP-Int3 (Notch4) [55], MMTV-Pik3ca-H1047R [56] and 
Stat1−/− models.

Whole Genome Sequencing of Mouse Mammary 
Tumors

Relative to the models analyzed through transcriptomics 
analysis, there is a dearth of whole genome sequencing data 
for mouse mammary tumor models. Indeed, a search of the 
literature reveals whole genome sequence data for only four 
models [18, 57, 58], including the NRL-PRL model which 
has elevated prolactin [57], p53 null and the MMTV-Neu 
[59] and MMTV-PyMT [42] models. The Prolactin model 
identified both mutations and copy number alterations in 
Kras and transcriptional analysis confirmed activation of the 
pathway [57]. Not surprisingly, the p53 null model resem-
bled the basal breast cancer subtype and the WGS data was 

models. This includes key comparisons of mouse models 
to human breast cancer [51–53] that revealed the extent of 
similarity of the models to the human disease. Removal of 
batching effects and interspecies differences allowed for 
the direct comparison of human breast tumors and murine 
tumors. This allowed the identification of common features 
across species and association with the human breast can-
cers subtypes (Table 1).

There was high agreement amongst signature genes of 
the basal-like subtype, which include Laminin gamma 2, 
Keratins 5, 6B, 13, 14, 15, TRIM29, c-KIT and CRYAB, 
was found in the models harboring BRCA, p53 and Rb defi-
ciency (Brca1+/-, ;p53+/-;IR, MMTV-Cre;Brca1Co/Co; 
p53+/-, MMTV-Wnt1, and a few DMBA-induced) [52]. 
The MMTV-Wnt1 model can also overlap with normal 
breast-like, while the MMTV-Neu tumors unexpectedly 
associate with the Luminal A subtype instead of the HER2 
subtype [53] While one analysis suggested that MMTV-
PyMT and WAP-Myc models were similar to HER2+/ER- 
and/or luminal tumors [52] a more nuanced examination, 
including the histological subtypes, suggested that Myc 
and PyMT tumors with EMT histology resembled the gene 
expression markers of the claudin-low subtype [51], high-
lighting the heterogeneity of tumors that can be driven by 
these oncogenes.

The MMTV-Myc model can give rise to distinct tumor 
histological subtypes, each associated with a gene expres-
sion cluster [44]. Interrogation of the transcriptomic data 
with cell signaling signatures revealed histological subtypes 
that activate specific pathways. For example, papillary and 
microacinar tumors both activate E2F1 and Myc pathways, 
but the papillary has activation of Stat3 while microacinar 

Table 1 Association of murine models with the human breast cancer samples. * Distinction between Luminal A and Luminal B not provided by 
authors. Note that not all murine models currently available are shown in this table. Only the most representative subtypes of each model published 
in the literature was assigned here. MMTV = Mouse mammary tumor virus promoter / enhancer, WAP = Whey acidic protein promoter
Murine Model Human Breast Cancer Subtype

Basal like / 
TNBC

Luminal A Luminal B HER2 Enriched Normal Like Claudin 
Low

MMTV_PyMT X X
MMTV-Neu X X
MMTV-Myc (EMT) X
BRCA1+/-; p53+/-; IR X
MMTV-Cre BRCA1fl/fl p53+/- X X
MMTV-Wnt1 X X
Medroxyprogesterone DMBA induced X X
C3(1)-Tag X X
WAP-Myc * * X X
WAP-Int3 * *
PI3KCA-H1047R * *
Stat1 -/- * *
WAP-T121 X X
MMTV-LPA X X
P53+/-; IR X X
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energy generation, drives translation of Polycomb Repres-
sive Complex 2 (PRC2) proteins, which in turn transcrip-
tionally silence genes by methylation of H3K27 histones. 
Similarly, methylated loci enriched in PRC2 targets were 
identified in MMTV-PyMT mice [67]. Tumor progression 
towards a malignant phenotype shifts the global methyla-
tion degree towards a hypermethylated state. As a parallel 
with human breast cancers, different methylation states also 
accompany the human intrinsic subtypes, and the luminal B 
subtype is marked by enriched methylation among all [11, 
68].

Proteomic and Metabolomic Analysis of Mouse 
Mammary Tumors

The first broad survey of metabolomic heterogeneity 
in murine models (MMTV-PyMT, MMTV-PyMT-DB, 
MMTV-Wnt1, MMTV-Neu, and C3(1)-Tag) was demon-
strated through principal component analysis (PCA) [69]. 
Murine tumors are overall enriched in glucose and amino 
acid metabolism, enhanced production of phospholipid pre-
cursors, TCA cycle intermediates, and cholesterol uptake 
compared to normal mammary tissue, which provides the 
energy and metabolic precursors necessary for tumor modu-
lation and metabolic reprogramming. The Wnt1-induced 
tumors are the ones that harbor the most diverse and dis-
crepant metabolomics compared to all other models, these 
tumors present active amino acid metabolism, but low levels 
of free and long-chain fatty acids, lysolipids and phospho-
lipids, along with affected metabolic biosynthesis. Simi-
larly, C3(1)-Tag tumors are generally low in fat metabolism 
and overall metabolites, but high in glycogen compounds. 
Gene expression regulation accounts for most of the meta-
bolic changes observed in this model and genes related to 
increased proliferation, division, and nucleotide synthesis 
are upregulated. In comparison to MMTV-PyMT, MMTV-
PyMT-DB, a mutated form of PyMT that prevents PI3K 
activation, differs by high levels of glutathione, glycogen 
storage, and long-chain fatty acids, and low levels of eico-
sanoids and glucose metabolism, suggesting that in PyMT 
active glycogen synthesis is taking place and in PyMT-DB 
there is reduced fat breakdown. MMTV-Neu tumors share 
some metabolic profile similarities with the PyMT-DB and 
are distinguished by lipid metabolism, with prominent acti-
vation of the inositol pathway, and amino acids metabolism.

