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Abstract
Immunotherapy has been applied to patients with breast cancer. However, only part of patients benefits from the current 
immunotherapy. Accurate prediction of individual response to immunotherapy can be beneficial for breast cancer manage-
ment. CD8+ T cells are the main force of anti-tumor immunity. This study aimed to establish a CD8+ T cell-related gene 
expression signature for prediction of breast cancer prognostic and immunotherapy efficacy. RNA-seq transcriptomic data 
was the basics of this research. Weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis established the prognostic signature. We identified 290 CD8+ T 
cell-related genes in the training set and established a risk-score model based on 8-genes panel (SOCS1, IL10, CAMK4, 
CXCL13, KIR2DS4, TESPA1, CD70 and ICAM4). Subsequently, univariate Cox regression analysis suggested that high risk-
score was a risk factor for breast cancer (HR = 3.1, 95%CI 2.0–4.8, P < 0.001). In tumor microenvironment, high-risk tumors 
present decreased tumor infiltrating CD8+ T cells and increased M2 macrophages. The low-risk patients may benefit more 
from immune checkpoint blockade immunotherapy than the high-risk patients. Moreover, breast tumors which sensitive to 
immune checkpoint inhibitor (ICI) showed higher IL10 expression.
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TCGA-BRCA​	� The Cancer Genome Atlas- breast cancer
ssGSEA	� Single-sample gene set enrichment 
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KEGG	� Kyoto Encyclopedia of Genes and 
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AUC​	� Area under the ROC curve
ICI	� Immune checkpoints inhibitors
IPS	� Immunophenoscore
CR	� Complete response
PR	� Partial response
SD	� Stable disease
PD	� Progressive disease

Background

Breast cancer is the most common malignant tumor in 
women, and the incidence rate is increasing by about 0.5% 
per year [1]. According to Global cancer statistics 2018, 
there are 2,088,849 new cases of breast cancer worldwide 
each year, and 626,679 related deaths [2]. With the treatment 
improved in recent years, the 5-year survival rate of breast 
cancer in the United States has reached 90%, however, once 
distant metastasis occurs, the survival rate drops to 26% 
[1, 3]. Current treatment methods cannot cure metastatic 
advanced breast cancer, and the pros and cons of treatment 
need to be measured individually to obtain the best outcome 
[4]. Immunotherapy has been used in advanced breast cancer 
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patients who are resistant to first-line therapy and has shown 
clinical benefits, which is a promising new therapy [5].

The tumor immune microenvironment is a key part in the 
development and progression of tumors [6]. Large clinical 
trial has shown that the infiltration of CD8+ T cells predicts a 
better prognosis for breast cancer [7]. However, there is sig-
nificant heterogeneity in the condition of tumor-infiltrating T 
cells, and T cell function is a window to assess the immune 
microenvironment [8]. T cells have immune checkpoints 
such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), which 
directly inhibit cellular immune response [9]. Immune check-
point inhibitor (ICI) is currently used in immunotherapy to 
induce anti-tumor immunity by blocking CTLA-4 and PD-1/
PD-L1 [10]. The patient selection and efficacy evaluation sys-
tem for immune checkpoint blockade therapy is still incom-
plete, and tumor CD8+ T cells are one of the important refer-
ence elements.

Previous study has used immunohistochemical (IHC) to 
evaluate the relationship between tumor-infiltrating CD8+ T 
cells level and breast cancer prognosis [11]. With the advent 
of the era of high-throughput sequencing, the acquisition 
of tumor gene expression data has become convenient. 
Gene transcription and epigenetics were proved to play a 
crucial role in the differentiation and functional activation 
of CD8+ T cells [5]. Xie et al. reported an immune-related 
gene prognosis model of breast cancer, but it had no directly 
correlation with tumor-infiltrating CD8+ T cells and did not 
be tested the relationship with immune checkpoints expres-
sion [12]. CD8+ T cell-related genes have shown potential 
for the prognosis of breast cancer. Therefore, we expected 
to predict the prognosis of breast cancer and evaluate the 
tumor immune status through the expression of CD8+ T cell-
related genes.

This study employed gene transcription data to construct 
a prognostic signature of breast cancer. We used training set 
and validation set to investigated the relationship between 
the signature and clinical characteristics of breast cancer. 
The risk-score was further used to predicted the efficacy of 
immune checkpoint blockade response. In addition, gene 
functions and biological pathways were further explored.

