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Abstract Breast microcalcification is a potential diagnostic
indicator for non-palpable breast cancers. Microcalcification
type I (calcium oxalate) is restricted to benign tissue, whereas
type II (calcium hydroxyapatite) occurs both in benign as well
as in malignant lesions. Microcalcification is a pathological
complication of the mammary gland. Over the past few de-
cades, much attention has been paid to exploit this property,
which forms the basis for advances in diagnostic procedures
and imaging techniques. The mechanism of its forma-
tion is still poorly understood. Hence, in this paper, we
have attempted to address the molecular mechanism of
microcalcification in breast cancer. The central theme of this
communication is Bhow a subpopulation of heterogeneous
breast tumor cells attains an osteoblast-like phenotype, and
what activities drive the process of pathophysiological
microcalcification, especially at the invasive or infiltrating
front of breast tumors^. The role of bone morphogenetic
proteins (BMPs) and tumor associated macrophages
(TAMs) along with epithelial to mesenchymal transition
(EMT) in manipulating this pathological process has
been highlighted. Therefore, this review offers a novel

insight into the mechanism underlying the development
of microcalcification in breast carcinomas.
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Abbreviations
TRPC Transient receptor potential cation channel
NPP1 Nucleotide pyrophosphatase phosphodiesterase 1
TNAP Tissue non-specific alkaline phosphatase
HA Hydroxyapatite
NTP Nucleoside triphosphate
iPP Inorganic pyrophosphate
iP Inorganic phosphate
EMT Epithelial to mesenchymal transition

Introduction

Breast cancer ranks second among different types of cancers
worldwide, and is still one of the major leading causes of
morbidity and mortality among women. The mortality rate
could be reduced markedly if the breast cancers were
diagnosed and treated at early stages. Mammography is
widely used for early screening and detection of breast
cancers [1] via the utilization of X-rays (at low dose) to
visualize breast tissues clearly, and to screen various
subtle abnormalities including pathological lesions. Use
of mammography provides a benefit to women by re-
ducing the mortality by as much as 30 % [2, 3].
Mammography detects both palpable and non-palpable
breast lesions, based on abnormalities like the appear-
ance of microcalcification [4–6].
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Bright white flecks that appear on mammograms are a sig-
nature of calcification. They are broadly categorised as
‘macro’ and ‘micro’ calcification [7–13]. Macrocalcifications
are coarse, large white dots or specks in nature (>0.5 mm in
diameter) [11] that are often randomly dispersed throughout
the breast tissue, and are most often found in non-cancerous
tissues [13–15]. Microcalcification clusters are tiny specks
(<0.5 mm in diameter) of calcium deposits [10, 11] appearing
on themammographic image [16, 17]. Accumulating evidence
shows a positive association between microcalcification and
malignancy, along with the grade of the breast cancer
[18–20]. Moreover, literature reports suggest that the presence
of microcalcification in breast tissue can be a diagnostic mark-
er for breast cancer [4, 21, 22]. Microcalcification also corre-
lates with increased cancer progression and metastasis of
breast cancer [18–20, 23]. Thus, there is an urgent need to
understand the underlying molecular mechanism of this path-
ophysiological mineralization.

In this review article, we investigate a subpopulation of
heterogeneous breast tumor cells that acquires osteoblastic
properties. These osteoblast-like cells drive the process of
pathological calcification in breast cancer tissues [24–28].
Based on literature reports, we have outlined herein how po-
tent osteoinducers of bone (morphogenetic proteins; BMPs),
and tumor associated macrophages (TAMs) play a crucial role
in enhancing the pathological mineralization.

Classification of Microcalcifications

Based on their morphological appearance, microcalcifications
have been classified into the following five categories: i)
BRing shaped^ in 100 % of benign lesions; ii) BRound
microcalcification^ in 22 % of malignant lesions; iii)
BPulverulent^ (too fine) in 40 % of malignant lesions; iv)
BPunctate^ in 66 % of malignant lesions, and v) BVermicular^
in 100 % malignant lesions [29]. Breast Imaging Reporting and
Data System (BI-RADS) classifies tumors based on
morphology descriptors, mammographic density, pres-
ence of calcification, and their distribution on mammo-
grams (calcification presents in BI-RADS I and BI-RADS
II) [30]. Every morphology descriptor assigns a category to
a lesion which helps in determining its malignant potential as:
1) benign, 2) intermediate, or 3) malignant [30]. Based on
mammographic appearances, primary calcifications have also
been classified as a: 1) powdery form, 2) crushed stone-like, or
3) casting-type [21].

