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Abstract
Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, 
human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. 
A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, 
drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in 
cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential 
components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to 
analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss cur-
rent lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease 
progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better 
understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow 
informed development of diagnostics and novel targeted therapies.
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Introduction

Metabolic reprograming is a long-standing hallmark of can-
cer that encompasses diverse processes involved in energy 
production, macromolecule biosynthesis and degradation. 
Abnormally regulated lipid metabolism is relatively under-
studied compared to other branches of cancer metabolism 
despite playing a critical role in tumor cell biology. Lipid 
metabolism is notably altered in breast cancer versus normal 
breast cells, and is hypothesized to contribute to tumor cell 
plasticity, therapeutic resistance, and metastasis [1]. How-
ever, studies find considerable variation in both lipid ana-
bolic and catabolic pathways, potentially due to intertumoral 
heterogeneity and the existence of distinct disease subtypes, 
and thus there is no clear targetable metabolic signature at 
present.

Breast cancer is the most common malignancy among 
women, comprising 30% of newly diagnosed cancer cases 
in the US [2]. Breast cancer is generally stratified into three 
main subtypes based on the presence of estrogen receptor 
(ER) and progesterone receptor (PR) (or hormone recep-
tor (HR) positive), amplification/overexpression of human 
epidermal growth factor receptor 2 (HER2 +), or lack of all 
three markers [triple negative breast cancer (TNBC)] [3]. 
Positivity for HR or HER2 initially stratifies patients into 
anti-endocrine- or HER2-targeted therapies, respectively [4, 
5]. Acquired resistance and recurrence occurs in 10–41% of 
HR + breast cancers depending on grade/stage [6, 7]. Late-
stage HR + tumors are treated with inhibitors to CDK4/6 
and PIK3CA [8–11]. Treatment of TNBC primarily relies 
on chemotherapy, with limited options for PARP inhibi-
tors or immunotherapy [12]. Almost all refractory breast 
cancers eventually develop resistance to second line drugs 
[13, 14]. Targeting other processes in breast cancer includ-
ing metabolism has long been thought to hold therapeutic 
potential. Discovery of the Warburg Effect, or the preference 
towards anaerobic metabolism in the presence of oxygen, 
originally highlighted that tumor cell metabolism could be a 
targetable vulnerability [13, 14]. Unfortunately, development 
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of anti-cancer drugs targeting metabolic changes has not 
been successful in breast cancer to date. Lipid regulatory 
pathways may be effective therapeutic targets, especially in 
breast cancers where lipid metabolism plays a central role 
both normal mammary gland and tumor biology.

Lipid metabolism includes the enzymatic biosynthesis, 
covalent modification, and degradation of fatty acids (FA) 
and their lipid derivatives. Prior to the use of mass spec-
trometry to identify organic molecules, technical limitations 
restricted the study of cellular lipids [15]. The development 
of electron spray ionization (ESI) and matrix assisted laser 
desorption ionization (MALDI) techniques 30 years ago 
improved the ability to detect and quantify lipids within 
biological samples, and the field of lipidomics emerged [16, 
17]. In the past decade, these techniques have been further 
refined and their use has steadily increased in biological 
research. At present, there are multiple methods for lipid 
extraction/separation, mass spectrometry, metabolite annota-
tion, and data analysis/normalization, which provides chal-
lenges for data sharing and points to the importance of tech-
nical "gold standards" [18, 19]. Lipidomics has the potential 
to provide previously unavailable information on cellular 
lipidomes and lipid metabolism, which can be combined 
with proteomic and genomic data to identify novel thera-
peutic strategies in breast cancer.

In this review, we cover recent developments in lipid 
metabolism and the lipidome in the three main subtypes of 
breast cancer, and their potential meaning to cancer biolo-
gists. We include discussion of various lipidomic methods 
and data analysis present in the breast cancer literature. 
Lastly, we highlight the role of breast cancer lipid signatures 
and their contribution to disease detection, progression, and 
treatment.

Mammalian Lipid Structures and Functions

Lipids are hydrophobic or amphipathic (having both hydro-
phobic and hydrophilic regions) small molecules that serve 
essential functions as membrane components, energy stor-
age, and signaling molecules in mammalian cells. Lipids can 
be broadly classified into eight categories, seven of which are 
found in mammals: fatty acyls, glycerolipids, glycerophos-
pholipids, sphingolipids, saccharolipids, sterols, and prenols 
(Fig. 1) [20]. These categories can also be subdivided into 
either nonpolar, neutral lipids or polar (amphipathic) lipids. 
Hydrophobicity is determined by one or more hydrocarbon 
chains that vary in chain length and degree of saturation. 
Some lipids contain headgroups and modifications that pro-
vide amphipathic characteristics. In mammalian cells, a fam-
ily of enzymes termed elongases regulate the length of lipid 
hydrocarbon tails. Chain length typically ranges from 4–22 

carbons; however, chains with > 24 carbons are occasionally 
present in mammals [21]. Hydrocarbon chain saturation, or 
the number of double bonds, is regulated by saturase and 
desaturase enzymes and thus characterized as unsaturated, 
monounsaturated, or polyunsaturated. The essential linoleic 
and linolenic acids must be acquired from the diet since 
mammalian cells lack the desaturase enzymes necessary 
to produce these FA from their 18-carbon precursors [22]. 
The degree of lipid saturation impacts properties such as 
interaction with other organic molecules [23]. The LIPID 
MAPS consortium devised a lipid nomenclature system for 
researchers to effectively describe the position and degree 
of lipid saturation [24].

The main lipid species in cell membranes are phosphati-
dylcholine (PC), phosphatidylethanolamine (PE), phos-
phatidylserine (PS), phosphatidylinositol (PI), phosphati-
dylglycerol (PG), phosphatidic acid (PA) and cardiolipin 
(CL). Phospholipids are amphipathic in nature by containing 
a polar phosphate and glycerol head group and non-polar 
fatty acyl chains. The extracellular plasma membrane is 
a lipid bilayer mainly containing structural phospholipid 
species: PC, PE, PI, PS, and the phospholipid-precursor, 
phosphatidic acid. PC is the most abundant phospholipid 
in eukaryotic cell membranes and accounts for about 50% 
of total cellular phospholipid mass [25]. PC head groups 
have a cylindrical geometry which provides a planar shape 
to lipid bilayers. PE is another abundant membrane phospho-
lipid and contributes to membrane curvature with a smaller 
conical headgroup geometry. The ratio of PC and PE species 
within the membrane can impose curvature stress onto the 
membrane, which is used for budding, fission and fusion 
[26]. PS is almost exclusively found in the inner cytoplasmic 
leaflet of the plasma membrane and, when flipped to the 
outer leaflet, is a signal for apoptosis and platelet activation 
[27, 28].

Sphingomyelin (SM) and sterols also comprise a large 
component of the membrane. SM belong to the class of 
sphingolipids and differ from phospholipids by a long-
chain nitrogenous base backbone, termed sphingosine. The 
saturated (or trans-unsaturated) SM tails allow these spe-
cies to form longer and narrower cylinders than PC of the 
same chain length. Consequently, SM can assemble tightly 
together, a phenomenon sometimes referred to as "lipid-
packing", resulting in a more rigid membrane state. Neutral 
sterols such as cholesterol balance SM structural rigidity 
and maintain membrane fluidity [29]. Sphingolipids, choles-
terol, and the degree of phospholipid hydrocarbon saturation 
affect overall membrane fluidity [23]. It is hypothesized that 
lipid bilayers do not exist as a homogenous lipid composi-
tion, but rather clusters of dense and fluid areas [30]. Denser 
areas, referred as lipid rafts, are comprised of packable lipids 
and clusters of membrane-bound proteins [31]. More fluid 
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membrane areas contain unsaturated phospholipids as their 
non-linear acyl tails prevent tight "lipid-packing" interac-
tions [32]. The plasma membrane also contains structures 
involved in endocytosis such as caveolae, which studies have 
found are rich in SM [33]. Most intracellular organelles also 
contain lipid bilayers, including the endoplasmic reticulum, 
golgi, nucleus, mitochondria, and lysosomes. Their mem-
branes consist of PC, PE, PI, and some cholesterol which 
result in a dynamic flexible interface. The endoplasmic retic-
ulum is the primary location of phospholipid, glycerolipid, 
and cholesterol synthesis. The golgi membrane closely 
resembles the endoplasmic reticulum membrane and con-
tains similar lipid species with increased SM and PS content 
[34]. In mammalian cells, the golgi is the main producer 
of complex sphingolipids like SM, glucosylceramide (Glc-
Cer), and lactosylceramide (LacCer), although, Cer from 
the endoplasmic reticulum is required for golgi-mediated 
sphingolipid metabolism [35, 36]. Nuclear membranes are 
also enriched in PC, PE, PI and cholesterol which contrib-
ute to flexible membrane dynamics. While there are fewer 
studies on eukaryotic nuclear and nucleolar membrane com-
positions, they are thought to be similar to the endoplasmic 