Methods

Data Collection

The training set came from The Cancer Genome Atlas- 
breast cancer (TCGA-BRCA) database. The RNA transcrip-
tion data and clinical information of 1097 cases of tumor 
and 121 cases of normal breast tissues were downloaded 
through the UCSC Xena website (https://​xenab​rowser.​
net) [13]. The gene transcription data is converted using 
the formula log2 (expression value + 1) and corrected by 

RSEM. The validation sets included GSE20685, GSE7390, 
GSE16446, GSE69031, GSE21653, GSE25066, GSE26971, 
GSE75688, GSE124821 [14–22] was downloaded from 
the Gene Expression Omnibus (GEO) (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). IMvigor210 data has been available in 
IMvigor210CoreBiologies R package and is freely available 
in website [23]. Detail of above dataset was described in 
Supplementary Table 1.

Identify CD8+ T Cell‑Related Genes in the Training 
Set

The ESTIMATE algorithm calculated immune-score 
through transcription profile analysis based on the specific 
gene expression of tumor [24]. We calculated an immune-
score for each individual TCGA-BRCA sample. Samples 
with an immune-score above the upper quartile or below 
the lower quartile were divided into high- and low- immune 
score group, respectively. The immune-related genes were 
defined as the differential expressed genes between high- and 
low- immune score group samples. We chose immune-score 
only above the upper quartile or below the lower quartile 
because of greater differences in immune infiltration sta-
tus may exist between the two groups. Thus, the differential 
expressed genes may be more related to the tumor immune 
microenvironment. In the WGCNA and later analyses, all 
the 1097 tumor samples were included. Next, single-sample 
gene set enrichment analysis (ssGSEA) [25] employed the 
expression of gene markers to evaluate the relative levels 
of tumor infiltrating immune cells in training set. Weighted 
gene co-expression network analysis (WGCNA) [26] is a 
systems biology method to find highly related gene modules 
[26]. We used WGCNA to identify CD8+ T cell-related gene 
modules in breast cancer. The method details of ssGSEA and 
WGCNA were described in Supplementary Method.

Construction of Prognostic Signature Based on CD8+ 
T Cell‑Related Genes

In order to make the signature reflect the patient’s prog-
nosis, univariate Cox regression analysis was used to 
screen CD8+ T cell-related genes that affect overall sur-
vival (OS). When acquiring superabundant prognostic-
related genes, the least absolute shrinkage and selec-
tion operator (LASSO) Cox regression analysis would 
reduce the dimensionality of the model to avoid the 
risk of overfitting. The prognostic signature was estab-
lished by the LASSO Cox regression fitting model, 
which provided key prognostic genes and correspond-
ing regression coefficients, and verified by tenfold 
crossover. A risk-score model is constructed by formula 
riskscore =

∑n

i=1
(Coefficienti × Expression of genei)  .  I n 

individual validation sets, multivariate Cox regression 
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analysis was used to calculate the coefficient of risk-score 
model based on the same gene panel. The median risk 
score was used to divide the patients into high- and low- 
risk groups in both training and validation sets.

Prognostic Ability of the Risk Score Model

Based on the risk score model, the risk score was calculated 
for each patient in the training set. Kaplan–Meier curve and 
log-rank test were applied to verify the prognostic value of 
the risk score model. Time-dependent receiver operating 
characteristic (ROC) curves assessed the accuracy of risk 
score for predicting breast cancer OS at 3, 5 and 10 years. 
Subsequently, univariate and multivariate Cox regression 
analysis verified whether the risk score was an independent 
prognostic indicator. At the same time, a nomogram was 
generated for clinical application. In addition, Kaplan–Meier 
analysis was performed on all the validation dataset.