On the basis of chemical composition and physical proper-
ties, microcalcifications are also categorized into two types, as
type I (calcium oxalate) and type II [calcium hydroxyapatite
(HA)] [31]. Light microscopic views show that calcium oxa-
late crystals are amber in color and are partially transparent,
while HA crystals are grey/white in color and are opaque [31].
Under polarized light, type I is birefringent, whereas type II is

non-birefringent [31]. Deposition of calcium in the form of
calcium oxalate occurs mostly in benign ducts, whereas the
HA form often occurs both in benign and in proliferative
lesions of breast carcinoma [31–34]. Further, some studies
provide evidence that type II HA crystals are often found in
the invasive infiltrating cells of breast cancer [18–20].
Moreover, compact clusters (20 microcalcification/cm2) rep-
resent a malignant condition [35, 36]. It is not yet understood
whether the microcalcification functionally modulates the
pathophysiology of this disease, or if this is just a consequence
of disease development.

It is important to note here that microcalcification has been
found in different body organs/tissues such as iliac artery,
medial artery, thyroid nodules, testis, ovary, brain and kidney
in association with various pathophysiologies depending on
the tissue/organ it is found in. Beside mammography, these
microcalcifications can be detected by other techniques such
as ultrasonography, H&E staining, Von Kossa staining, etc. as
summarized in supplementary Table S1.

HA Microcalcification and Malignancy of Breast Cancer

HA microcalcification contains a lower amount of car-
bonate in malignant lesions when compared to benign
tissues [18, 19]. A possible explanation for the associa-
tion of HA with malignant lesions was given by Morgan
et al., where they found that HA has the potential to
induce mitogenesis in MCF-7 and Hs578T breast cancer
cells [20]. Moreover, treatment of breast cancer cells
with HA enhanced matrix metalloproteinase (MMP) activity,
and stimulated prostaglandin production to intensify its effect
[20]. As a mechanism, it was demonstrated that the elevation
of prostaglandin levels by HA treatment was due to upregula-
tion of cyclooxygenase-2 (Cox-2), and that HA crystals can
induce MMP activity by upregulating the inflammatory cyto-
kine interleukin-1β (IL-1β) [37]. A recent study by Cox et al.,
documented that an invasive sub-clone of breast cancer
Hs578T cells shows more competency to have (HA contain-
ing) mineralization when compared to parental Hs578T cells
and normal breast epithelial MCF10A cells. Lung metastasiz-
ing breast cancer (4 T1 cells) also exhibited formation of min-
eralization sooner than that of the invasive sub-clone of
Hs578Tcells [102]. These data suggest that microcalcification
can be a strong predictor for malignancy of breast cancers, and
these studies also help to understand the role of HA in malig-
nant tissues.

Role of Matrix Vesicles in Microcalcification

The mechanism for the deposition of calcium crystals in the
form of microcalcification is poorly understood. To discover
this mechanism, much attention has been paid to the role of
matrix vesicles (MVs). MVs are small (20–200 nm)
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membrane enclosed structures, where various mechanisms for
their biogenesis have been proposed. The most widely accept-
ed mechanism is that MVs are derived by the process of bud-
ding off or being pinched out from selected sites of the plasma
membrane of calcifying competent cells like osteoblasts [38,
39], odontoblasts [40–42], chondrocytes [43, 44], or embry-
onic stem cells [45] during the period of mineralization. We
have listed all types of known calcifying cells which produce
MVs in Table 1 [38–57]. Many studies show that breast tumor
cells also produce MVs [50, 52, 53, 56]. The lipid membrane
composition of these synthesized MVs differs significantly
from the parent plasma membrane. The membranes of MVs
are enriched in tissue non-specific alkaline phosphatase
(TNAP) [58], phosphatidylserine (PS) [59], annexins [60],
NaPi transporter [61], nucleotide pyrophosphatase phospho-
diesterase 1(NPP1 PC1), and phospho1 (PE/PC phosphatase)
[62], all of which facilitate the formation of HA crystals by
supplying calcium and phosphate ions to MVs.