reticulum [37]. The mitochondria are unique in having two 
membranes separating spaces with different pH. Unlike the 
plasma membrane, mitochondrial membranes are composed 
of about 15% CL and low levels of sphingolipids and cho-
lesterol [38]. CL plays an essential role in regulating mito-
chondrial transporter function and mitochondria-organelle 
interactions [39, 40]. Lysosomal lipid membranes are low 
in cholesterol and high in sphingolipid content [41]. Lys-
osomes are also involved in lipid trafficking, specifically 
cholesterol and exogenous triacylglycerol (TG), sterols, and 
phospholipids from endosomes [42].

The two other essential lipid functions are providing 
metabolic fuel and acting as signaling molecules. Lipids 
are stored in droplets in the cytosol, composed mainly of 
neutral lipid species: TG, diacylglycerol (DG), and choles-
terol species. Lipid droplets are formed off the endoplas-
mic reticulum where newly synthesized TGs can be readily 
packaged by the perilipin (PLIN) family of 5 proteins [43]. 
This process is particularly important for alveolar cells in 
the lactating mammary gland where lipids obtained via de 
novo synthesis and diet feed into TG synthesis for milk-fat 
globule production [44]. In times of nutrient deprivation, 

Fig. 1  Lipid Classes. The eight lipid classes: fatty acids, glycerolip-
ids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, sac-
charolipids, and polyketides. Fatty acids and fatty acyls (activated fatty 
acids) are the simplest lipid category that serves as building blocks for 
complex lipids; includes eicosanoids, docosanoids,  fatty alcohols,  fatty 
aldehydes, fatty esters, fatty amides, fatty nitriles, fatty ethers, and 
hydrocarbons. Glycerolipids are neutral lipids containing a glycerol 
backbone; includes  monoacylglycerol (MG),  diacylglycerol (DG), 
and  triacylglycerol  (TG) species. Glycerophospholipids are membrane 
lipids that contain a phosphodiester linked to a hydroxyl group of glyc-

erol and are differentiated by the type of moieties (X) esterified to the 
phosphate. Sphingolipids contain a sphingoid base backbone and vary 
by polar moieties (X) esterified to the backbone. Sterols contain a com-
mon steroid core of a fused four-ring structure with a hydrocarbon side 
chain and an alcohol group, cholesterol being the most common and 
functionally important for membrane integrity. Prenol lipids consist of 
one or more 5 carbon prenol derivatives that can link in chain or ring-
like structures. Saccharolipids generally consist of fatty acids directly 
esterified to a sugar. (R) represents hydrocarbon chain at an arbitrary 
length. (n) represents repeating carbonyl components
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cells can initiate hydrolysis of TG and DG from lipid drop-
lets, releasing FAs from glycerol for degradation by fatty 
acid oxidation (FAO). Not all lipid droplet components 
are broken down for energy. DG serves as a lipid mes-
senger activating protein kinase C (PKC) and intracellular 
 Ca2+ release [45]. DGs also trigger the translocation of 
protein kinase D which catalyzes the formation of secre-
tory vesicles [46, 47]. Phosphorylation of DG or hydroly-
sis of phospholipids results in phosphatidic acid, another 
multifunctional lipid second messenger. Phosphatidic 
acid has been shown to attenuate hippo pathway signaling 
through lipid-protein interference [48]. Although PI is a 
membrane component, its phosphorylation plays a role in 
PI3K signaling and AKT activation, the most frequently 
mutated pathway in HR + breast cancer [49]. Additionally, 
Cer synthesized at high levels triggers a cellular apoptotic 
program through JNK and p38 signaling [50]. Prostaglan-
dins and other eicosanoids are involved in immune cell 
signaling and inflammation through a variety G-protein 
coupled receptors. The functions described here give a 
brief overview of the fundamental role lipids play in most 
cellular processes.

Current Analytical Methods for Lipidomics

The collective lipid content in a cell is termed the lipidome. 
Lipidomics is the study of the lipidome through identifica-
tion and quantification of lipid analytes within a given sam-
ple. The term "lipidomics" emerged in the early 2000s when 
mass spectrometry (MS)-based methods were optimized for 
lipid identification studies. In the past decade, lipidomics 
have been conducted for the study of human diseases such as 
cancer. Technological advancements in MS now allow dif-
ferent analytic coverage (global/untargeted or targeted lipid-
omics) and has broadened the scope of lipid research. There 
are several detailed technical reviews on lipidomics [51–53]; 
here we give a brief overview of current analytical methods 
and their application towards breast cancer research.

The general workflow of lipidomic experiments typi-
cally involves sample preparation, MS acquisition, and data 
processing (Fig. 2). Liquid chromatography (LC)-MS is the 
most common technique which utilizes columns for analyte 
separation before MS detection and can be used for targeted 
or untargeted approaches. Direct-infusion techniques such 

Fig. 2  General Workflow of Lipidomics for Breast Cancer Research. 
Three main steps to lipidomic analysis include sample prepara-
tion, MS-Detection, and Data Analysis. MTBE = methyl tert-butyl 
ether, BUME = butanol/methanol, ESI = Electrospray ionization, 
MALDI = Matrix assisted laser desorption ionization, SIMS = Sec-

ondary ion mass spectrometry, APCI = Atmospheric Pressure Chemi-
cal Ionization, APPI = atmospheric pressure polarization ionization, 
DESI = Desorption electrospray ionization, MS = Mass spectrom-
etry, ANOVA = Analysis of variance, SAM = Significance Analysis of 
Microarrays, EBAM = Empirical Bayes Analysis of Microarrays
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as shot-gun lipidomics take advantage of the chemical prop-
erties of lipids for lipid identification and allow for direct 
use of samples with minimal preparation. Most lipidomic 
techniques utilize extracts prepared from biological samples 
(i.e. cell lines, tissues); however, MS imaging can analyze 
whole tissue slices (e.g. MALDI MS-imaging). Sample 
extraction isolates the lipid fraction of a biological sample 
for MS analysis. A few common extraction methods include 
the Modified Bligh and Dyer, Modified Folch, Methyl ter-
tiary-butyl ether (MTBE), and butanol-methanol (BUME) 
methods, each varying in solvent and solvent ratios. Unfor-
tunately, there is not a single extraction method that captures 
all lipid species with high recovery percentage, yet each of 
the following liquid–liquid extraction methods have their 
advantages and disadvantages. Modified Bligh and Dyer 
method uses chloroform/methanol/H2O (1:1:0.9, v/v/v) for 
extraction of small biological samples (< 50 mg of tissue) 
and traps lipids in the chloroform phase [54]. The Modified 
Folch method is similar to Bligh and Dyer and uses chlo-
roform/methanol (2:1, v/v) for biological tissue extraction 
(~ 100 mg), then water or 0.9% NaCl (0.2 volume) is added 
to wash extracts [55]. This method was designed to improve 
capture from lipid-rich samples which may otherwise be 
excluded using the Bligh and Dyer method. The MTBE 
method uses MTBE/methanol/water (5:1.5:1.45, v/v/v), 
trapping total lipids in the top MTBE fraction [56]. The 
benefit of this method is that uses fewer toxic solvents and 
is more feasible for high throughput or automated set ups. 
The BUME method uses a volume of butanol/methanol (3:1, 
v/v) and a small aqueous phase volume. An equal volume of 
heptane/ethyl acetate (3:1, v/v) is then added followed by an 
equal volume 1% acetic acid [57]. This method is proposed 
to reduce water-soluble contaminants that may be found in 
the previously described methods. The methods described 
each use organic systems for "wide net" lipid analyte cap-
ture and are used for both targeted and untargeted analyses 
[58]. The choice of extraction method for targeted analy-
ses is dependent on the subset of lipids in question. Neutral 
lipid species with higher hydrophobicity are best captured 
by methods with nonpolar solvents such as cyclohexane 
or toluene. Intermediate polar lipids such as sphingolip-
ids or phospholipids are best extracted with polar solvents 
like chloroform or MTBE [58]. It is important to note that 
MALDI lipidomics require little to no sample preparation 
and was recently discussed in a detailed technical review 
[59]. After extraction, additional steps may be necessary 
depending on the type of MS being conducted. For direct-
infusion based approaches, it is important to simplify sample 
extracts since no chromatography separation is applied prior 
to MS analysis [52]. This can be achieved through physical 
(phase separation) or chemical approaches (base hydrolysis) 
to enrich low abundance lipids [60, 61]. Lipid derivation 
is another option that chemically tags specific functional 