Breast cancer cell Lines

Breast cancer cell lines are widespread in cancer research 
and basic information including origin, hormone status 
and limited clinical parameters are often provided for each 
line. MCF7, MDA-MB-231 and T47D are the most used 

used in conjunction with transcriptomic data to identify new 
therapeutic approaches [58].

Compared to human tumors, both the MMTV-Neu and 
MMTV-PyMT murine models have a lesser mutation bur-
den. Copy number alterations (CNA) are markedly pre-
dominant in MMTV-Neu and they are likely associated 
with increased activity of PI3K/AKT/MTOR signaling 
pathway. In the MMTV-Neu tumors, CNA in the 11D locus, 
a chromosomal region homologous to the human 17q21.33, 
leads to amplification of the genes Collagen type 1 alpha 1 
(COL1A1) and Chondroadherin (CHAD). This is a genomic 
event frequent in 8% of human breast cancers, of which 
25% are HER2-enriched, and depletion of these two genes 
impacts migration and the ability to form tumors[18]. Inter-
estingly, over 80% of MMTV-PyMT tumors have a V483M 
mutation in Ptprh, a phosphatase targeting EGFR and other 
kinases. Mutation of Ptprh results in phosphorylation of 
EGFR and upregulation of downstream pathways at a tran-
scriptomic level [60].

Together each of these models illustrate the power 
of integrated sequence and transcriptomic analysis with 
each model system having accumulated genomic events 
that result in transcriptional changes. Other studies have 
employed exome sequencing to identify mutations in other 
model systems, including other backgrounds of MMTV-
PyMT [61], Trp53 and BRCA2 deficient strains [62].

Epigenomics of Mouse Mammary Tumors

Epigenomic regulation studies in murine models of breast 
cancer are currently lacking, hence a comparison with 
human breast cancers from this perspective is not accurate. 
Nonetheless, few conclusions can be drawn based on the 
epigenetic information available in the literature. In the 
c-Neu (Erbb2/HER2) cancer models driven by the MMTV 
promoter, overexpression of the oncogene and tumor devel-
opment is owned to promoter demethylation, an event that 
happens in early stages of development [63]. Genome-wide 
chromosomal losses in these animals, such as loss of het-
erozygosity at chromosome 4 or 15, are also likely to be 
associated with a non-identified epigenetic mechanism [64]. 
Epigenetic reprogramming can also be influenced by diet: 
calory restriction was shown to preserve ER expression 
in MMTV-neu transgenic mice by differently methylating 
CpG islands within or in the flanking regions of the ESR1/
ESR2 genes [65]. In overweight and obese mice, expression 
of the methylation enzyme DNMT1 is increased compared 
to lean/calory restricted mice, hence it is possible that other 
genes are being targeted. Besides epigenetic regulation at 
the gene level, energy balance is linked to histone modifica-
tions [66]. Activation of mTORC1, a regulator of cellular 
biogenesis which activity is coupled with mitochondrial 
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and the 5th most altered gene preceded by TP53, PIK3CA, 
TTN and OBSCN. From the transcriptomic side, CCLE 
data reveals that MDA-MB-415 cells have the highest cor-
relation with its tissue of origin and metastatic sites (liver 
and lymph node), and it is curiously the one that resembles 
Luminal A subtype the most [79].

Although RNA profile clustering from some cell lines 
with human breast cancer subtypes shows some conserved 
features, proteomic clustering does not seem to follow the 
same pattern and reveals an even weaker overlap with tumor 
samples [78]. For instance, BT483 and T47D harbor similar 
protein levels in human breast cancers, whereas MCF7 pres-
ents a moderate correlation [79]. The proteomic differences 
could be explained by interference of other cell populations 
residing within and in the tumor surroundings, conditioned 
in vitro growth, as well as different biological processes pri-
oritized in vivo and in vitro. Furthermore, each of the cell 
lines analyzed (MDA-MB-231, MCF-7, SK-BR-3, JIMT-1, 
MCF-10 A) expressed similar protein profiles, suggesting 
the existence of a “core proteome” in tissue culture, but 
display a poor correlation between RNA and protein levels, 
highlighting that transcriptomics is not always translated 
into suitable protein biomarkers. This variation had been 
previously reported for strong to low or no concordance 
between breast cancer cell line microarray data and western 
blot analysis [73]. Focusing on the metabolomic portion of 
the proteomic profile reveals that it is unique to each cell 
lineage, and it is seemingly not associated with genomics 
or gene expression alteration, nor the breast cancer subtype 
[80, 81]. Instead, it can be affected by the cell phenotype, 
time parameter, and oxygen supply, with hypoxia account-
ing for greater variability compared to normoxic conditions 
[81].

Murine breast cancer cell lines and their association with 
human breast cancers and the PAM50 subtypes have also 
been explored [82]. From a panel of 12 metastatic murine 
mammary tumor cell lines (4T1, 6DT1, D2A1, E0771, 
EMT6, F311, HRM-1, M6, Met-1, MVT1, r3T, and TS/A-
E1), commonly mutated genes in human breast cancers 
were found to be present, including PIK3CA and TP53. In 
terms of CNV, only minor overlaps with the CNVs from 
human breast cancers were noted and were complemented 
with transcriptomic clusters. In addition, when modeling 
the human breast cancer subtypes, the majority of lines 
were predicted to resemble the Luminal A subtype, whereas 
E0771 and D2A1 resemble Luminal B.