An important step in mineralization is the formation of the
first crystal of HA (i.e., starting material for calcification)
which is synthesized inside MVs by calcifying cells [63].

These MVs act as vehicles for the transfer of newly synthe-
sized monocrystal from inside to the outside of the cell, and
form a nucleational core of HA in the extracellular fluid [64].
The phenomenon of propagation of this monocrystal to appear
as mature crystallized calcium is largely unexplored.
However, it is thought that when HA crystals are exposed to
the extracellular matrix, they serve as a template for the syn-
thesis of the mature crystal [65].

MVs are involved both in normal as well as in ectopic
calcification. Using transmission electron microscopy, it was
found that MVs in mouse atheroma and human fibrous caps
that were associated with solid microcalcification [66].
It was suggested that sortilin 1 (a type I transmembrane
protein which belongs to the family of vacuolar protein
sorting 10) induces MVs to progress in this process
[67]. Moreover, recent findings by New et al., report
that in atherosclerotic plaques, macrophages release
MVs, and theseMVs drive the formation ofmicrocalcification
[68]. All these findings suggest that MVs play a pivotal
role in pathophysiological mineralization of different
organs/tissues.

Table 1 Existence of matrix vesicles in cancer cells similar to other calcifying cells

Cell types Production of matrix vesicles Refereed
articles

Osteoblasts Matrix vesicles (MVs) derived from culture of mouse calvarial osteoblast contained partially crystalized
crystals of calcium and phosphorus.

[38]

Osteoblast-like Saos-2 cells release MVs from microvilli of apical plasma membrane. [39]

Chondrocytes MVs isolated from bovine fetal epiphyseal cartilage were associated with apatite crystals, high amount
of ALP, pyrophosphatase, ATPase, and 5′-AMPase.

[43]

Vesicles containing ALP were released from chondrocytes (isolated from bovine growth plate) with an
increased intracellular concentration of calcium ion.

[44]

Odontoblasts MVs were present in progenitor pre-dentine of pre-calcification stage, and showed crystal like structures. [40]

MVs were present in organic matrix around odontoblasts, and were derived by budding off process. [41]

MVs were attached to the membrane of odontoblastic dentinal tubules of inner third of dentine. [42]

Embryonic stem cells Microvesicles derived from embryonic stem cells induce morphological changes in muller cells. [45]

Vascular smooth muscle cells MVs isolated from calcified BVSMCs had high Alp activity along with annexin 2 and 6. [46]

MVs showed elevated level of ALP, isolated from calcified BVSMCs as compared to normal BVSMCs. [47]

TEM showed presence of MVs within atherosclerotic plaques. [49]

Macrophages Macrophages released calcifying MVs. [68]

Cancer cells Breast Vesicles were released from pleural effusion of a breast carcinoma. [51]

Extracellular vesicles isolated from plasma of breast cancer patient induce EMT in human breast epithelial
MCF10A cells.

[52]

Tumor derived microvesicles induce invasive property in MCF7 breast cancer cell line. [53]

MDA-MB-231 metastatic breast cancer cell line sheds off microvesicles during hypoxia. [54]

Prostate PC3 prostatic cancer cell line exhibited shedding of membrane vesicles in the presence of osteoblast
derived conditioned medium.

[50]

Lung During hypoxia, lung cancer cells release microvesicles. [55]

Kidney Angiogenesis is induced by microvesicles, secreted from CD105+ renal cancer stem cells. [56]

Glioblastoma Cultured human glioblastoma cells release microvesicles and stimulate proliferation of U87 glioblastoma
cell line.