groups on lipids and can aid in MS identification [61]. The 
benefit of these steps is that they increase detection of tar-
get analytes (i.e. sphingolipids) in low abundance samples 
without the use of columns for analyte separation for direct-
infusion approaches such as shot-gun lipidomics.

Ionization is the next step following lipid extract prepara-
tion. The type of ionization depends on whether direct infu-
sion MS (shotgun lipidomics) or chromatography-based MS 
(LC-based lipidomics) is being performed. It is important to 
note that MS imaging requires ionization as well. The two 
most popular ionization techniques are ESI and MALDI. 
ESI is a soft ionization technique that uses an electrospray 
produced from a strong electric field applied to a liquid pass-
ing through a capillary. This results in a fine aerosol from 
which ions are formed by desolvation [16]. MALDI is also 
a soft ionization technique but allows analysis of larger and 
labile molecules like peptides, proteins, and lipids. This 
technique is useful for MS imaging of tissue and establishes 
a matrix for analytes that absorbs energy at the wavelength 
of the laser. As the pulsed laser hits analytes, this triggers 
ablation and desorption from the matrix which facilitates 
analyte ionization [17]. Other popular ionization techniques 
include Atmospheric Pressure Chemical Ionization (APCI), 
Atmospheric Pressure Polarization (APPI), Secondary Ion 
Mass Spectrometry (SIMS), and Desorption ESI (DESI) 
which have been reviewed in detail [62]. Ion mobility is an 
optional step that furthers ion separation according to their 
charge shape and size [63]. Following ionization and ion 
mobility, full MS or tandem mass spectrometry (MS/MS) is 
performed depending on whether global or targeted analy-
sis is desired. After MS analysis, the data is represented as 
MS spectra, MS/MS spectra, ion chromatogram, or images 
(MS-imaging).

Following data acquisition, spectral MS data undergoes 
deisotoping to remove spectral complications from the 
presence of isotopic clusters. This allows for easier mass 
identification and analyte annotation by lipidomics soft-
ware. Lipidomic software match molecular masses to lipid 
identifiers specific to comprehensive databases such as 
LIPID MAPS, SWISS LIPIDS, Chemical Entities of Bio-
logical Interest (ChEBI), KEGG compound database, or 
human metabolome database (HMBD) [24, 64, 65]. Once 
qualitative and quantitative data are acquired, the results 
are further processed for bioinformatic analysis. There are 
many free online analysis tools available to apply statis-
tical calculations and most accept raw spectra (mzML, 
mzXML or mzData) or MS peak intensities (e.g. Meta-
boanalyst) [66]. A key aspect to consider in data analysis 
is method of normalization. Currently, there lacks a "gold 
standard" method for lipidomic data normalization; how-
ever, there are several accepted methods in the literature 
(discussed in [19]). Data normalization can include both 
sample-based (e.g. sample protein,) and data-based (e.g. 
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Log transformation) methods. Both are easily applicable 
to spectral data on the mentioned online analysis plat-
forms; however, it is important to clearly document which 
methods are applied and make raw data publicly available 
at publication. Down-stream analysis of lipidomics data 
include pathway or enrichment analyses. These analyses 
are currently better suited for genetic data; however, new 
online tools tailored to lipids, such as Lipid Ontology 
Enrichment Analysis (LION) or Lipid Pathway Enrich-
ment Analysis (LIPEA), have been recently developed 
[67, 68]. With the lipidomic analysis tools available today, 
we can conduct statistical comparisons between samples 
of normal and diseased states, calculate disease specific 
pathway enrichment, and assess global impacts of lipid 
metabolic networks as a consequence of disease. There is 
a growing application of lipidomics to biological research.

Breast Cancer Lipid Signatures in Cell Lines 
and Tumors

Advances in lipidomics technologies has led to an increase 
in the number of lipid studies focusing on breast cancer 
within the past 5 years. In 2020, a PubMed search query for 
“lipidomics” returned 1,560 articles, and adding “breast can-
cer” reduced the list to 28 publications. Here we will high-
light several recent research studies utilizing breast cancer 
research lipidomics (2012–2021) that we found insightful 
to the scope of this review. These fall into two general cat-
egories: studies conducted in breast cancer cell lines versus 
those conducted in clinical breast tumor specimens. A sum-
mary of results from the studies discussed in this section can 
be found in Table 1.

Table 1  Significant Identified Lipids in Breast Cancer. Increased and decreased lipid species compared to MCF10A cells, normal adjacent tis-
sue, or healthy patient serum for breast cancer cell lines, tumor tissue, breast cancer patient serum, respectively

NR None reported

HR + Breast Cancer

T47D Cell Line Up PE(32:2), PE(36:5), PE(38:0), DG(32:0), DG(34:0), LPC(16:0), LPC(18:0)
Down NR

MCF7 Cell Line Up TG(46:1), TG(46:2), TG(48:2), TG(50:2), TG(50:3), TG(52:2), TG(52.3), TG(54:3), PC(28:0), PC(28:1), PC(30:1), 
PC(40:2),PE(32:2), PE(36:5), SM(44:1), MUFAs

Down NR
CAMA-1 Cell Line Up PC(28:0), PC(28:1), PC(30:1), PE(P34:1/O-34:2), PE(P34:1/O-34:3), PE(P32:1), PE(36:3), PE(38:0), SM(44:1), SM(44:2), 

DG(32:0), DG(34:0)
Down SM(32:1)

Tumors NR
Serum NR
HER2 + Breast Cancer
SK-BR-3 Cell Line Up TG(40:0), TG(40:1), TG(42:0), TG(42:1), TG(44:0), TG(46:1), TG(46:2), PC(28:0), PC(28:1), PC(30:1), PE(P-32:1), PE(32:2), 

PE(36:5)
Down PE(P-36:4), PE(O-34:2), PE(P-38:4), PE(O-38:5)

Tumors Up PC(16:1), PC( 32:2)
Down NR

Serum NR
Triple Negative Breast Cancer
MDA-MB-231 Cell 

Line
Up PC(34:0), PC(O-34:0), DG(32:0), DG(34:0), LPC(18:0), PUFAs
Down PE(P-34:1/O-34:2), SM(32:1)

MDA-MB-436 Cell 
Line

Up PC(34:0), PC(O-34:0), SM(34:2), DG(32:0), DG(34:0), LPC(16:0), LPC(18:0)
Down PE(P-34:1/O-34:2)