The Risk‑Score Model Predicts Immunotherapy 
Response

We first explored the correlation of risk score and expres-
sion of immune checkpoints in TCGA dataset. Subsequently, 
the CIBERSORT score of 22 immune infiltration cells and 
ssGSEA score of 28 immune infiltration cells were calcu-
lated in TCGA dataset. The detail process to access CIB-
ERSORT [27] score was also described in Supplementary 
Method. Due to traditional whole genome sequencing was 
limited in the evaluation of gene panel expression in differ-
ential cell types, we introduce single-cell sequencing dataset 
GSE75688 to detect the expression of gene panel in breast 
cancer tumor microenvironment. We further obtained the 
corresponding anti-CTLA-4 and anti-PD-1/PD-L1 predic-
tive response values of TCGA breast cancer patients from 
The Cancer Immunome Atlas (https://​tcia.​at/) [28]. The 
Cancer Immunome Atlas provides results of comprehen-
sive immunogenomic analyses for 20 solid cancers from 
TCGA and other data sources. Each sample is given an 
immunophenoscore (IPS) in specific ICI therapy by scor-
ing tumor immunogenicity from 0 to 10 that can predict the 
efficacy of ICI therapy. We then compared the IPS between 
high- and low- risk groups breast cancer. At the same time, 
the immunotherapy response prediction ability of the risk-
score model was verified in IMvigor210 and GSE124821 
dataset. IMvigor210 dataset contains transcriptome data of 
clinical trials that applied atezolizumab in locally advanced 
and metastatic urothelial carcinoma [29]. And GSE124821 
includes bulk mRNA-seq data of anti-CTLA-4/anti-PD1 
-treated and pre-treated from sensitive and resistant mouse 
mammary tumor samples [22].

Gene Functional Enrichment Analysis

In order to understand the biological functions related to the 
prognostic signature, differentially expressed genes between 
the high- and low- risk groups were searched in the whole 
TCGA-BRCA transcription set. Following, the differentially 
expressed genes were used to enrich the biological pathways 
of the Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. The enriched Gene Ontology 
terms and KEGG pathways may reveal the activation differ-
ence of biological process in difference risk groups.

Statistical Analysis

Statistical analyses were performed using R software (ver-
sion 3.6.1) (https://​www.r-​proje​ct.​org/) and Stata (version 
15.0). R packages involved in this study were concluded in 
Supplementary Method. When P < 0.05, the analysis results 
can be considered as statistically significant.

Results

Sample Characteristics and Immune‑Score

The baseline information of the TCGA-BRCA cohort is 
summarized in Table 1, and the clinical information of the 
GSE20685 cohort is provided in Supplementary Table 2. 
The flowchart of signature construction and verification was 
presented in Fig. 1. We first calculated an immune-score for 
each tumor sample in TCGA-BRCA dataset (Fig. 2A, Sup-
plementary Table 3). Then, 1557 differentially expressed 
genes between the high- and low- immune-score groups were 
identified as immune-related genes for subsequent genetic 
screening (Fig. 2B, Supplementary Table 4). The ssGSEA 
assessed the abundance of tumor infiltrating immune cells 
in TCGA-BRCA samples (Fig. 2C).

Gene screening and Prognostic Signature 
Establishment

WGCNA analysis was performed on 1557 immune-related 
genes and the optimal soft threshold (β = 2) were chosen 
(Fig. 2D). The genes clustered into 6 different modules 
(Fig. 2E). The turquoise module clustered the most genes 
and had the highest correlation with tumor-infiltrating 
immune cells. Supplementary Table 5 provided the genes in 
the turquoise module. Correlation coefficient of the turquoise 
module and activated CD8+ T cells was 0.85 (Fig. 2F). The 
turquoise module genes with both correlation coefficient 
and significance greater than 0.6 were defined as CD8+ T 
cell-related genes in breast cancer (n = 290, Fig. 2G). Sub-
sequently, univariate Cox regression analysis identified 21 
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prognostic-related genes (Fig. 3A). Further, LASSO Cox 
regression analysis constructed the prognostic signature 
that included 8 CD8+ T cell-related genes panel (Fig. 3B, 
Table 2). The formula was as follows: risk score = (-0.121
) × SOCS1 + 0.520 × IL10 + (-0.191) × CAMK4 + (-0.013) × 
CXCL13 + (-0.122) × KIR2DS4 + (-0.127) × TESPA1 + (-0.
123) × CD70 + (-0.022) × ICAM4. Risk score of patients in 
training and validation set was calculated and the patients 
were divided into high- and low- risk groups according 
to the median risk score. The risk-score of TCGA-BRCA 
and corresponding 8-genes panel expression were exhib-
ited (Fig. 3C). Interestingly, risk-score of basal-like sub-
type patients was lower than Luminal B subtype (Fig. 3D). 
Results also showed that risk-score of patients in AJCC stage 
III/IV was higher than in stage I/II (Fig. 3E).