[57]

Abbreviations: MVs Matrix vesicles, ALP Alkaline Phosphatase, BVSMCs Bovine vascular smooth muscle cells, MGP Matrix Gla protein, TEM
Transmission electron microscopy, EMT Epithelial to mesenchymal transition
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Basic Mechanism for Microcalcification in Breast Cancer
Tissues

Aswe have discussed above, breast tumor cells produceMVs.
What has not yet been reported is whether the composition of
the lipid membrane of MVs from breast tumors matches those
MVs which are derived from calcifying cells. Recent findings
document that secreted MVs from osteosarcoma cancer cells
contained similar kinds of components as those from osteo-
blast cells [69]. The composition ofMVs of breast cancer cells
has not yet been investigated. However, breast cancer tissues/
cells showed increased levels of MV components (which are
known to be involved in the calcification process) as com-
pared to control tissues/normal breast epithelial cells
(Table 2) [70–86] For example, many Ca2+ ion channels such
as the transient receptor potential (TRP) cation channels and
associated proteins annexin A2, A4, and A5, were found to be
increased in breast cancer cells. These proteins can increase
the concentration of Ca2+ ions inside MVs/cells [76, 87].
Other evidence shows that expression of the transient receptor
potential cation channel 7 (TRPM7) is increased in breast
cancer cells, and promotes cell proliferation, migration, and
metastasis [112, 113, 116, 120, 121]. Similarly, other studies
indicate that breast tumor cells accumulate more phosphate
ions inside cells by increasing the expression of NaPi-IIb
(SLC34A2) cotransporter as compared to noncancerous cells
[79]. Moreover, calcification of breast cancer 4 T1 cells was
aborted when cells were treated with phosphonophormic acid,
an inhibitor of type-II Na-Pi cotransporter [71].

Collectively, these findings suggest that microcalcification in
breast tumors, similar to other organs/tissues, may proceed
through a similar process i.e., mediated through MVs.
Moreover,metastatic cancer cells/tissues showed increased levels
of several components of MVs (such as TRP channel, annexins,
ALP etc.,) compared to non-metastatic cancer cells/tissues
(Table 2). It is currently reported that expression of two Ca2+

channels (i.e. TRPM7 and TRPC1) are increased in infiltrating
ductal carcinoma with microcalcification [83]. This evidence
supports the idea that the metastatic/invasive breast cancer cells
might havemore competency for pathological microcalcification
as compared to non-metastatic/non-invasive cancer cells.

Switch of Breast Cancer Cells into Osteoblast-Like Cells
during Microcalcification

The literature states that at the time of pathological calcification
(of different tissues), one cell type needs to transform into
osteoblast-like cells, whichmimics the process of physiological
calcification [88, 89]. For example, vascular smooth muscle
cells (VSMCs) transdifferentiate into osteoblast-like cells
which process calcification in vascular or arterial walls [88, 89].

Thus, the existence of osteomimetic cells in breast tumors
correlates with the occurrence of microcalcification. In fact,

the presence of cells with osteoblastic and chondroblastic
characteristics in breast tumor isolated from a cancer patient
has been reported, and osteoblastic cells derived from this
tumor show expression of ALP and OPN, both of which are
markers of osteoblastic differentiation [70]. Various experi-
mental studies have revealed that at the time of pathological
mineralization, osteomimetic cells express many transcription
factors and bone matrix proteins involved in physiological
calcification, just the same as that of osteoblasts, (Table 3)
[24–28, 90–134]. For instance, the MCF-7 breast cancer cell
line showed expression of ALP when cells were treated with
different agents such as 17β-estradiol [74]. A study by Cox
et al., recently reported that metastatic breast cancer 4 T1 cells
expressed a high level of ALP while MCF10A normal breast
epithelial cells were unable to express ALP, when both cells
were treated with an osteogenic cocktail [71]. They also found
that treatment of 4 T1 cells with levamisole, an inhibitor of
ALP, inhibited mineralization, a late marker for osteoblast
differentiation [71]. Many findings have shown elevated
levels of ALP in, i) the serum of breast cancer patients when
compared to controls [75], ii) in patients with bone metastases
when compared to patients without bone metastases [72, 73],
and, iii) advanced stages of breast cancer as compared to early
stages and/or healthy controls [135, 136]. These data indicate
that in certain circumstances, a subpopulation of epithelial
breast cancer cells may switch to osteoblast-like cells.