Tumors Up PC(32:1), PC(30:0), PC(32:0), PE(36:1)
Down NR

Serum Up PC(32:1), Cer(43:1), stearic acid
Down NR

General Breast Cancer versus Normal
Tumors Up PC(34:1), PC(32:0), PC(34:1), SM(d18:1/16:0), PE(P-16:0/22:6), PS(38:3), Free FAs

Down NR
Serum Up PC(32:1), Total TGs

Down NR
Recurrent versus Non-recurrent Breast Cancer
Tumors Up PC(32:1), PC(30:0)

Down NR
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Established cell lines models provide the most feasi-
ble models for querying lipid profiles under baseline and 
manipulated states. Three studies compared lipid profiles of 
breast cancer subtypes. Eiriksson et al. was the first study to 
conduct untargeted LC–MS lipidomics on a panel of seven 
widely used cell lines: non-tumorigenic MCF10A cells, and 
ER + (MCF7, T47D, CAMA-1), TNBC (MDA-MB-231, 
MDA-MB-436), and HER2 + (SK-BR-3) breast cancer cells 
[69]. Based on their analysis, they concluded that breast 
cancer cells (with one exception) have lipid profiles distinct 
from MCF10A cells, and that each breast cancer subtype 
had a distinct lipidome. SK-BR-3 cells displayed the most 
distinct lipid profile with a relative abundance of TGs (less 
than C46) versus MCF10A and the other breast cancer cell 
lines. This could potentially be due to the high rate of de 
novo FA synthesis reported in HER2 + breast cancers [70]. 
ER + MCF7 and T47D cells contained similar lipid signa-
tures with a notable increase of PE(32:2) and PE(36:5) com-
pared to MCF10A cells while CAMA-1 cells showed mini-
mal difference. MDA-MB-231 and MDA-MB-436 TNBC 
cell lines exhibited an abundance of medium chain PC spe-
cies (C < 40) and saturated DG(32:0) and DG(34:0) species 
versus MCF10A cells. Therefore, TG and PC abundance 
may serve as a key lipid profile indicator of breast cancer 
subtype based on elevated de novo FA and PC synthesis 
observed in HER2 + and TNBC, respectively. It is impor-
tant to note these studies were conducted in the absence of 
steroid hormone treatments in ER + breast cancer cell lines. 
Future studies in the presence of hormones (i.e. estrogen and 
progesterone), and endocrine therapies (i.e. tamoxifen) will 
be important for deciphering the lipidome in ER + breast 
cancer cells.

The process of epithelial-mesenchymal transition (EMT) is 
associated with metabolic changes yet studies on lipid metab-
olism in EMT are lacking. To investigate this, Giudetti et al. 
measured proteomic profiles via LC–MS and lipid profiles 
using GC/MS and NMR in MCF7 and MDA-MB-231 breast 
cancer cells as models of epithelial-like and mesenchymal-like 
cells, respectively [71]. By proteomic analysis, MDA-MD-231 
cells had reduced expression of lipogenic enzymes compared 
to MFC7 cells (i.e. FASN, ACC, ACLY). Lipidomic analy-
sis found that MDA-MB-231 cells exhibited increased levels 
of PUFAs, most notably PI(38:4), and cholesterol compared 
to MCF7 cells. Conversely, MCF7 cells displayed a higher 
percentage of monounsaturated fatty acids (MUFAs) which 
the authors suggested could be due to their observation that 
stearoyl-CoA desaturase (SCD) is overexpressed in MCF7 
versus MDA-MB-231 cells. SCD has also been found to be 
elevated in ER + versus TNBC clinical samples [72]. While 
this study identified potentially interesting changes in lipid use 
during EMT, a limitation is the inclusion of a single cell line 
of each type. These observations merit extension to additional 
breast cancer cell lines of various subtypes, as well as cells 

that have been induced to undergo EMT which would identify 
EMT-induced changes in the same genetic background.

One study investigated lipid changes associated with 
metastatic potential. Nishida-Aoki et al. compared lipidomic 
profiles between parental MDA-MB-231 cells and two syn-
geneic sublines selected for high (D3H2LN) vs low (D3H1) 
lymph node-metastatic potential [73]. Lipidomics were con-
ducted on the three cell lines in addition to their secreted 
extracellular vesicles. D3H2LN vs parental and D3H1 cells 
had increased abundance of LPE, SM, PA, and hexosylcera-
mide (HexCer) in their lipidome, and it was hypothesized 
the relative percent changes in these lipid species may be 
associated with metastatic potential. Both D3H2LN cells 
and EVs had significantly increased saturated DG(14:0/22:0) 
vs parental and D3H1 derived EVs, which could potentially 
activate PKD/PKC signaling in surrounding endothelial 
cells to promote angiogenesis. However the authors found 
no significant difference in the ability of EVs from either 
subline to activate PKC and thus the implication of saturated 
DG(14:0/22:0) is still undetermined [74].

The extracellular microenvironment plays a significant 
role in influencing tumor cell metabolism. Several studies 
measured the impact of specific environmental stressors on 
the cellular lipid landscape. Enhanced glycolysis is a common 
feature of cancer cells and results in an acidic tumor microen-
vironment from the production of lactate [75]. Urbanelli et al. 
determined the effect of microenvironment acidification (pH 
6.5) on the lipid profiles of several cancer cell lines including 
MCF7 [76]. Under acidic vs baseline pH conditions, MCF7 
cells decreased PC chain saturation and increased elongase 
and desaturase enzyme expression. These data insinuate a 
protective effect of longer, unsaturated phospholipid remod-
eling against acid pH that requires further study. Nutrient 
deprivation can also occur in specific tumor microenviron-
ments. For example, methionine (Met) is an essential amino 
acid required for cancer cells to grow under in vitro condi-
tions and is also important in lipid biosynthesis due to the 
requirement for S-adenyl-methionine [77]. Borrego et al. 
assessed the impact of Met stress (deprivation) on the cellular 
lipid composition of TNBC MDA-MB-468 cells and a Met 
stress insensitive derivative, MDA-MB-468res-R8, under 
control and Met-stress conditions [78]. There was a rapid 
and extensive decrease in lipid abundance, except for unsatu-
rated TGs, in Met-dependent MDA-MB-468 cells that was 
not observed in Met-res cells, and there was an associated 
increase in cytoplasmic lipid droplets reflecting an overall 
increase in neutral storage lipids. Replacement of Met with 
its metabolic precursor, homocysteine, in cell culture media 
decreased total lipids and increased TGs in MDA-MB-468 
sensitive compared to Met-stress resistant cells. The authors 
attributed these changes to stress-induced lipid oxidation and 
the unfolded protein response. Changes in gene expression 
were also observed, although they were delayed relative to 
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the changed lipid profile and were better correlated with the 
unfolded protein response. Additional studies will need to 
determine the mechanisms by which cancer cells overcome 
Met dependence and its role in lipid metabolism. Numerous 
other microenvironmental stressors likely impact the breast 
cancer cell lipidome including both glucose and L-glutamine 
which serve as critical carbon sources in many tumor cells. 
The stress impacted lipidome could be a potential tumor cell 
vulnerability.