From the epigenomics perspective, breast cancer cell 
lines from the same intrinsic molecular subtype share a 
chromatin pattern that is distinct from the others, as evi-
denced by analysis of the epigenetic markers H3K36me3 
(activation) and H3K27me3 (repression) [83, 84]. Active 
transcription-associated states and enhancer states compose 

breast cancer lines and with the advance in technology and 
publicly available omics datasets, such as the Cancer Cell 
Line Encyclopedia (CCLE) which provides a compilation 
of gene expression, CNV`s and parallel sequencing of over 
1000 cell lines, it is now possible to globally characterize 
these models and gain insight into drug response, pharma-
cogenomics and how accurate they mirror human breast 
cancers [70, 71]. There are clear similarities between the 
cancer cell lines and breast cancer, with shared mutations 
in key genes such as p53, RB and PI3K [72] and transcrip-
tional investigations that have revealed that the cell lines 
largely cluster into the basal and luminal groups [73]. It is 
critical to note that breast cancer cell lines are heterogeneous 
as seen in barcoding [74] and single cell analysis [75], with 
functional differences arising in the clones, especially with 
regard to metastatic potential [74]. This heterogeneity is 
reflected in signature breast cancer receptors and biomark-
ers expression: although some of the prominent biomarkers 
from each of the PAM-50 subtypes are present across the 32 
breast cancer lineages analyzed by single-cell sequencing, 
expression of clinically relevant genes, such as HER2, can 
vary greatly within a cell population [75]. As additional evi-
dence, different cell lines of origin were found to be present 
within the same cluster, as observed for the luminal-like cell 
clusters. Curiously, TNbreast cancer clusters were found to 
group cell lines from the same line of origin. It cannot be 
understated that clonal heterogeneity within individual lines 
is a key consideration when designing CRISPR knockout 
studies and choosing to take a clonal or population-based 
approach.

However, while breast cancer cell lines are readily used 
and easily adapted to studies in the laboratory, there are sig-
nificant concerns about their utility as a breast cancer model 
system. Increasingly studies have demonstrated poor simi-
larity between breast cancer cell lines and human tumors 
[76–78]. Each cell line has accumulated specific genomic 
alterations of its own along with some shared features with 
primary breast tumors. For instance, cell lines have more 
mutation burden and copy number alterations, which are 
present across all chromosomes, compared to tumor speci-
mens [73, 79]. Mutation burden and the genes in which 
these somatic mutations occur can also be significantly 
different, the majority of genetic alterations present in dif-
ferent lineages of breast cancer cells either do not overlap 
with human metastatic specimens or mutation frequency 
is significantly lower in one compared to the other, mean-
ing that only a few cell lines can recapitulate important 
genes involved in breast cancer progression and metastasis. 
Among 75 unique mutated genes identified in metastatic 
tumors from the MET500 dataset, 9 of them are not present 
in any of the over 1000 cell lines from the Cancer Cell Line 
Encyclopedia, including ESR1, which is a metastasis driver 
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of epithelial origin when using adult stem cells, a limitation 
that can be circumvented by employing pluripotent stem 
cell-derived organoids [93, 94]. Broad characterization and 
annotation of normal mammary epithelium, cancer-prone 
and breast cancer patient-derived organoids (PDO) have 
been completed using either histology, gene expression pro-
file, genome sequencing, and drug testing, revealing their 
ability to preserve heterogeneity and consistent features 
with their progenitors, such as molecular landscape, his-
tological subtype and hormone receptor biomarkers status, 
even after continued passage number [95–97].

Although PDX are more laborious to establish and ana-
lyze by bioinformatics due to mouse genome interference 
and often lack matching patient germline and tumor omics 
information, good progress has been made to catalog and 
characterize these models for various cancer types [98]. 
Like PDO, PDX maintain tumor architecture [90] and inter 
and intra-tumor heterogeneity even after passages [99], 
have elevated genomic and transcriptomic similarity with 
their matching tumor tissue and are a cleaner representation 
of the tumor fraction, which can contribute to higher vari-
ant allele fractions compared to the sample they are derived 
from [98]. The majority of PDX samples were initially of 
the basal subtype, but significant strides have been made in 
obtaining tumors from other PAM50 subtypes.

Models to examine metastasis have been limited due 
to the technical challenges associated with detection of 
single cells in secondary sites [100]. PDX models coupled 
with single cell RNAseq circumvented these limitations 
to reveal that metastatic cells had different enriched path-
ways, metabolomics and transcriptomics profiles (303 dif-
ferent expressed genes) in cells from primary tumors and 
metastasis, and 116 upregulated genes in the latter, includ-
ing heat shock proteins and cytokeratin genes, ACTG2, a 
gene involved in cell motility, and other genes which roles 
are lesser explored in metastasis progression, including 
CKB, NME1, ASHA1, NOP16, S100A16 and PHLDA2, a 
gene associated with increased relapse in basal-like cancers. 
Metastatic cells are bioenergetically shifted from glycolysis 
(observed in primary tumors) to mitochondrial metabolism/
oxidative phosphorylation (OXPHOS), and the metabolites 
that fuel or are intermediates of OXPHOS and the citric 
acid cycle (fumarate, malate, succinyl carnitine, fatty-acid 
metabolism and amino acids metabolism intermediates) are 
increased in those.

Despite the advantages to PDX and PDO model systems, 
there are still caveats. One of the primary concerns remains 
that the immune system is critical in tumor development and 
metastatic progression and the PDX models are generated 
in an immune deficient recipient mouse. Thus, care must 
be taken in experimental design when choosing a PDX or 
PDO model.

the majority of this commonality, whereas repressive states 
are more enriched in non-malignant cells [84]. In basal-like 
cell lines, hypomethylation of CpG sites is more expressive 
and it is associated with gene regulation of this aggressive 
phenotype [83]. Furthermore, a total of 58 genes were iden-
tified to be epigenetically regulated across a panel of 45 
cell lines [85]. Some of them, such as COL1A2, TOP2A, 
VAV3, CDKN2A, and TFF1, have validated roles in tumor 
development.