During bone formation, osteoblastic transcription factors
such as Runx2 and Msx2 (which are expressed by osteoblast
cells), drive ALP expression, mineralization, and also aug-
ment expression of osteoblastic matrix proteins such as
osteocalcin (OCN), osteopontin (OPN), osteonectin (OSN)
and bone sialoprotein (BSP). These matrix proteins mainly
form the bone matrix, and also manipulate the calcification
process [110, 137–140]. Accumulating evidence reveals that
both breast cancer cells and tumor tissues expressed these
osteoblastic transcription factors and matrix proteins [94,
123, 141–144]. For instance, Runx2 activity was found in
LCC15-MB and MDA-MB-231 breast cancer cells, but not
in normal human mammary epithelial cells (HMECs) [94].
Expression of Msx2 was found to be increased in MCF7,
T47-D, SKBR3, and ZR75-1 breast cancer cells [26].
Moreover, increased expression of OPN and OSN have been
shown to be associated with breast cancer microcalcification,
and OPN expression was upregulated in infiltrating carcino-
mas with microcalcification [123, 124]. Similarly, infiltrating
ductal carcinomas showed an increased expression of BSP
[27]. Moreover, the levels of OCN and BSP, similar to ALP,
were found to be increased in the serum of breast cancer pa-
tients as compared to benign cancer patients [28, 71, 120].

All these evidence suggests that in the pathophysiologic con-
dition, breast cancer cells have a propensity to gain osteoblast
characteristics (Fig. 1). Next, we discuss how breast cancer
cells acquire the osteoblast-like phenotype.
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Breast Cancer Cells Acquire Osteoblastic Characteristics
during Epithelial to Mesenchymal Transition

It is important to mention here that osteoblasts are generated
from the differentiation of mesenchymal cells [145]. A sub-
population of heterogeneous epithelial cancer cells of a tumor
usually undergoes epithelial to mesenchymal transition
(EMT). This subpopulation of cells governs a more invasive
potential, and are responsible for metastasis [124]. Invasive
MDA-MB-231 breast cancer cells showed an increased ex-
pression of the osteoblastic transcription factor Runx2 as com-
pared to non-invasive breast cancer MCF7 cells. MDA-MB-
231 cells are more mesenchymal in nature, as compared to
MCF7 [96]. Similarly, Runx2 DNA binding activity was also
higher inMDA-MB-231 cells as compared to normal HMECs
[146]. Hassan et al., recently demonstrated that the microRNA
miR-218 increases the metastatic potential of breast cancer
cells by enhancing the expression of Runx2 [90]. Moreover,
expression of Runx2 in cancer cells positively associates with

the EMT phenotype and the metastatic properties of these
cells, with a concomitant increase of OCN [143]. Ectopic
expression of Runx2 also converts mesenchymal stem cells
to osteoblast cells [147]. Thus, expression of Runx2 in breast
cancer cells might increase invasive potential, and also
transdifferentiate cancer cells to osteoblast-like cells.

Similarly, another osteoblastic transcription factor, Msx2,
was found to be frequently dysregulated in cancers [148].
Msx2 is also a potent inducer of the EMT phenotype of cancer
cells [149, 150]. The expression of Msx2 was found to be
increased in infiltrating breast cancer cells which are more in-
vasive by nature, when compared to non-infiltrating breast can-
cer cells [150]. Moreover, the level of Msx2 could be an indi-
cator for malignancy as it was elevated gradually from benign
to malignant lesions [151]. Overexpression of Msx2 inhibits
cell growth [26]. These data indicate that Msx2 might have a
significant role in promoting EMT of cancer cells by halting
cell growth. Similar to Runx2, expression of Msx2 converts
mesenchymal progenitor cells to osteoblast cells [152].

Table 2 Presence of matrix vesicle components in breast cancer cells/tissues

Name of components Breast cancer Function of components

TNAP
(Tissue nonspecific alkaline

phosphatase)

Cells with osteoblastic and chondroblastic characteristics derived from
breast tumor expressed ALP [70].

ALP expression was increased in metastatic breast cancer 4 T1 after
treatment with osteogenic cocktail (OC) as compared to control [71].