Prognostic Ability of the Risk Score Model

Kaplan–Meier analysis proved that patients with high-risk 
had worse survival probability in TCGA-BRCA dataset 
(P < 0.001, Fig. 4A), and the result in GSE20685 was similar 
(P = 0.002, Fig. 4B). The high-risk patients also had poorer 
OS, disease free survival (DFS), or metastatic free interval 

(MFI) in the validation set (Supplementary Fig. 1). IL10 is 
the heaviest weighed gene in the risk-score model. It is also 
a risk factor of breast cancer patients (HR = 1.261, 95%CI 
1.035–1.430, Fig. 4C), but no significant was seen in the 
subgroup analysis (Supplementary Fig. 2). Time-dependent 
ROC curve analysis showed that area under the ROC curve 
(AUC) of the risk score model predicting 3, 5, and 10-year 
OS of TCGA breast cancer patients were 0.736, 0.676, and 
0.761, respectively (Fig. 4D). Meanwhile, AUC of the risk 
score model predicting 3, 5, and 10-year OS of GSE20685 
cohort were 0.818, 0.781, and 0.817, respectively (Fig. 4E). 
Besides, AUC of TCGA-BRCA molecular subtypes was 
displayed (Fig. 4F). The chi-square test showed that the 
elderly (age > 60) and AJCC stage III/IV patients had a 
higher proportion in the high-risk group (Table 1). Multi-
variate Cox regression analysis indicated that risk-score was 
an independent risk factor for breast cancer (Table 3). Fur-
ther, a nomogram included indexes age, AJCC stage, HER2 
status, PR status, and risk-score was drawn for the clinical 
prognostic application, and the calibration curve estimated 
the efficiency of nomogram prediction (Fig. 4G, H). The 
C-index was 0.80, which means a relative high accuracy of 
the nomogram.

Table 1   Baseline information of 
training set TCGA cohort

T tumor, N Node, M Metastasis, ER estrogen receptor, PR progesterone receptor
* P < 0.05

Characteristics Total
(n = 1097)

Low-risk
(n = 548)

High-risk
(n = 549)

P
(χ2 test)

Age  < 60 446 (40.7%) 256 (46.7%) 190 (34.6%)  < 0.001*
 ≥ 60 372 (33.9%) 153 (27.9%) 219 (39.9%)
NA 279 (25.4%)

AJCC stage I-II 579 (52.8%) 303 (55.3%) 276 (50.3%) 0.004*
III-IV 190 (17.3%) 81 (14.8%) 119 (21.7%)
NA 328 (29.9%)

T stage T1-T2 679 (61.9%) 354 (64.6%) 325 (59.2%) 0.080
T3-T4 109 (9.9%) 47 (8.6%) 62 (11.3%)
NA 309 (28.2%)

N stage N0-N1 649 (59.2%) 333 (60.8%) 316 (57.6%) 0.051
N2-N3 142 (12.9%) 60 (10.9%) 82 (14.9%)
NA 306 (27.9%)

M stage M0 771 (70.3%) 386 (70.4%) 385 (70.1%) 0.287
M1 14 (1.3%) 5 (0.9%) 9 (1.6%)
NA 312 (28.4%)

ER status Positive 599 (54.6%) 287 (52.4%) 312 (56.8%) 0.062
Negative 179 (16.3%) 100 (18.2%) 79 (14.4%)
NA 319 (29.1%)

PR status Positive 521 (47.5%) 253 (46.2%) 268 (48.8%) 0.320
Negative 254 (23.2%) 133 (24.3%) 121 (22.0%)
NA 322 (29.4%)

HER2 status Positive 130 (11.9%) 56 (10.2%) 74 (13.5%) 0.134
Negative 431 (39.3%) 218 (39.8%) 213 (38.8%)
NA 536 (48.9%)
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The Risk Score Associated with Immune Infiltration 
and Efficacy of Immunotherapy

Single-cell RNA sequencing dataset GSE75688 showed that 
CAMK4, CXCL13, and TESPA1 were higher expressed in 
T cells, but IL10 was lower expressed in T cells (Fig. 5A-
H). Both CIBERSORT and ssGSEA method proved that 

high-risk tumors had decreased tumor-infiltrating CD8+ T 
cells (Supplementary Fig. 3). High-risk tumors also had 
decreased tumor-infiltrating M1 macrophages but increased 
M2 macrophages (Supplementary Fig. 3A), which sug-
gested the immunosuppression microenvironment in high-
risk tumors. Bulk data analysis showed that the risk score 
was negatively correlated with expression of the immune 