When it comes to overlapping features with human 
breast cancers, the genome-wide DNA methylation pattern 
of cell lines and primary tumors resemble one another and 
highlight an evolutionary ancestry [86, 87]. However, cru-
cial differences are also present. A striking example is the 
B-CIMP-associated loci, in which methylation is close to 
absent in ER- tumors, but it is found moderately to highly 
methylated in ER- cell lines [86]. In contrast, luminal-like 
triple-negative cell lines share the least number of features 
with their respective primary tumor on both methylation 
pattern and gene expression profile.

Although breast cancer cell lines and human breast can-
cers share some genomic and transcriptomic landscape, they 
fail to capture many molecular features of human breast can-
cer phenotypes or from their progenitor cells after several 
passages. Moreover, the tumor microenvironment cannot 
be reproduced in two-dimensional cell culture, individual-
ized therapy screening is labor-intensive and representation 
of certain breast cancer subtypes, such as HER2-enriched, 
claudin-low, and normal-like, is restrained by the lack of an 
accurate breast cancer cell line options, increasing the chal-
lenge to address characterization and therapeutic strategies 
in vitro and call upon alternative models for such purposes 
[88, 89].

Patient-derived Organoids and Xenografts

Organoids and patient-derived xenografts (PDX) are two 
promising alternatives to two-dimensional cell culture and 
animal studies that preserve the omics, pathophysiology, 
and intrinsic features of human breast cancers at a higher 
degree. Indeed, the initial characterization revealed both 
histological and gene expression similarities between PDX 
and the tumors they originated from [90]. While PDXs are 
human tumor samples grafted into immunodeficient mice, 
organoids are a 3D result of long-term culture of human 
cancer tissue resection, and both models have been often 
used to improve drug screening and therapeutics [91, 92]. 
Both models mirror the inter and intra-heterogeneity of 
human breast cancers, however, only PDX can simulate the 
tumor-stroma interactions. Organoids, on the other hand, 
have a faster expansion, allow high-throughput drug test-
ing and genetic manipulation but are only viable for cells 
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omics data. Machine learning is as a combined technique 
sustained on mathematical algorithms to train computers 
to perform a complex task, such as accurate predictions 
[109]. Multiple algorithms with reasonably successful rate 
have been recently developed to predict breast cancer sub-
type classification based on the exome, RNA-seq and probe 
selection [110–114]. Further, breast cancer risk and survival 
can be refined by combining genetic variants, demography 
and known risk factors in a machine learning approach 
[115–117]. This can then be extended to personalized drug 
response predictions by taking into consideration the multi-
omics landscape [118]. Taken together, the combination of 
multi-omic data with machine learning has the potential to 
revolutionize precision medicine by accelerating clinical 
handling and innovative applications. However, this must 
be tempered by the inclusion of wet-lab biologists into the 
decision tree as too often pure machine learning approaches 
can identify non-biological parameters.

Conclusion

Here we focused on exploring the molecular landscapes of 
commonly employed breast cancer models and their associ-
ation with the PAM50 human breast cancer subtypes. Con-
sidering that breast cancer is a highly heterogeneous disease 
from many perspectives, genetically, transcriptionally, his-
tologically, and in proteomics, and different drug responses 
are observed for each patient, it is imperative to choose a 
research model with caution. As general guidelines, model 
selection must consider the hypothesis to be addressed and 
how the intrinsic features of each model will affect the abil-
ity to test the hypothesis. Of note, some models present con-
flicting data and categorization or can fall into more than 
one subtype group due to intra-model heterogeneity. Hence, 
careful analysis of the model using publicly available omics 
and histology data can guide the choice of an appropriate 
model. Besides research papers on model characteriza-
tion, databases such as COSMIC, cBio Portal, and Depmap 
Portal from CCLE provide an easy-to-use and interactive 
interface for non-computational biologists interested in 
visualizing omics information. With this in mind, in this 
review we attempted to shed light on the omic implications 
of each model to clarify and guide breast cancer research.
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Mammospheres and 3D Cultures

Tumor heterogeneity is not only a result of genetically 
diverse cell clones and clonal evolution but also from epi-
genetic modulators that allow transition, sometimes revers-
ible, between stem, progenitors and differentiated cell 
phenotypes [101, 102]. A small population of stem-like 
cells with self-renewal potential is present in cancers, and 
they can give rise to heterogeneous tumors, promote inva-
sion and metastasis [103]. Therefore, it is crucial to reca-
pitulate cancer stem cells (CSC) in a research model and 
mammospheres accomplish this task by propagating CSC 
ex-situ mimicking the tumor micro niche. Mammospheres 
can be generated from tissue samples, metastases, or cell 
lines with cancer stem cell properties by maintaining and 
enriching these populations of cells [104, 105]. The genera-
tion of a 3D culture system is achieved spontaneously by 
culturing single cells in a non-adherent, serum-free environ-
ment, and the continued passaging of established MM can 
contribute to increasing the number of CSCs. Limiting dilu-
tion transplants into the mammary fat pad are used to assess 
CSC self-renewal, however conclusions drawn from these 
models must be taken with caution due to varied cell com-
positions that can arise after mammosphere establishment 
with potential concerns about clonal origin [106].

Different from 2D or ex vivo cultures, culturing cells in 
a 3D assay simulates the microenvironment by providing 
a rich extracellular matrix. Due to the importance of these 
models, 3D cultures of breast cancer cell lines grown in a 
Matrigel/hydrogel-collagen have been characterized struc-
turally and biologically and assessed for chromatin inter-
actions and differential reprogramming [107, 108]. Gene 
expression profiling of 14 breast cancer cell lines covering 
different breast cancer subtypes helped to identify a set of 
genes differentially expressed in these cells when cultured 
in 3D and 2D. This demonstrated that the number of differ-
entially expressed genes was more expansive when compar-
ing the breast cancer subtypes than the culture conditions.