ALP level was high in breast cancer patients as compared to control
[75].

Serum ALP level was highly elevated in breast cancer with bone
metastases (BM+) as compared to without bone metastases (BM−)
[72].

Serum ALP level was higher in breast cancer patients with limited and
extensive bone metastases when compared to normal and breast
cancer patients without bone metastases [73].

ALP increases the concentration of
inorganic phosphate ions, required for
mineralization, and decreases the
concentration of pyrophosphate which
inhibits calcification [200].

NPP
(Ecto-nucleotide

pyrophosphatase/
phosphodiesterase)

Metastatic breast cancer cell line (MDA-MB-231) expressed more ecto-
NPP activity as compared to HUVEC cell [85].

Autotaxin (NPP-2) was expressed more in breast tumor as compared
normal breast tissue [86].

NPP generates PPi (pyrophosphate) from
hydrolysis of extracellular NTPs [201].

Annexins Annexin A1, A2, A4, and A5 were expressed in breast cancer tissues as
identified by immunohistochemical staining [76].

Breast cancer tissues contained a high level of annexin 2 as compared to
normal tissue [78].

Expression of annexin 2 was high in metastatic breast cancer cell line
(MDA-MB-231) as compared to non-metastatic breast cancer cell
line (MCF7) [77].

Annexin proteins form calcium ion
channel in membrane of matrix vesicles,
and also regulates calcium ion
homeostasis in bone cells [202].

TRPC
(Transient receptor potential

(TRP) cation channel)

TRP channel TRPV6 was overexpressed in invasive areas of breast
adenocarcinoma as compared to non-invasive zones [81].

TRPM7 channel was overexpressed in breast cancer tissue as compared
to normal tissues [82].

TRPC1 and TRPM7 channels were highly expressed in infiltrating
ductal carcinoma with microcalcification as compared to age matched
control without calcification and cancer [83].

TRPC channels maintain calcium ion
homeostasis in calcifying bone cells
[203].

NaPi Cotransporter Expression of NaPi cotransporter type III (Pit-1) was reported in breast
cancer cells [80].

Expression of NaPi-IIb (SLC34A2) cotransporter was found to be
increased in breast tumors as compared to adjacent healthy tissues [79].

NaPi Cotransporter
maintains Pi homeostasis, required for

mineralization [204].

Abbreviations: ALPAlkaline phosphatase, BM Bone metastases, HUVEC Human umbilical vein endothelial cells
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We have discussed above that metastatic breast cancer cells
show high osteoblastic gene expression of Runx2, Msx2,
OPN, OSN, BSP, and ALP, with increased mineralization
[26, 27, 96, 123, 124]. Moreover, it has been reported that
the microcalcification surrounding breast tissue correlates
with mineralized malignant cells [153]. These findings sug-
gest that during tumorigenesis, a population of epithelial can-
cer cells of a breast tumor gains the mesenchymal phenotype
through EMT, and at least a few of these invasive cancer cells
which acquire mesenchymal characteristics may differentiate
into Bosteoblast-like^ cells; presumably driven by osteoblastic
factors.

A recent study supports this concept, since the co-existence
of mesenchymal markers (vimentin and β-Catenin) and oste-
oblastic proteins (OPN and BMP-2) was greater in infiltrating
carcinomas with microcalcification when compared to infil-
trating ductal carcinomas without microcalcifications [124].
These studies propose that neoplastic osteoblast-like cells are
responsible for the pathophysiological mineralization.

Significance of BMP Signalling in Osteoblastic
Differentiation of Breast Cancer Cells

It was earlier reported that parathyroid hormone related
protein (PTHrP) has a role in regulating pathological
microcalcification in breast cancer [154]. However, detailed
studies have not yet been conducted to show the mechanism
for PTHrP-mediated mineralization. Emerging evidence sug-
gests that BMP-2 might play a significant role in regulating
breast cancer microcalcification [23, 71, 124, 155, 156].

BMPs are multifunctional growth factors that belong to the
transforming growth factor-β (TGF-β) superfamily. Earlier

studies established that BMPs are potent osteoinducers,
and play a vital role in physiological and pathophysio-
logical calcification of different tissues such as cartilage,
bone, and arteries [157, 158]. BMPs can transduce sig-
nalling through canonical and non-canonical pathways
to perform various physiological and pathological func-
tions [159–171], which have been briefly described in
Fig. 2.