Fig. 1   The flowchart of signature construction and verification
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Fig. 2   Selection of CD8+ T cells-related genes. A: Immune-score of 
TGGA-BRCA samples. B: Differentially expressed genes between 
high- and low- immune-score groups TGGA-BRCA. C: 28 types 
tumor infiltrating immune cells in high- and low- immune-score 
groups TGGA-BRCA. D-G WGCNA identified the CD8+ T cells-

related genes. D: selection of the optimal soft threshold (β = 2). E: 6 
gene clusters in the gene dendrogram. F: the correlation coefficient 
between 6 gene modules and 28 kinds tumor-infiltrating immune 
cells. G: the regression coefficient of turquoise module genes expres-
sion and tumor-infiltrating CD8 + T cells level
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checkpoints such as PDCD1 (PD-1), CD274 (PD-L1), 
CTLA4, IDO1 and TIGIT, as well as immune stimulators 
including CD27, CD40, CD48, ICOS and CXCR4 (Fig. 6A). 
In the treatment response prediction of TCGA-BRCA 
patients to ICI, the anti-CTLA-4 and anti-PD-1/PD-L1 IPS 
were lower in high-risk group, that may mean lack of sensi-
tivity to ICI in high-risk breast cancer patients (Fig. 6B). In 
addition, the risk-score model was validated in IMvigor210 
dataset and the results indicated that urothelial carcinoma 

patients who achieved complete response (CR) to PD-L1 
blockade had lower pre-treatment risk-score than the stable 
disease (SD) and progressive disease (PD) patients (Fig. 6C). 
Meanwhile, patients who received CR may expressed higher 
IL10 before PD-L1 blockade than the partial response (PR) 
and PD patients (Fig. 6D). In the bulk mRNA-seq dataset 
GSE124821 of breast cancer mouse models, we also found 
tumors that sensitive to PD-1 and CTLA4 blockade had 
higher IL10 expression in pre-treatment (Fig. 6E).

Fig. 3   Construction of CD8+ T cells-related genes expression sig-
nature. A: Univariate Cox regression analysis result of 21 survival-
related genes in the study. B: Coefficient of the 8 genes in the sig-
nature. C: Risk scores distribution and heatmap of the 8 signature 

component genes expression. D: Risk scores of TGGA-BRCA molec-
ular subtypes. E: Risk scores of TGGA-BRCA in different AJCC 
stages

Table 2   Signature component 
genes and the corresponding 
coefficients

† Also known as KIAA0748

Gene symbol Full name Coefficient

SOCS1 Suppressor of cytokine signaling 1 -0.121
IL10 Interleukin 10 0.520
CAMK4 Calcium/calmodulin-dependent protein kinase IV -0.191
CXCL13 Chemokine (C-X-C motif) ligand 13 -0.013
KIR2DS4 Killer cell immunoglobulin-like receptor, two domains, short 

cytoplasmic tail, 4
-0.122

TESPA1† Thymocyte expressed, positive selection associated 1 -0.127
CD70 CD70 molecule -0.123
ICAM4 Intercellular adhesion molecule 4 -0.022
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Biological Pathways Associated with Risk Model

Gene functional enrichment analysis showed that risk-score 
were linked to some Gene Ontology and KEGG terms that 
related to tumor immune and signal transduction, such as “T 
cell activation”, “JAK-STAT cascade”, “chemokine signal-
ing pathway”, “protein kinase B signaling”, “JNK cascade”, 
“PI3K signaling pathway”, “Wnt signaling pathway”, “Ras 

signaling pathway”, “B cell receptor signaling pathway” and 
“PD-L1 expression and PD-1 checkpoint pathway in cancer” 
(Fig. 7A, B).