Together, these findings give insights into the range of 
morphological and biological modifications that the cells 
undergo during adaptation from monolayers to three dimen-
sional assays. In addition, these models open alternative 
doors for drug screening, characterization and role of stem/
progenitor cells in breast cancer initiation and progression, 
understanding of cell-lineage differentiation, cell signaling 
and metastasis, and modulation by the microenvironment.

Machine Learning Models

Although a focused examination of machine learning 
is beyond the scope of this review, it is worth noting the 
impact that computational models are adding to the existing 

1 3

   12  Page 10 of  13



Journal of Mammary Gland Biology and Neoplasia

18. Rennhack JP, et al. Integrated analyses of murine breast cancer 
models reveal critical parallels with human disease. Nat Com-
mun. 2019;10(1):3261.

19. Hu G, et al. MTDH activation by 8q22 genomic gain promotes 
chemoresistance and metastasis of poor-prognosis breast cancer. 
Cancer Cell. 2009;15(1):9–20.

20. Rennhack J, et al. Mouse models of breast Cancer share amplifi-
cation and deletion events with human breast Cancer. J Mammary 
Gland Biol Neoplasia. 2017;22(1):71–84.

21. Forbes SA, et al. COSMIC: exploring the world’s knowledge 
of somatic mutations in human cancer. Nucleic Acids Res. 
2015;43(Database issue):D805–11.

22. Tsherniak A, et al. Defining a Cancer Dependency Map. Cell. 
2017;170(3):564–576e16.

23. Johnson BE, et al. An omic and multidimensional spatial atlas 
from serial biopsies of an evolving metastatic breast cancer. Cell 
Rep Med. 2022;3(2):100525.

24. Bittner JJ. Some possible Effects of nursing on the mammary 
gland tumor incidence in mice. Science. 1936;84(2172):162.

25. Cohen JC, Varmus HE. Endogenous mammary tumour virus 
DNA varies among wild mice and segregates during inbreeding. 
Nature. 1979;278(5703):418–23.

26. Nusse R, Varmus HE. Many tumors induced by the mouse mam-
mary tumor virus contain a provirus integrated in the same region 
of the host genome. Cell. 1982;31(1):99–109.

27. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary 
adenocarcinomas in transgenic mice that carry and express MTV/
myc fusion genes. Cell. 1984;38(3):627–37.

28. Sinn E, et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-
myc genes in transgenic mice: synergistic action of oncogenes in 
vivo. Cell. 1987;49(4):465–75.

29. Muller WJ, et al. Single-step induction of mammary adenocarci-
noma in transgenic mice bearing the activated c-neu oncogene. 
Cell. 1988;54(1):105–15.

30. Huang AL, et al. Glucocorticoid regulation of the Ha-MuSV p21 
gene conferred by sequences from mouse mammary tumor virus. 
Cell. 1981;27(2 Pt 1):245–55.

31. Stambolic V, et al. High incidence of breast and endometrial neo-
plasia resembling human Cowden syndrome in pten+/- mice. 
Cancer Res. 2000;60(13):3605–11.

32. Oshima M, et al. Loss of apc heterozygosity and abnormal tissue 
building in nascent intestinal polyps in mice carrying a truncated 
apc gene. Proc Natl Acad Sci U S A. 1995;92(10):4482–6.

33. Sharan SK, et al. Embryonic lethality and radiation hypersen-
sitivity mediated by Rad51 in mice lacking Brca2. Nature. 
1997;386(6627):804–10.

34. Gowen LC, et al. Brca1 deficiency results in early embryonic 
lethality characterized by neuroepithelial abnormalities. Nat 
Genet. 1996;12(2):191–4.

35. Hakem R, et al. The tumor suppressor gene Brca1 is required 
for embryonic cellular proliferation in the mouse. Cell. 
1996;85(7):1009–23.

36. Wagner KU, et al. Cre-mediated gene deletion in the mammary 
gland. Nucleic Acids Res. 1997;25(21):4323–30.

37. Andrechek ER, et al. Amplification of the neu/erbB-2 oncogene 
in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci 
U S A. 2000;97(7):3444–9.

38. Moody SE, et al. Conditional activation of Neu in the mammary 
epithelium of transgenic mice results in reversible pulmonary 
metastasis. Cancer Cell. 2002;2(6):451–61.

39. Boone PG, et al. A cancer rainbow mouse for visualizing the 
functional genomics of oncogenic clonal expansion. Nat Com-
mun. 2019;10(1):5490.

40. Ginzel JD, et al. HER2 isoforms uniquely Program Intra-
tumor heterogeneity and predetermine breast Cancer 

of Mammary Gland Biology and Neoplasia.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Sachdev JC, Sandoval AC, Jahanzeb M. Update on Precision 
Medicine in breast Cancer. Cancer Treat Res. 2019;178:45–80.

2. Pettini F et al. Multi-Omics Model Applied to Cancer Genetics. 
Int J Mol Sci, 2021. 22(11).

3. Ozer ME, Sarica PO, Arga KY. New machine learning applica-
tions to accelerate personalized medicine in breast Cancer: rise of 
the support Vector Machines. OMICS. 2020;24(5):241–6.

4. Perou CM, et al. Distinctive gene expression patterns in human 
mammary epithelial cells and breast cancers. Proc Natl Acad Sci 
U S A. 1999;96(16):9212–7.

5. Perou CM, et al. Molecular portraits of human breast tumours. 
Nature. 2000;406(6797):747–52.

6. Sorlie T, et al. Gene expression patterns of breast carcinomas dis-
tinguish tumor subclasses with clinical implications. Proc Natl 
Acad Sci U S A. 2001;98(19):10869–74.