Recent findings by Cox et al. show that BMP-2 treatment
potentiates osteogenic cocktail-induced mineralization in
4 T1 metastatic breast cancer cells [23, 71]. Similarly,
another research group observed that inoculation of the
R3230 rat mammary carcinoma cells overexpressing
BMP-2 into the mammary fat pads resulted in breast tumors
with microcalcification, as compared to the control group
[155]. The same group also demonstrated that treatment with
recombinant BMP-2 induced microcalcification in breast can-
cer tissue of all rats bearing tumors [156]. All these findings
suggest that BMP-2 can induce microcalcification in breast
cancer. Recently Scimeca et al., reported a key finding that
BMP-2 expression was upregulated in infiltrating carcinoma
with microcalcification as compared to infiltrating carcinoma
without microcalcification, and these calcified infiltrat-
ing carcinoma tissues showed expression of both mes-
enchymal markers and osteoblastic proteins [124]. Based
on these findings, it was proposed that a subpopulation
of cancer cells which underwent EMT showed the
osteoblast-like phenotype, a transition that is presumably
driven by BMP-2 [124].

There is also evidence that BMP heightens the expression
of transient receptor potential cation channel (TRPC) which
may facilitate microcalcification by supplying Ca2+ ions to the

Fig. 1 Basic model of
microcalcification formation. a A
subpopulation of epithelial breast
tumor cells potentially acquires
the mesenchymal phenotype
through epithelial to
mesenchymal transition (EMT). b
These mesenchymal cells acquire
osteoblast like properties, and
secret hydroxyapatite crystals
which are deposited at the
invasive front of breast tumors
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cells/MVs [172]. Recent literature shows a positive associa-
tion with serum BMP and cancer metastasis and/or advanced
stage of cancer [173]. Many studies have demonstrated that
BMPs inhibit cancer cell proliferation [174–177], but aug-
ment migration and invasion of breast cancer cells
[178–181], presumably by inducing EMT [167, 182–186].

These findings suggest that BMP-2 not only induces
EMT of epithelial breast cancer cells, but also can
transdifferentiate EMT-cells to osteoblast-like cells. This
subpopulation, which acquires osteoblastic properties, seems
to be more competent for pathological microcalcification in
breast cancer (schematically described in supplementary
Figure S1).

Macrophage Recruitment Accelerates Microcalcification

Heterogeneous tumors consist of tumorigenic, non-
tumorigenic, cancer stem cells, and non-cancer cells. Breast

tumor cells secrete many inflammatory cytokines such as
CCL2, CCL5 and CSF-1 [187, 188], which recruit macro-
phages to the tumor site, increasing the malignancy of cancers
[189–191]. Moreover, metastatic breast cancer cells secrete
more CSF-1 when compared to non-metastatic breast cancer
cells [188]. Elevation of CSF-1 levels in human serum has
been linkedwith the malignancy of different cancers including
endometrial, breast, and ovarian carcinoma [192]. The eleva-
tion of CSF-1 results in dense macrophage infiltration to the
tumor site [193]. These recruited macrophages, known as tu-
mor associated macrophages (TAMs), play a pivotal role in
microcalcification as they supplyMVs to the nucleation centre
of microcalcification [194]. Other studies also support this
idea since breast biopsy samples were shown to have an
accumulation of macrophages surrounding microcalcification
[195]. Thus, these TAMs could provide additional sup-
port for the development of microcalcification in malignant
breast tumors.