Pan‑Cancer Analysis

The CD8 + T cell-related genes expression signature was 
further tested in TGGA pan-cancer dataset. The risk-score 

Fig. 4   Survival analyses results. A-B Kaplan–Meier plot analyzed 
overall survival (OS) probability of high- and low- risk breast cancer 
in A: TCGA-BRCA; B: GSE20685. C: OS probability of high- and 
low- IL10 expression groups in TCGA-BRCA. D-E Time-dependent 
ROC curve analysis predicted 3, 5 and 10  years OS in D: TCGA-

BRCA; E: GSE20685. F: AUC of time-dependent ROC curve analy-
sis OS in TCGA-BRCA molecular subtypes. G: The nomogram for 
the clinical use of the signature. H: A calibration curve examined the 
nomogram
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models were additionally constructed in 8 types of malig-
nant tumors: bladder urothelial carcinoma, cervical squa-
mous cell carcinoma and endocervical adenocarcinoma, 
head and neck squamous cell carcinoma, lung adenocarci-
noma, ovarian serous cystadenocarcinoma, stomach adeno-
carcinoma, liver hepatocellular carcinoma, colon adeno-
carcinoma. Kaplan–Meier analysis proved that survival 

probability was significant statistical difference between 
high- and low- risk patients among the 8 types tumors 
(Supplementary Fig. 4). Except for stomach adenocarci-
noma, the IPSs were also lower in high-risk group (Supple-
mentary Fig. 5). However, IL10 expression was no longer 
a risk-factor in pan-cancer meta-analysis (Supplementary 
Fig. 6).

Table 3   Univariate and 
multivariate Cox regression 
analyses of the signature 
and clinicopathological 
characteristics of OS

ER estrogen receptor, PR progesterone receptor, HR hazard ratio, 95% CI 95% confidence interval
* P < 0.05

Characteristics Univariate analysis Multivariate analysis

HR (95%CI) P HR (95%CI) P

Age 1.07 (1.02–1.12) 0.002* 1.020 (1.000–1.040) 0.048*
AJCC stage III-IV VS. I-II 1.71 (1.11–2.69) 0.029* 2.258 (1.358–3.755) 0.002*
ER status Negative VS. Positive 1.32 (0.87–2.04) 0.300 1.258 (0.595–2.660) 0.548
PR status Negative VS. Positive 1.41 (0.94–2.23) 0.097 2.458 (1.221–4.950) 0.012*
HER2 status Negative VS. Positive 0.94 (0.48–1.82) 0.864 2.283 (1.025–5.084) 0.043*
Risk score 3.82 (2.61–5.73)  < 0.001* 4.382 (2.636–7.283)  < 0.001*

Fig. 5   Single-cell RNA sequencing dataset GSE75688 showed the expression of 8 signature component genes in T cell
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Discussion

In the present study, we constructed a CD8+ T cell-related 
genes prognostic signature based on TCGA-BRCA dataset. 

The construction of risk-score model is a process of hub-
genes selection. We first used ESTIMATE to defined the 
1557 immune-related genes from the whole gene expression 
profile with 20,530 genes. Then we performed WGCNA to 

Fig. 6   Immunotherapy response prediction. A: The correlation of risk 
score and immune molecular expression. B: IPS predicted the relative 
response of anti-CTLA-4 and anti-PD-1/PD-L1 ICI therapy. C: Risk-
score of different response group IMvigor210 clinic trial patients. 
D: Pre-treatment IL10 expression of different response group 

IMvigor210 clinic trial patients. E: Pre-treatment IL10 expression in 
the PD-1/CTLA4 block-sensitive group in mouse mammary tumors. 
CR, complete response; PR, partial response; SD, stable disease; PD, 
progressive disease

Fig. 7   The signature related biological pathways. A: gene ontology terms. B: KEGG biological pathways
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obtain 290 CD8+ T cell infiltration related genes for prog-
nosis model establishment. Further, univariate Cox regres-
sion analysis identified 21 prognostic-related genes. Finally, 
LASSO Cox regression analysis punished the regression 
coefficient of 21 candidate genes and fitting the risk model. 
Totally 8 significant survival-related genes were comprised 
in the risk model. Among the 8 hub genes, SOCS1 has been 
found to be a “non-classical” checkpoint blocker that nega-
tively regulates cytokine receptor signaling and plays a key 
role in CD8+ T cell response [30]. Deng et al. reported that 
IL-10 activated STAT3 and acted as an immunosuppres-
sive molecule in triple-negative breast cancer [31]. Existing 
study has shown that CAMK4 can activate transcription fac-
tors of immune cells such as T cells to enhance the immune 
response [32]. In recent years, TESPA1 has been found to 
be a specific regulator on TCR signaling [33]. In addition, 
ICAM4 is involved in antigen recognition of monocytes and 
macrophages in innate immunity [34]. Single-cell RNA 
sequencing data showed that CAMK4, CXCL13 and TESPA1 
were highly expressed in T cells, while the other 5 genes, 
including IL10, were low expressed in T cells.