It is well-established that cell culture dimensional-
ity affects cell phenotype [79, 80]. To address this issue, 
Vidavsky et al. compared the lipid profiles of 2D versus 
3D spheroid cultures of a series of MCF10A cells. These 
included parental MCF10A to mimic “nonmalignant” cells, 
MCF10DCIS.com to mimic “pre-malignant” cells and 
MCF10CA1 (HRAS transformed, invasive in vivo) to mimic 
malignant or “invasive” cells [81]. Storage of lipids upon 
both conditions was examined using Oil Red O staining. In 
2D culture, parental MCF10A cells were void of lipid drop-
lets while MCF10DCIS.com and MCF10CA1 had abundant 
lipid storage. In 3D culture, parental MCF10A cells showed 
occasional lipid droplets. Interestingly, the 3D pre-malignant 
and invasive spheroids exhibited larger lipid droplets (vs 2D) 
that were concentrated near the spheroid center. To assess 
global lipid profiles, LC–MS was run on each of the three 
cell lines in 2D vs 3D cultures. Total phospholipid content 
differed between 2D vs 3D cells, where 2D cells displayed 
a higher percentage of PC and PE lipid species. Invasive 
3D spheroids also showed increased SM, DG, and acylg-
lycerols compared to pre-cancerous spheroids. Notably, the 
lysophosphatidylcholines (LPC) pool in MCF10CA1a (inva-
sive cancer) spheroids had shorter chain lengths compared 
to MCF10DCIS (pre-cancerous) spheroids. These data sug-
gest that growth in 3D profoundly affects lipid production 
and distribution. We speculate the reduction in total lipid 
content in 3D spheroids could be indicative of reduced lipid 
synthesis in a 3D state. Furthermore, the distribution of 
lipid droplets near the spheroid center could reflect an adap-
tion to meet the energy demands of the surrounding cells 
through lipid transfer. Tumor centers are typically hypoxic 
and necrotic. Lipid droplets may serve as a central energy 
storage since access to nutrients is not evenly distributed in 
3D as it is in 2D cell culture. Increased SM levels in invasive 
3D spheroids could result from upregulated de novo sphin-
golipid synthesis. While this has been reported in multiple 
cancers, it remains unclear whether upregulated sphingolipid 
biosynthesis is connected to invasiveness or cell survival 
pathways and requires more study [82]. This study clearly 
indicates the importance of including 3D culture conditions 
in the experimental design for future lipid studies in breast 
cancer. It would also be interesting to determine the effect 
on including adipocytes in 3D cultures to determine whether 
the observed changes are intrinsic to the tumor cells, or 

reflect their growth in 3D in the absence of adipocytes that 
could serve as a source of lipids for tumor cells.

Breast cancer cell line models that allow for compari-
son of factors in tightly controlled systems have given a 
solid indication of how important lipid metabolism is to 
the disease. However, they must be ultimately confirmed 
in patient samples. To conduct lipidomics on human tis-
sues, samples are typically flash-frozen at time of tumor-
resection or biopsy before sample preparation. Two stud-
ies focused specifically on TNBC tumors. Purwaha et al. 
conducted LC–MS on 70 TNBC tumors looking to identify 
biomarkers associated with clinical outcome and identify 
potential therapeutic targets [83]. They found elevated SM 
and sphingoid bases were correlated with better patient 
disease-free survival. This is in contrast to the studies in 
TNBC and MCF10A cells that associated elevated SM 
with more invasive and metastatic properties and high-
lights the need for additional in vivo and patient stud-
ies to resolve the different observations. above. Notably, 
Cer levels had no correlation with disease free survival 
in this study. Hosokawa et al. investigated TNBC patient 
tumors to define lipid markers correlated with tumor recur-
rence [84]. Using MALDI-MS on a small set of recurrent 
(n = 3) and non-recurrent (n = 6) TNBC tumors, PC(32:1) 
and PC(30:0) were identified as significantly increased 
in the recurrent tumors. PC(30:0) was identified by two 
additional studies as associated with TNBC or Grade 3/
ER − tumors [85, 86]. Thus, there is some potential for 
specific lipid species to serve as predictive markers.

Lipid signatures of clinical breast cancer specimens has 
also established potential subtype differences. Hilvo et al. 
conducted lipidomics on 267 patient tumors, the largest 
study of this kind thus far [86]. They found PC(14:0/16:0) 
and PE (18:0/18:1) lipid species were correlated with 
ER − tumors and PC(16:0/16:0) was associated with 
decreased patient survival in confirmation of the observa-
tions from Hosowaka et al. [84]. A smaller study of 34 
tumors reported PC(32:1) and PC(30:0) were increased in 
TNBC tumors compared to normal adjacent tissue [85]. 
PC(18:1/16:0) was also consistently present in all breast 
tumors compared to normal adjacent tissue suggesting 
PC(34:1) may serve as a general breast cancer biomarker 
[85]. Notably, HER2 + tumors exhibited elevated levels of 
short chain PC(16:1) lipids. Collectively, lipidomic analy-
sis on breast cancer cell lines and patient tumors has iden-
tified a subset of potential prognostic or predictive lipid 
markers (Table 1). However, the biological significance of 
these lipid species and their validation as reliable prog-
nostic markers will require extensive additional study. 
Additionally, the lipid contribution of stromal or adipose 
cells were not discussed in many of these publications. This 
warrants discussion as these cells could play potential roles 
in lipid trafficking or signaling crosstalk with tumor cells.
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Major Players of Lipid Metabolism and their 
Regulation in Breast Cancer

Deregulated energy metabolism is a hallmark of cancer 
and is often associated with aberrant glucose metabolism, 
or the Warburg effect, and glutamine metabolism [13, 87]. 
An emerging hallmark of cancer metabolism as described 
by Pavlova et al. is “the use of glycolysis and tricarboxylic 
acid (TCA) cycle intermediates for biosynthesis”, a major 
component of which is lipid metabolism [87]. FAs are crit-
ical components of cell membranes, energy homeostasis, 
and signaling. The regulation of these processes is only 
partially understood in breast cancer. Normal breast tissue 
undergoes extensive metabolic rewiring, largely resulting 
from transcriptional changes, to prepare for milk produc-
tion during lactation [reviewed in [44, 88]]. Therefore, 
breast cancers originate from cells that have the machin-
ery to undergo dynamic lipid remodeling. Whether these 
processes are retained during tumorigenesis is unclear. 
However, breast cancer cells show an exceptional ability 
to utilize anabolic and catabolic lipid metabolism to fulfill 
survival and proliferative needs. Here we discuss current 
knowledge on how lipid metabolism is regulated in breast 
cancer.

Breast cancer cells can obtain lipids through uptake 
from their microenvironment or through de novo synthe-
sis, therefore the expression of genes involved in lipid 
transport or fatty acid biosynthesis repress two extreme 
phenotypes for tumor cells that require lipids, and the abil-
ity to toggle between these two states may be critical for 
metabolic flexibility and tumor survival. Exogenous FA 
uptake is mediated through specialized transporters that 
facilitate FA movement across the plasma membrane. FA 
translocase (FAT/CD36) and six FA transport proteins 
(FATP1-6/SLC271-6) are the best characterized molecules 
that mediate uptake and are over expressed in many can-
cers [89]. High CD36 expression is associated with poor 
prognosis in breast cancer and reported to enhance therapy 
resistance in each of the three main breast cancer subtypes 
[90–92]. Additionally, breast cancer cells can uptake FAs 
through secondary mechanisms such as endocytosis [93]. 
Cancer associated fibroblasts are the most abundant cell 
type in the tumor stroma and have been shown to transfer 
FAs to breast cancer cells through the extracellular matrix, 
lipid droplets, and microvessicles [94, 95]. Adipocytes, 
especially abundant in the breast stroma, can also supply 
FAs to breast cancer cells [96].

FA de novo synthesis is the anabolic process of build-
ing intracellular FAs. Most metabolic processes depend 
on central pools of acetyl-CoA, a fundamental metabolite 
building block (Fig. 3). Acetyl-CoA is derived from citrate 
or acetate – which are either imported or broken down 

from larger carbohydrates. Acetyl-CoA and malonyl-CoA 
are the necessary substrates for de novo FA synthesis. 
Acetyl-CoA is converted to Malonyl-CoA by acetyl-CoA 
carboxylase (ACC), a rate limiting enzyme in de novo FA 
synthesis. FA synthase (FASN) is the master enzyme that 
assembles acetyl-CoA and malonyl-CoA into palmitate 
(C16), or other FAs. FASN is overexpressed in breast 
cancer compared to normal, nonlactating tissue, with 
the highest expression in HER2 + followed by HR + and 
TNBC [97]. Increased FASN activity has been linked 
with increased Pentose Phosphate Pathway (PPP) activ-
ity in non-Hodgkin lymphoma [98]. The PPP generates 
NADPH and 5-carbon sugars needed for nucleotide syn-
thesis. FASN consumption of NADPH relieves feedback 
inhibition of Phosphogluconate Dehydrogenase (PGDH) 
and resupplies NADP + for PDGH to synthesis ribulose-
5-phosphate. These two interdependent biosynthetic path-
ways are likely essential for lipogenic breast cancer growth 
and their cooperation warrants further research. In addi-
tion, upregulated de novo synthesis may be a metabolic 
adaptation to breast cancer tumor microenvironment or 
specific metastatic sites. Ferraro et al. recently showed 
that FASN activity was required for growth of tumor cells 
in the brain but not in the mammary gland using their 
HER2-enriched breast cancer models [99]. This repre-
sents the first example of a tissue-specific requirement 
for FASN and fatty acid biosynthesis and suggests this 
metabolic change could be required for brain metastasis 
in this model.