Fig. 2 Proposed molecular mechanism for microcalcification. BMPs
transmit messages by canonical and non-canonical pathways to perform
several physiological and pathological functions. Using non-canonical
pathway (NCP), BMPs activate proliferative, cell survival, mitogenic
signalling and induces EMT of epithelial breast cancer cells. Using
canonical pathway (CP), BMPs activates Smad signalling to transcribe
different transcription factors which eventually upregulate ALP and bone
matrix proteins, involved in mineralization of transformed cells (EMT
cells). BMP also increases MVs component TRPC channel and ALP.
Subsequently, all proteins necessary for microcalcification formation
accumulate within a microdomain of the membrane. This microdomain
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(enriched with these proteins) can be pinched out from the parental
membrane, which results in the formation of MVs. The pH of
MVs differs from the pH of the cytoplasm. Thus, at the
appropriate pH, a monocrystal of HA forms, and then this MV
is released into the extracellular matrix. This monocrystal acts as
nucleus for the further HA deposition. Tumor cell derived
cytokines such as MCP-1 and CSF-1 recruit macrophages at the
tumor site; these macrophages further propagate this process by
secreting MVs to the nucleation site of crystal. BMP also
increases apoptosis, and the apoptotic bodies also accelerate the
process of microcalcification



Proposed Mechanism of Microcalcification

Based on all the literature discussed above, we herein propose
a mechanism that the accretion of microcalcification of breast
cancer is preceded by a few specialized cells, which have
undergone EMT, and also have acquired osteoblastic charac-
teristics. These rare cells with mesenchymal characteristics,
become osteoinductive in response to BMP, and function like
osteoblasts whichmay also express NaPi-IIb transporter, NPP,
TNAP, TRPC, and annexin channels [76, 79, 86, 87, 135,
196–198], to facilitate calcification. Finally, lipid rafts con-
taining these protein molecules may be pinched out from the
membrane to form MVs inside the cells. These MVs move to
the extracellular environment, and unload the crystal mole-
cules on the top of extracellular matrix proteins. Other MVs,
along with Ca2+ and PO4

3− ions found in the extracellular
fluid may support the propagation of crystal formation, which
subsequently leads to microcalcification (Fig. 2).

BMPs sometime increase apoptosis of cancer cells, but
these apoptotic bodiesmay, in turn, promotemicrocalcification
[199]. BMPs obstruct tumor growth by inhibiting cancer cell
proliferation. This infers that BMPs may have anticancer ac-
tivity, but when the growth of cancer cells is halted, it may
allow differentiation of epithelial cells to a mesenchymal phe-
notype (Supplementary Figure S1). Therefore, BMPs may
augment an invasive phenotype, as well as the calcifying prop-
erty of cancer cells by increasing by apoptotic bodies that
promote microcalcification, and by inhibiting cell growth
which may allow epithelial cells to undergo EMT. These cells
may be transduced into osteoblast-like cells.

In addition, some cytokines such as CSF-1, CCL2 and
CCL5 recruit macrophages to the site of microcalcification
[189, 193]. These recruited macrophages might accelerate this
pathophysiological mineralization by supplying MVs to the
site of crystallization (Fig. 2).

Future Prospects

More basic and clinical research work is required to confirm
the presence of microcalcification as a diagnostic and/or a
prognostic marker for breast cancer progression and metasta-
sis. In fact, only a causal link between the occurrence of
microcalcification and malignancy of cancer has been shown.
Thus, it has to be investigated whether the presence/
occurrence of mineralization or microcalcification in aggres-
sive cancer tissues is a consequence of the metastatic nature of
cancerous tissues. A few studies support the positive role of
HA in cancer progression [19, 20, 37]. However, more re-
search is needed to define the function of HA in the regulation
of invasiveness/malignancy of cancers. Since cancer cells
having osteoblastic properties drive the calcification process,
and BMPs are known potent osteoinductive agents, BMPs
might promote the microcalcification process. What needs to

be resolved is how epithelial cells gain osteoblastic
properties. Furthermore, validation is required to know
whether EMT is a prerequisite for gaining the osteoblast-like
properties of cancer cells. The molecular mechanisms need to
be elucidated to determine whether BMPs drive osteoblastic
transdifferentiation of epithelial cancer cells followed by EMT
or if it induces osteoblastic properties in EMT cells. Future
studies will confirm if targeting microcalcification in breast
cancer will be a promising therapeutic intervention. Breast
cancer often occurs in postmenopausal women. At this age,
the risk of osteoporosis is also quite high. Thus, a special
strategy should be taken to design a therapeutic drug which
prevents microcalcification of breast tissues without debilitat-
ing bone quality.
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