7. Prat A, et al. Phenotypic and molecular characterization of the 
claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 
2010;12(5):R68.

8. Prat A, et al. PAM50 assay and the three-gene model for identify-
ing the major and clinically relevant molecular subtypes of breast 
cancer. Breast Cancer Res Treat. 2012;135(1):301–6.

9. Gatza ML, et al. A pathway-based classification of human breast 
cancer. Proc Natl Acad Sci U S A. 2010;107(15):6994–9.

10. Lehmann BD, et al. Identification of human triple-negative breast 
cancer subtypes and preclinical models for selection of targeted 
therapies. J Clin Invest. 2011;121(7):2750–67.

11. Network TCGA. Comprehensive molecular portraits of human 
breast tumours. Nature. 2012;490(7418):61–70.

12. Pal B, et al. Construction of developmental lineage relationships 
in the mouse mammary gland by single-cell RNA profiling. Nat 
Commun. 2017;8(1):1627.

13. Giraddi RR, et al. Single-cell Transcriptomes distinguish Stem Cell 
State Changes and Lineage Specification Programs in Early Mam-
mary Gland Development. Cell Rep. 2018;24(6):1653–1666e7.

14. Chung W, et al. Single-cell RNA-seq enables comprehensive 
tumour and immune cell profiling in primary breast cancer. Nat 
Commun. 2017;8:15081.

15. Wu SZ, et al. A single-cell and spatially resolved atlas of human 
breast cancers. Nat Genet. 2021;53(9):1334–47.

16. Johansson HJ, et al. Breast cancer quantitative proteome and pro-
teogenomic landscape. Nat Commun. 2019;10(1):1600.

17. Xiao Y, et al. Comprehensive metabolomics expands preci-
sion medicine for triple-negative breast cancer. Cell Res. 
2022;32(5):477–90.

1 3

Page 11 of  13    12 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Mammary Gland Biology and Neoplasia

60. Swiatnicki MR, et al. Elevated phosphorylation of EGFR 
in NSCLC due to mutations in PTPRH. PLoS Genet. 
2022;18(9):e1010362.

61. Ross C, et al. The genomic landscape of metastasis in treatment-
naive breast cancer models. PLoS Genet. 2020;16(5):e1008743.

62. Francis JC, et al. Whole-exome DNA sequence analysis of Brca2- 
and Trp53-deficient mouse mammary gland tumours. J Pathol. 
2015;236(2):186–200.

63. Zhou H, et al. MMTV promoter hypomethylation is linked to 
spontaneous and MNU associated c-neu expression and mam-
mary carcinogenesis in MMTV c-neu transgenic mice. Onco-
gene. 2001;20(42):6009–17.

64. Felts SJ, et al. Widespread non-canonical epigenetic modifications 
in MMTV-NeuT breast Cancer. Neoplasia. 2015;17(4):348–57.

65. Rossi EL, et al. Energy Balance Modulation Impacts Epigenetic 
Reprogramming, ERalpha and ERbeta expression, and mammary 
Tumor development in MMTV-neu transgenic mice. Cancer Res. 
2017;77(9):2500–11.

66. Smith HW, et al. An ErbB2/c-Src axis links bioenergetics with 
PRC2 translation to drive epigenetic reprogramming and mam-
mary tumorigenesis. Nat Commun. 2019;10(1):2901.

67. Cai Y, et al. Epigenetic alterations to polycomb targets precede 
malignant transition in a mouse model of breast cancer. Sci Rep. 
2018;8(1):5535.

68. Holm K, et al. Molecular subtypes of breast cancer are associated 
with characteristic DNA methylation patterns. Breast Cancer Res. 
2010;12(3):R36.

69. Dai C, et al. Metabolomics of oncogene-specific metabolic repro-
gramming during breast cancer. Cancer Metab. 2018;6:5.

70. Barretina J, et al. The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity. Nature. 
2012;483(7391):603–7.

71. Ghandi M, et al. Next-generation characterization of the Cancer 
Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.

72. Hollestelle A, et al. Distinct gene mutation profiles among lumi-
nal-type and basal-type breast cancer cell lines. Breast Cancer 
Res Treat. 2010;121(1):53–64.

73. Neve RM, et al. A collection of breast cancer cell lines for the 
study of functionally distinct cancer subtypes. Cancer Cell. 
2006;10(6):515–27.

74. Kuiken HJ, et al. Clonal populations of a human TNBC model 
display significant functional heterogeneity and divergent growth 
dynamics in distinct contexts. Oncogene. 2022;41(1):112–24.

75. Gambardella G, et al. A single-cell analysis of breast cancer cell 
lines to study tumour heterogeneity and drug response. Nat Com-
mun. 2022;13(1):1714.

76. Liu K, et al. Evaluating cell lines as models for metastatic breast 
cancer through integrative analysis of genomic data. Nat Com-
mun. 2019;10(1):2138.

77. Tsuji K, et al. Breast cancer cell lines carry cell line-specific 
genomic alterations that are distinct from aberrations in breast 
cancer tissues: comparison of the CGH profiles between cancer 
cell lines and primary cancer tissues. BMC Cancer. 2010;10:15.

78. Cifani P, et al. Molecular portrait of breast-Cancer-derived 
cell lines reveals poor similarity with tumors. J Proteome Res. 
2015;14(7):2819–27.

79. Jiang G et al. Comprehensive comparison of molecular portraits 
between cell lines and tumors in breast cancer. BMC Genomics, 
2016. 17 Suppl 7: p. 525.

80. Dubuis S, et al. Metabotypes of breast cancer cell lines revealed by 
non-targeted metabolomics. Metab Eng. 2017;43(Pt B):173–86.