Upstream regulation of de novo synthesis occurs 
largely through sterol regulatory element-binding proteins 
(SREBPs). There are two SREBP genes in mammals that 
encode three isoforms (SREBP1a, SREBP1c, and SREBP2) 
[100]. SREBPs reside in the endoplasmic reticulum or golgi 
depending on high or low cholesterol levels, respectively 
[101, 102], and must be cleaved in order to translocate the 
nucleus where they activate transcription of lipogenic genes 
including FASN, ACC, and ATP citrate lyase (ACLY) [103, 
104]. PPARγ, NR1H2/3, and CEBPs are additional tran-
scription factors that regulate lipid enzyme transcription. 
SREBP regulation of lipid biosynthetic pathways was largely 
defined in the lactating mammary gland where SREBP1c 
plays a critical role in initiating milk-globule production 
[105]. HER2 is also reported to induce FASN expression, 
however it is unclear if this is in an SREBP-dependent man-
ner [70]. In HR + breast cancers, both estrogen and proges-
terone are reported to increase lipogenic gene expression 
[106]. Thus, HR + and HER2 + breast cancers have highly 
activated lipid biosynthetic pathways, and we speculate that 
this may be retained from cells that originally required these 
processes for lactation, that will require further study.
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Palmitate, the most abundant and fundamental saturated 
FA, can be further processed into glycerolipids by enzymes 
in the golgi (GPAT, LPAT, PAP) and shuttled into lipid stor-
age, membrane synthesis, or signaling lipids. Palmitate itself 
serves as important protein lipid modification in cancer cells. 
The Wnt signaling pathway is an important driver of several 
cancers and is frequently activated in breast cancer cells. 
Wnt ligands undergo palmitoylation and depalmitoylation 
for trafficking between the plasma membrane and cytosol. 
Palmitoylation occurs when a protein forms an enzyme-
mediated thioester bond with a palmitoyl group and this 
process is responsible for tethering a number of proteins 
to the plasma membrane such as Ras, and CD36. Palmi-
toylation and myristoylation are just a few of the key pro-
tein lipid modifications prevalent in cancer which are being 
explored as therapeutic targets [107]. Glycerolipids destined 

for storage are processed into MG, DG, and TGs. The PLIN 
family of proteins package these species into lipid droplets 
with cholesterol. Lipid droplets visible by microscope are 
associated with a lipogenic cellular phenotype and com-
monly reported in HR + and HER2 + breast cancer [108]. 
Lipid droplets mainly serve as energy storage but may have 
other consequential effects. For example, lipid droplets in 
breast cancer cells have been shown to provide cytotoxic 
protection by sequestering chemotherapeutic agents [109]. 
Under times of nutrient deficiency, lipases associated with 
lipid droplets (ATGL, HSL, MGL) can release FAs from 
their glycerol backbone through hydrolysis reactions. Intra-
cellular FAs can recycle to other anabolic synthetic pathways 
or be shuttled for oxidation.

FAO is a catabolic process that breaks down FAs into 
acetyl-CoA. This process begins in the mitochondria with 

Fig. 3  Overview of Lipid Metabolism. General anabolic and cata-
bolic pathways for intracellular fatty acids. Acetyl-CoA carboxylase 
(ACC), acetyl-CoA synthase (ACS), 1-acyl glycerol-3-phosphate 
acyltransferase (AGPAT), adipose triglyceride ligase (ATGL), clus-
ter of differentiation 36 (CD36), carnitine palmitoyl transferase 
1/2 (CPT1/2), diacylglycerol (DA), diacylglycerol acyltransferase 
(DGAT), fatty acids (FA), fatty acid binding protein (FABP), fatty 

acid oxidation (FAO), fatty acid synthase (FASN), fatty acid transport 
protein (FATP), glycerol-3-phosphate acyltransferase (GPAT), hor-
mone sensitive lipase (HSL), lysophosphatidic acid (LPA), monoacyl-
glycerol (MG), monoacylglycerol lipase (MGL), phosphatidic acid 
(PA), phosphatidic acid phosphatase (PAP), perilipin (PLIN), triacyl-
glycerol (TG), tricarboxylic acid cycle (TCA)
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transport proteins bound to the mitochondrial membrane that 
participate in the carnitine shuttle. Mitochondria consist of 
two membranes, the inner and outer membranes. Carnitine 
palmitoyltransferase I (CPT1) is incorporated in the outer 
mitochondrial membrane and facilitates transfer of FAs across 
this membrane, while CPT2 coordinates FA transport across 
the inner membrane. Through a series of reactions, FAs are 
broken down to yield acetyl-CoA, NADH, and FADH2. This 
mechanism serves as an alternative to drive TCA cycle move-
ment during insufficient glucose or glutamine availability. 
Breakdown of branched and very long chain FAs require α- 
and β-oxidation by peroxisomes [110]. Once these FAs are 
converted to shorter chain FAs, they can be imported into the 
mitochondria via the CPT-mediated carnitine shuttle to com-
plete further oxidation steps. FAO is emerging as an important 
metabolic process that contributes to deregulated breast can-
cer metabolism, especially in TNBC [111]. The MYC onco-
gene is frequently amplified in TNBC and has been shown to 
drive FAO in addition to glycolysis [112, 113]. TNBCs with 
MYC overexpression have been shown to upregulate PGC1α, 
CPT1B, and CDCP1 while downregulating FASN and ACC 
[113]. In addition, FAO gene signatures have been associ-
ated with poor clinical outcome in MYC-expressing TNBCs, 
suggesting that this process is a contributing factor to TNBC 
pathogenesis [113].

Oncogenes play a critical role in regulating lipid metabo-
lism. PIK3CA is one of the most commonly mutated genes in 
carcinomas with up to 40% of breast cancers exhibiting gain-
of-function mutations [114, 115]. The protein generated by 
PIK3CA, phosphoinositide 3-kinase (PI3K), participates in 
the PI3K/AKT/mTOR signaling axis which regulates cell 
growth and proliferation as well as sensing availability of 
nutrients, hormones, and growth factor stimulation [116]. 
Loss of the tumor suppressor PTEN also occurs frequently 
in breast cancer; PTEN acts as a lipid phosphatase, con-
verting phosphatidylinositol (3,4,5)-trisphosphate (PIP3), 
to phosphatidylinositol (4,5)-bisphosphate (PIP2), thereby 
depressing PI3K and AKT activation. 80% of HER2 + breast 
cancer tumors display increased phosphorylation AKT, an 
indicator of active PI3K signaling [117]. The connection 
between active PI3K signaling and a lipogenic phenotype 
in HER2 + breast cancer is not fully understood but is sug-
gested to be a consequence of AKT downstream targets 
[118, 119]. As discussed, MYC is associated with activating 
glycolysis and lipogenesis/FAO in TNBC [113, 120]. MYC 
is also frequently mutated or amplified in breast cancer and 
likely contributes to breast cancer aggressiveness through 
its regulation of multiple branches of metabolism [115]. 
Thus, the various genetic changes present in the different 
breast cancer subtypes can drive changes in lipid metabo-
lism. There are two excellent recent revies on breast cancer 
oncogenes and metabolism [121, 122].

Serum Lipidomics: Clinical Diagnostic 
Potential?