High-risk defined by the risk-score model indicated a 
poor prognosis for breast cancer. Since time-dependent ROC 
curve analysis considers both the follow-up time and death 
events [35], it was used to evaluate the prognostic prediction 
accuracy of the signature. In both training set and valida-
tion set, the risk-score was able to distinguish patients with 
differential survival outcomes, including overall survival, 
disease free survival and metastatic free survival. The risk-
score, age, AJCC stages, HER2 status and PR status were 
independent risk factors for breast cancer in this study.

Pathological stage is an important means for clinicians 
to evaluate the survival of cancer patients, but tumor 
immunity is also a key factor affecting the prognosis [36]. 
There are already some immune-score models that com-
plement the existing TNM stages [37, 38]. In addition to 
predicting prognosis, the signature we constructed has 
the potential to reflect the efficacy of immune checkpoint 
blockade. The immunotherapy response is close related 
to the expression of tumor immune checkpoints [39]. So, 
we first explored the correlation between risk score and 
immune checkpoints expression. Interestingly, the risk-
score negatively correlated with the expression of immune 
checkpoints and immune stimulators in tumor.

Further analysis suggested the high-risk tumors pre-
sented lower level of tumor-infiltrating CD8+ T cells. 
CD8+ T cells are the main anti-tumor cells, and the appli-
cation of ICI can enhance the activity of CD8+ T cells 
[40]. Therefore, our CD8+ T cell infiltration-related sig-
nature can predict the prognosis and may reflect immuno-
therapy response of breast cancer. High-risk tumors had 
also less tumor-infiltrating M1 macrophages but more 
M2 macrophages. Previous study demonstrated that both 

innate and adaptive immune cells in breast cancer showed 
immunosuppressive gene expression characteristics [21]. 
The decrease of M1/M2 ratio is the damage to anti-tumor 
immunity, M1 macrophages have anti-tumor effect, and 
the infiltration of M2 macrophages is linked to the poor 
prognosis of tumor [41]. At the same time, M2 mac-
rophages can be induced by IL10 [42], which suggested 
that our signature is associated with the infiltration of 
macrophages.

In March 2019, atezolizumab became the first ICI to 
be approved for breast cancer, delivering improved out-
comes and showing promising application potential [43]. 
However, there was still no large-scale transcriptome data 
of breast cancer immunotherapy. We used IPS that cal-
culated by TCGA RNA-seq to substitute the efficacy of 
immune checkpoint blockade. Charoentong et al. have 
demonstrated that IPS can reflect cancer patients’ rela-
tive response to anti-PD-1/PD-L1 and anti-CTLA-4 treat-
ment [28]. We found the low-risk TCGA-BRCA patients 
achieved higher anti-CTLA-4 and anti-PD-1/PD-L1 IPS. 
It may guide the selection of immune checkpoint block-
ade therapy for breast cancer patients. Furthermore, the 
IMvigor210 dataset was involved in this study and it con-
firmed that the anti-PD-L1 CR group had lower risk-score. 
Additionally, the pre-treatment IL10 expression was higher 
in human patients who achieved CR to atezolizumab, and 
higher pre-treatment IL10 expression was found in the 
PD-1/CTLA4 block-sensitive group in mouse mammary 
tumors.

Our study established a CD8+ T cell-related gene 
expression prognostic signature of breast cancer. Although 
some approval results have achieved, our study still has 
shortcomings. Firstly, this is a retrospective study based 
on the online database that still needs to be verified by 
prospective studies. Secondly, the IPS was used to detect 
the efficacy of immunotherapy for breast cancer, which 
may be different from the real world. We will continue to 
improve the research to obtain further conclusions.

Conclusions

This study established a breast cancer prognostic signature 
based on 8 CD8+ T cell-related genes. A high-risk indi-
cates an independent risk factor for breast cancer progno-
sis. Also, high-risk tumors present decreased tumor infil-
trating CD8+ T cells and increased M2 macrophages. The 
low-risk patients may benefit more from immune check-
point blockade immunotherapy than the high-risk patients. 
In addition, breast cancer with enhanced IL10 expression 
also has an adverse prognosis, but it is more sensitive to 
ICI. The results provide a new perspective on the progno-
sis and immunotherapy of breast cancer.
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