81. Willmann L, et al. Metabolic profiling of breast cancer: differ-
ences in central metabolism between subtypes of breast cancer 
cell lines. J Chromatogr B Analyt Technol Biomed Life Sci. 
2015;1000:95–104.

Trajectories during the Occult Tumorigenic Phase. Mol Cancer 
Res. 2021;19(10):1699–711.

41. Rao T, et al. Inducible and coupled expression of the polyoma-
virus middle T antigen and cre recombinase in transgenic mice: 
an in vivo model for synthetic viability in mammary tumour pro-
gression. Breast Cancer Res. 2014;16(1):R11.

42. Guy CT, Cardiff RD, Muller WJ. Induction of mammary 
tumors by expression of polyomavirus middle T oncogene: a 
transgenic mouse model for metastatic disease. Mol Cell Biol. 
1992;12(3):954–61.

43. Ponzo MG, et al. Met induces mammary tumors with diverse his-
tologies and is associated with poor outcome and human basal 
breast cancer. Proc Natl Acad Sci U S A. 2009;106(31):12903–8.

44. Andrechek ER, et al. Genetic heterogeneity of myc-induced mam-
mary tumors reflecting diverse phenotypes including metastatic 
potential. Proc Natl Acad Sci U S A. 2009;106(38):16387–92.

45. Hollern DP, Swiatnicki MR, Andrechek ER. Histological sub-
types of mouse mammary tumors reveal conserved relationships 
to human cancers. PLoS Genet. 2018;14(1):e1007135.

46. Cardiff RD, et al. The mammary pathology of genetically engi-
neered mice: the consensus report and recommendations from the 
Annapolis meeting. Oncogene. 2000;19(8):968–88.

47. Taube JH, et al. Core epithelial-to-mesenchymal transition inter-
actome gene-expression signature is associated with claudin-low 
and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S 
A. 2010;107(35):15449–54.

48. Chan SR, et al. STAT1-deficient mice spontaneously develop 
estrogen receptor alpha-positive luminal mammary carcinomas. 
Breast Cancer Res. 2012;14(1):R16.

49. Fluck MM, Schaffhausen BS. Lessons in signaling and tumori-
genesis from polyomavirus middle T antigen. Microbiol Mol Biol 
Rev, 2009. 73(3): p. 542 – 63, Table of Contents.

50. Simond AM, et al. Point-activated ESR1(Y541S) has a dramatic 
effect on the development of sexually dimorphic organs. Genes 
Dev. 2020;34(19–20):1304–9.

51. Hollern DP, Andrechek E. A genomic analysis of mouse models 
of breast cancer reveals molecular features of mouse models and 
relationships to human breast cancer Breast Cancer Research, 
2014. 16(R59).

52. Herschkowitz JI, et al. Identification of conserved gene expres-
sion features between murine mammary carcinoma models and 
human breast tumors. Genome Biol. 2007;8(5):R76.

53. Pfefferle AD, et al. Transcriptomic classification of genetically 
engineered mouse models of breast cancer identifies human sub-
type counterparts. Genome Biol. 2013;14(11):R125.

54. Podsypanina K, et al. Oncogene cooperation in tumor main-
tenance and tumor recurrence in mouse mammary tumors 
induced by myc and mutant Kras. Proc Natl Acad Sci U S A. 
2008;105(13):5242–7.

55. Bruno RD, Boulanger CA, Smith GH. Notch-induced mammary 
tumorigenesis does not involve the lobule-limited epithelial pro-
genitor. Oncogene. 2012;31(1):60–7.

56. Merino VF, et al. Inhibitors of STAT3, beta-catenin, and IGF-1R 
sensitize mouse PIK3CA-mutant breast cancer to PI3K inhibi-
tors. Mol Oncol. 2017;11(5):552–66.

57. Campbell KM, et al. A spontaneous aggressive ERalpha + 
mammary tumor model is driven by Kras Activation. Cell Rep. 
2019;28(6):1526–1537e4.

58. Pfefferle AD, et al. Genomic profiling of murine mammary 
tumors identifies potential personalized drug targets for p53-defi-
cient mammary cancers. Dis Model Mech. 2016;9(7):749–57.

59. Guy CT, et al. Expression of the neu protooncogene in the mam-
mary epithelium of transgenic mice induces metastatic disease. 
Proc Natl Acad Sci U S A. 1992;89(22):10578–82.

1 3

   12  Page 12 of  13



Journal of Mammary Gland Biology and Neoplasia

102. Visvader JE, Lindeman GJ. Cancer stem cells: current status and 
evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

103. Piscitelli E, et al. Culture and characterization of mam-
mary cancer stem cells in mammospheres. Methods Mol Biol. 
2015;1235:243–62.

104. Grimshaw MJ, et al. Mammosphere culture of metastatic breast 
cancer cells enriches for tumorigenic breast cancer cells. Breast 
Cancer Res. 2008;10(3):R52.

105. Shaw FL, et al. A detailed mammosphere assay protocol for the 
quantification of breast stem cell activity. J Mammary Gland Biol 
Neoplasia. 2012;17(2):111–7.

106. Smart CE, et al. In vitro analysis of breast cancer cell line tumour-
spheres and primary human breast epithelia mammospheres 
demonstrates inter- and intrasphere heterogeneity. PLoS ONE. 
2013;8(6):e64388.

107. Li J, et al. Hi-C profiling of cancer spheroids identifies 3D-growth-
specific chromatin interactions in breast cancer endocrine resis-
tance. Clin Epigenetics. 2021;13(1):175.

108. Koedoot E, et al. Differential reprogramming of breast cancer 
subtypes in 3D cultures and implications for sensitivity to tar-
geted therapy. Sci Rep. 2021;11(1):7259.

109. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in 
medicine: a practical introduction. BMC Med Res Methodol. 
2019;19(1):64.

110. Vural S, Wang X, Guda C. Classification of breast cancer patients 
using somatic mutation profiles and machine learning approaches. 
BMC Syst Biol. 2016;10(Suppl 3):62.

111. Yu Z et al. RNA-Seq-Based Breast Cancer Subtypes Classifica-
tion Using Machine Learning Approaches Comput Intell Neuro-
sci, 2020. 2020: p. 4737969.

112. Cascianelli S, et al. Machine learning for RNA sequencing-based 
intrinsic subtyping of breast cancer. Sci Rep. 2020;10(1):14071.

113. Ben Azzouz F, et al. Development of an absolute assignment pre-
dictor for triple-negative breast cancer subtyping using machine 
learning approaches. Comput Biol Med. 2021;129:104171.

114. Chen Z, et al. A machine learning model to predict the Triple 
negative breast Cancer Immune Subtype. Front Immunol. 
2021;12:749459.

115. Stark GF, et al. Predicting breast cancer risk using per-
sonal health data and machine learning models. PLoS ONE. 
2019;14(12):e0226765.

116. Ming C, et al. Machine learning techniques for personalized 
breast cancer risk prediction: comparison with the BCRAT and 
BOADICEA models. Breast Cancer Res. 2019;21(1):75.

117. Behravan H, et al. Predicting breast cancer risk using interacting 
genetic and demographic factors and machine learning. Sci Rep. 
2020;10(1):11044.

118. Sammut SJ, et al. Multi-omic machine learning predictor of 
breast cancer therapy response. Nature. 2022;601(7894):623–9.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations. 

82. Yang Y, et al. Immunocompetent mouse allograft models for 
development of therapies to target breast cancer metastasis. 
Oncotarget. 2017;8(19):30621–43.

83. Chae H, et al. Subtype-specific CpG island shore methylation and 
mutation patterns in 30 breast cancer cell lines. BMC Syst Biol. 
2016;10(Suppl 4):116.

84. Xi Y, et al. Histone modification profiling in breast cancer cell 
lines highlights commonalities and differences among subtypes. 
BMC Genomics. 2018;19(1):150.

85. Loss LA, et al. Prediction of epigenetically regulated genes in 
breast cancer cell lines. BMC Bioinformatics. 2010;11:305.

86. Cope LM, et al. Do breast cancer cell lines provide a rel-
evant model of the patient tumor methylome? PLoS ONE. 
2014;9(8):e105545.

87. Wen Y, et al. Cell subpopulation deconvolution reveals breast 
cancer heterogeneity based on DNA methylation signature. Brief 
Bioinform. 2017;18(3):426–40.

88. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size 
does not fit all. Nat Rev Cancer. 2007;7(9):659–72.

89. Holliday DL, Speirs V. Choosing the right cell line for breast can-
cer research. Breast Cancer Res. 2011;13(4):215.

90. DeRose YS, et al. Tumor grafts derived from women with breast 
cancer authentically reflect tumor pathology, growth, metastasis 
and disease outcomes. Nat Med. 2011;17(11):1514–20.

91. Murayama T, Gotoh N. Patient-derived xenograft models of 
breast Cancer and their application. Cells, 2019. 8(6).

92. Dekkers JF, et al. Long-term culture, genetic manipulation and 
xenotransplantation of human normal and breast cancer organ-
oids. Nat Protoc. 2021;16(4):1936–65.

93. Bleijs M, et al. Xenograft and organoid model systems in cancer 
research. EMBO J. 2019;38(15):e101654.

94. Driehuis E, et al. Establishment of pancreatic organoids from nor-
mal tissue and tumors. STAR Protoc. 2020;1(3):100192.

95. Rosenbluth JM, et al. Organoid cultures from normal and cancer-
prone human breast tissues preserve complex epithelial lineages. 
Nat Commun. 2020;11(1):1711.

96. Sachs N, et al. A living biobank of breast Cancer Organoids cap-
tures Disease Heterogeneity. Cell. 2018;172(1–2):373–386e10.

97. Bhatia S, et al. Patient-derived triple-negative breast Cancer 
organoids provide robust Model Systems that recapitulate Tumor 
intrinsic characteristics. Cancer Res. 2022;82(7):1174–92.

98. Sun H, et al. Comprehensive characterization of 536 patient-
derived xenograft models prioritizes candidatesfor targeted treat-
ment. Nat Commun. 2021;12(1):5086.

99. Georgopoulou D, et al. Landscapes of cellular phenotypic diver-
sity in breast cancer xenografts and their impact on drug response. 
Nat Commun. 2021;12(1):1998.

100. Davis RT, et al. Transcriptional diversity and bioenergetic shift 
in human breast cancer metastasis revealed by single-cell RNA 
sequencing. Nat Cell Biol. 2020;22(3):310–20.

101. Lombardo Y et al. Mammosphere formation assay from human 
breast cancer tissues and cell lines. J Vis Exp, 2015(97).

1 3

Page 13 of  13    12 


	Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective
	Abstract
	Introduction
	Multi-omics Analysis of Human Breast Cancers
	Transcriptomics in Human Breast cancer


	Proteomics
	Genomic Alterations
	Summary of the multi-omic Analysis of Human Breast cancer
	Murine Models
	Subtypes of Mouse Models

	Histological Subtypes
	Transcriptomics in Mouse Mammary Tumors
	Whole Genome Sequencing of Mouse Mammary Tumors
	Epigenomics of Mouse Mammary Tumors
	Proteomic and Metabolomic Analysis of Mouse Mammary Tumors
	Breast cancer cell Lines
	Patient-derived Organoids and Xenografts
	Mammospheres and 3D Cultures
	Machine Learning Models
	Conclusion
	References