Preclinical and clinical studies to date support that lipid 
metabolism is aberrantly altered in breast cancer compared 
to benign breast tissue. A key question is whether breast 
tumor lipid metabolites in patient serum have diagnostic 
potential. Mammograms and magnetic resonance imaging 
(MRI) are the current standard for breast cancer screening, 
yet mammograms alone display a rate of over-diagnosis 
between 0–30% [123]. Follow up MRIs and tissue sam-
pling can be costly and inconclusive. In addition, some 
subtypes such as TNBC can be difficult to detect by mam-
mogram until tumors are of a size that negatively impacts 
treatment and outcome [124]. Thus, there remains a need 
for cost-effective breast cancer screening alternatives. 
Serum tumor markers provide an alternative, noninva-
sive and less costly methods for breast cancer diagnostic 
screening. For example, advances in capturing circulating 
tumor cells and circulating tumor DNA provides prognos-
tic and disease-state information [125]. Current advance-
ments in mass spectrometry detection of lipids may offer 
an additional serum screening option.

Several recent studies conducted lipidomic analysis of 
serum from breast cancer patients and non-cancer controls 
to determine if tumor-associated lipids could be detected. 
Three independent studies identified increased levels of 
PC(32:1) in serum from women with breast cancer com-
pared to non-affected women [126–128]. PC(32:1) was 
also an increased lipid analyte detected in studies of TNBC 
tumors described previously [84, 85]. In addition, total 
TGs were increased in breast cancer patient serum com-
pared to control [129]. Total serum TGs also distinguished 
menopausal and HR status in breast cancer patients as well 
as pathological complete response rate to neoadjuvant 
chemotherapy [126, 127]. Notably, TGs containing mainly 
oleic acid (C18:1) were associated with decreased disease-
free survival in breast cancer patients [129]. Additionally, 
serum LPC and cholesterol esters were elevated in breast 
cancer patients compared to healthy control [129].

One study investigated specific lipid signatures as a 
diagnostic test. Using 166 plasma samples, Eghlimi et al. 
established a 19-lipid biomarker panel capable of distin-
guishing early stage TNBC from controls (AUROC = 0.93, 
sensitivity = 0.89, specificity = 0.76), as well as a 5-lipid 
biomarker panel differentiating ES-TNBC from non-ES-
TNBC serum samples (AUROC = 0.95, sensitivity = 0.95, 
specificity = 0.87) [128]. Of the 19-lipid panel, stearic 
acid and Cer(43:1) are elevated (fold change (FC) > 1.3) 
in TNBC while DGs and LPCs were generally decreased 
compared to serum from non-affected women (FC < 0.7). 
The smaller 5-lipid panel was sufficient to detect DG(34:2) 
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as significantly decreased (FC > 0.2) in TNBC. In this 
study, a statically tested lipid biomarker panel was estab-
lished, however, clinical use of this panel still requires fur-
ther validation with larger patient serum cohorts. Despite 
these challenges there is sufficient promise in the utility of 
serum-based biomarkers for breast cancer detection that 
merit further study.

Therapeutic Targets in Tumor Lipid Biology 
and Metabolism

As discussed in this review, potential lipid metabolism tar-
gets have been identified in each breast cancer subtype. Can-
cer metabolism therapies have largely been unsuccessful in 
clinical trials, with the exception of isocitrate dehydrogenase 
1 inhibitors. However, our understanding of cancer metabo-
lism continues to improve. Here, we give a brief overview of 
several lipid metabolic and transport inhibitors at preclinical 
or clinical trial stages for breast cancer.

 FASN is perhaps the most widely targeted lipogenic 
enzyme in breast cancer due to its consistent overexpres-
sion. Genetic or pharmacological inhibition of FASN in 
preclinical studies has shown efficacy in decreasing cell 
proliferation in vitro and tumor growth in vivo in all sub-
types of breast cancer, and there are excellent reviews on the 
topic [130]. Unfortunately, clinical translation has not been 
successful. Existing selective inhibitors of FASN have lim-
ited solubility and adverse side effects that have prohibited 
their clinical use. Cerulenin, C75, and C93 are inhibitors that 
target the β-ketoacyl synthase domain of FASN induce ano-
rexia and weight loss in murine models [131, 132]. EGCG, 
G28UCM, GSK2194069, and GSK837149A also target the 
β-ketoacyl synthase domain but are ineffective in vivo due 
to low solubility [133–135]. To date, TVB-2640 is the only 
FASN inhibitor that is has reached a phase II clinical trial for 
breast cancer. Trial NCT03179904 is testing the efficacy of 
TVB-2640 in combination with paclitaxel and Trastuzumab 
in breast cancer patients with metastatic HER2 + disease. 
While the trial is still ongoing, additional inhibitors, such 
as Fasnall, that block FASN co-factor binding, are under 
preclinical study [136]. Furthermore, FASN inhibitors have 
shown promise against some forms of endocrine resistant 
HR + breast cancers in vivo [137]. Some preclinical stud-
ies have also tested inhibiting alternative de novo synthesis 
targets such as ACC [138].

Elevated cholesterol has long been associated with 
increased risk of breast cancer and specific metabolites, 
such as 27-hydroxycholeesterol, have been shown to facili-
tate metastasis and evasion of immune cells in breast can-
cer [139]. Farnesyltransferase or HMG-CoA reductase 
inhibitors (statins) that target the mevalonate pathway 
and are commonly used to treat hypercholesterolemia and 

meta-analyses have shown statin users have reduced in breast 
cancer specific mortality [140]. Statin drugs are an appealing 
therapeutic target especially in advanced HER2 + and TNBC 
that exhibit enhanced cholesterol dependency. Preclinical 
studies have shown efficacy of statins in therapy-resistant 
HER2 + breast cancer models [141]. Simvastatin has reached 
phase II clinical trial (NCT03324425) in combination with 
targeted HER2 therapies for advanced HER2 + breast cancer. 
For TNBC, Atorvastatin is being evaluated in conjunction 
with the bisphosphonate zoledronate and adjuvant chemo-
therapy in phase II clinical trial NCT03358017. Some stud-
ies show adverse effects of statins such as increased expres-
sion of cholesterol synthesis enzymes through heightened 
feedback regulation from SREBP2 [142]. To circumvent 
this resistance mechanism, alternative targets of cholesterol 
synthesis are being investigated. For example, RORγ was 
recently identified as new upstream target for mevalonate 
pathway inhibition in TNBC [143, 144].

There is also interest in targeting lipid transporters, which 
has mostly centered on the best described FA transporters 
CD36 and FATP. However, there are likely many other pro-
miscuous FA transporters of the SLC family. In low nutrient 
conditions, breast cancer cells can bypass dependency on de 
novo synthesis by increasing FA uptake. For example, stud-
ies show that drug resistant HER2 + breast cancer cells com-
pensate for FASN inhibition by increasing extracellular FA 
uptake [91, 145]. Feng et al. showed that lapatinib-resistant 
breast cancer cells upregulate CD36 and regain drug sensi-
tivity under CD36 inhibition [91]. Unfortunately, there are 
few available CD36 inhibitors, likely due in part to incom-
plete understanding of CD36 mechanisms and functions. 
Sulfo-N-succinimidyl esters of long-chain FAs, such as Sul-
fosuccinimidyl Oleate (SSO), efficiently inhibit CD36 and 
have been used in multiple in vitro studies. Large chemical 
screens have identified additional potential inhibitors; how-
ever, further development is needed for these compounds to 
advance into preclinical studies [146]. It may be important to 
use lipid transport inhibitors in conjunction with inhibitors 
of fatty acid synthesis to prevent resistance to the latter by 
increased lipid transport.

FAO or beta-oxidation is the mitochondrial break down 
of FAs to provide metabolic fuel. FAO has emerged as an 
attractive target in breast cancer. TNBC cells in particular 
have been reported to utilize FAO [92]. Since FAO occurs 
within the mitochondria, the primary target for this pathway 
is the outer mitochondrial membrane transporter and rate-
limiting enzyme CPT1. The best known CPT1 inhibitor is 
Etomoxir which continues to be widely used in preclinical 
studies. Etomoxir failed in clinical trials due to cardiotox-
icity. There is a continued effort to develop tolerable anti-
CPT1 analogs to target FAO-dependent breast cancers.

Diabetic drugs may have efficacy in breast cancer treat-
ment. Metformin, the most common drug taken for diabetes, 
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mediates hepatic glucose production and insulin sensitivity 
through inhibition of mitochondrial complex 1 and AMPK 
pathway activation [147]. Women with Type 2 diabetes tak-
ing Metformin have decreased risk of post-menopausal breast 
cancer [148]. Metformin is currently involved in 18 clini-
cal trials for breast cancer, several of which are investigat-
ing its efficacy as a neoadjuvant treatment (NCT04387630, 
NCT04170465, NCT03238495). While the effects of Met-
formin on breast cancer lipid metabolism remain unclear, 
current studies suggest Metformin may be a promising thera-
peutic for FAO-dependent breast cancers [149].

In addition to enzymes and transporters, lipids them-
selves are believed to hold therapeutic potential. Omega3 or 
PUFA supplementation is currently under investigation for 
use in neoadjuvant breast cancer therapy (NCT02831582). 
Joint pain or discomfort is a common side effect of endo-
crine therapies and PUFAs have been shown to reduce joint 
inflammation by competing with pro-inflammatory prosta-
glandin signals [150]. Three clinical trials are investigat-
ing the benefits of PUFA supplementation with standard 
endocrine and chemotherapies. PUFAs could potentially be 
advantageous for breast cancers exhibiting enhanced lipid 
uptake and warrants further study.

Another novel therapeutic approach is to target tumor 
cell lipidomes. There is increased interest in lipidome-
based therapies as we learn more about tumor specific lipid 
dependencies [reviewed in [151]]. For example, Toric et al. 
successfully screened a library of layer-by-layer nanoparti-
cles to determine the surface layer that best interacts with 
STAT3 expressing TNBC cell membranes [152]. The NP 
coating identified from the screen allowed selective cisplatin 
NP delivery to STAT3-active TNBC cells, avoiding non-
STAT3 activated cells. This study demonstrates the potential 
of exploiting distinct lipidomes for targeted drug delivery. 
Other novel methods of lipidome targeting are certain to 
emerge.

Summary and Future Perspectives

Advancements in mass spectrometry-based lipidomics have 
increased our understanding of breast cancer lipidomes, yet 
there remain several obstacles to accelerating the field. The 
first obstacle resides within the technique itself (see Fig. 2). 
Numerous forms of mass spectrometry have been utilized 
(i.e., shotgun MS, LC–MS, LC–MS/MS, GC–MS), each 
using various methods of sample separation, detection, 
and identification, which is also dependent on whether the 
desired approach is global or targeted. The lack of a tech-
nical "gold standard" makes data sharing and comparison 
difficult. However, the two main data repositories, Metabo-
lomics Workbench (https:// www. metab olomi cswor kbench. 
org/) and Metabolites (https:// www. ebi. ac. uk/ metab oligh ts/), 

accept lipidomics data in different formats but require thor-
ough methodological detail to aid in interpretation of shared 
data. In addition to methodological discrepancies, global lipi-
domics conducted on any biological sample can detect over 
1800 validated lipid species which adds to the difficulty of 
connecting lipidome alterations to biological consequence 
or changes in cellular phenotype [153, 154]. Despite these 
attempts to achieve methodological transparency, it remains 
difficult to compare different datasets unless similar MS 
methods and data handling were used.

The second obstacle is the types of breast cancer models 
used in previous published work. The majority of lipidomic 
studies discussed in this review used either breast cancer 
cell lines [69, 71, 73, 76, 78, 81] or primary tumor samples 
[83–86]. As highlighted in Table 1, there is a clear disparity 
between lipid analytes detected in 2D cell line monoculture 
versus patient tumor samples, with only several key over-
lapping lipid species. While primary tumor samples may 
be the most directly relevant, they have several variables 
that can complicate interpretations including tumor hetero-
geneity and inclusion of multiple cell types in the micro-
environment. In addition, factors such as diet, body mass 
index, and tumor stage/burden may impact results. While 
breast cancer cell lines eliminate many of these variables, 
whether they reflect the more complex in vivo situation is 
uncertain. As discovered by Vidavsky et al. in comparing 
lipidomics in MCF10A 2D monoculture vs 3D spheroids, 
spatial orientation within a 3D cell structure significantly 
impacts lipid content [81]. In addition, the lipid content of 
cell culture medium directly impacts cellular morphology 
and behavior [155]. The FA content of fetal bovine serum 
can vary between commercial source and lot number. Many 
companies do not provide detailed FA information since it 
is difficult to measure and not a concern for all consumers. 
Charcoal stripped serum is frequently used to remove hor-
mones, particularly estrogens, and likely also removes a sub-
set of lipids. To our knowledge, additional lipidome studies 
on breast cancer 3D cultures, tumor xenografts, or syngeneic 
mammary tumor models have not been reported. There is 
therefore a need for future pre-clinical lipidomic studies to 
utilize 3D cultures, organoids or cell line or patient-derived 
xenograft models to better incorporate spatial influences.

A third variable lies in technological limitations in study-
ing specific lipid analytes. Unlike genetic or pharmacologi-
cal manipulation of an individual gene product, lipid metab-
olites are not as easily modified. Studying the relevance of 
individual lipid species or classes requires an understanding 
of the proteins that regulate their synthesis, uptake, degrada-
tion, an intracellular location. However, there are tools that 
are routinely used. These include fluorescent tagged lipid 
species (i.e. BODIPY) for tracking cell uptake and location 
and the long standing method of stable isotope tracing which 
allows us to depict FA usage in cells over time [156]. Stable 
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isotope lipids containing C14 within its structure are rou-
tinely used in lipidomics and aid in absolute quantification 
of analytes in interest [157].

Analyzing lipids in patient serum samples has diagnostic 
potential. The studies discussed herein defined preliminary 
panels of tumor-associated lipids in patient serum that could 
aid in breast cancer diagnoses [126–129]. This method could 
be particularly useful for early detection of breast cancer 
subtypes that are difficult to detect in mammograms [158]. 
Patient-specific factors such a dietary lipids, lifestyle, and 
menopausal status may complicate the efficacy of these 
panels. For example, overweight or individuals with obe-
sity have increased levels of total serum lipids and lipopro-
teins compared to normal individuals [159]. Diets high in 
palmitic acid (palmitate) have also been shown to increase 
an individual’s serum cholesterols levels [160]. Once pro-
tocols are established to account for these factors, serum 
lipid panels may serve as an alternative or complementary 
diagnostic test to the mammogram. Serum lipidomics could 
also be used to predict patient response to specific therapies. 
For example, Hilvo et al. identified lipid analytes associated 
with positive response to chemotherapy [129]. A lipid panel 
could prospectively be developed for endocrine therapies. In 
time, we predict serum lipidomics will indicate useful clini-
cal information such as tumor burden, therapeutic response, 
and development of metastases.

In summary, the breast is a dynamic organ which 
responds to hormonal and environmental cues to undergo 
drastic remodeling and lipid production. Breast cancer has 
well documented reliance on lipid metabolism – however 
a link between processes in normal and malignant breast 
tissues has been difficult to define – as have consistent targ-
etable lipid dependencies. This is underscored by a general 
paucity of understanding of the lipidome in breast cancer 
cells and the complication of different breast cancer sub-
types and significant intra- and inter- tumoral heterogeneity. 
The studies highlighted have made significant progress in 
understanding the global lipidome and its impact on breast 
cancer cell phenotype. However, there remain multiple gaps 
in our knowledge, including how lipids are impacted by spa-
tial location of the cell withing the tumor, tumor microen-
vironment, metastasis, and resistance to drug treatment etc. 
With emerging models such as tumor-derived organoids 
and patient-derived xenografts, coupled with continuous 
improvements to lipidomics and analysis tools, these gaps 
will be hopefully become filled and lipids a regular measure-
ment of breast cancer cell state and therapeutic vulnerability.
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