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Abstract The microenvironment of a tumor has emerged
recently as a critical contributor to the development of cancer.
Within this environment, fibroblasts and immune cells are the
cell lineages that seem to be active mediators of tumour
development. The activated fibroblasts that are also present
during wound healing and chronic inflammation have been
studied extensively. Their activation leads to altered gene
expression profiles that markedly increase growth factor and
cytokine secretion, leading to major alterations in the immune
cell microenvironment. To better understand normal tissue
development, wound healing and the chronic inflammation
that leads to cancer, we review here information available on
the role of fibroblasts and immune cells in normal breast
development and in cancer. We also discuss the immunoge-
nicity of breast cancer compared to other cancers and the
contribution of the immune microenvironment to the initia-
tion, progression and metastasis of tumors. Also reviewed is
the limited knowledge on the role of immune cells and fibro-
blasts in normal development and whether the risk of cancer
increases when their control is not tightly regulated.
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Abbreviations

APC Antigen presenting cell
BPH Benign prostatic hyperplasia
CAF Cancer associated fibroblast
CCL2 Monocyte chemoattractant protein 1
COPD Chronic obstructive pulmonary disease
CSF-1 Colony stimulating factor 1
CTLA-4 Cytotoxic T lymphocyte antigen 4
CXCL12 Stromal derived factor 1
DC Dendritic cell
DCIS Ductal carcinoma in-situ
DTR Diphtheria toxin receptor
ECM Extracellular matrix
EFG Epidermal growth factor
FAP Fibroblast activated protein
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
GH Growth hormone
IDC Invasive ductal carcinoma
IFN-γ Interferon gamma
IFN- β Interferon beta
mAb Monoclonal antibody
MDSC Myeloid Derived suppressor cell
MHC Major histocompatibility complex
MMP Matrix metalloproteinase
NF Normal fibroblast
NK Natural killer cell
pDC Plasmacytoid dendritic cell
RA Rheumatoid arthritis
TAM Tumor associated macrophage
TEB Terminal end bud
TGF-β Transforming growth factor beta
TIMP Tissue inhibitor of matrix metalloproteinase
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TNF-α Tumor necrosis factor alpha
Treg Regulatory T cell
VEGF Vascular endothelial growth factor

Introduction

While cancer research historically has focused on the intrinsic
properties of tumor cells, more recently the microenvironment
within which tumor cells are located has emerged as a critical
component of cancer development and growth. This micro-
environment includes fibroblasts and immune cells, compo-
nents of the soil in which tumors develop. The six hallmarks
of cancer, proposed by Hanahan and Weinberg in 2000 [1],
provided an organizing principle with which to understand
tumorigenesis. This was updated in 2011 to include these
microenvironmental factors, highlighting their significance
[2]. This review will discuss fibroblasts and immune cells in
both normal development and in pathological situations such
as wound healing, chronic tissue damage and cancer. We will
highlight the inter-relationship between these cell types and
discuss how an understanding of their unique roles may aid
research focused on enhancing immune surveillance and
inhibiting tumor development.

Involvement of Fibroblasts and Immune Cells in Normal
Mammary Gland Development

Mammary Gland Development

At birth, themammary gland consists of only rudimentary ducts
running from the nipple into the fat pad. At 3-4 weeks of age,
ovarian hormones begin to stimulate mammary gland growth
via epithelial extension and branching into the fat pad [3]. Small
bulb-like structures called terminal end buds (TEBs) form at the
end of each duct and undergo high levels of proliferation,
promoting invasion through the fat pad to give rise to new
ducts [4]. During pregnancy, the mammary gland undergoes
extensive structural and hormonal changes to allow subsequent
secretion of milk to the newborn during lactation [3]. Upon the
onset of pregnancy, an increase in progesterone and prolactin
stimulates extensive proliferation of epithelial cells to form
tertiary side-branches and immature alveoli. By mid-
pregnancy, these developing alveoli have polarized, forming
individual spherical alveoli connected to the ductal network,
capable of synthesizing and secreting milk after parturition [5].
Involution of the mammary gland is a highly complex process,
in which the lactating gland undergoes apoptosis and tissue
remodeling to revert the gland back to its pre-pregnant, non-
lactating state. Following weaning, the first 48 hours of invo-
lution are reversible (Stage 1), characterized by the induction of

cell death and limited extracellular matrix (ECM) proteolysis.
The next stage is irreversible, characterized by the collapse of
alveolar structures, differentiation of adipocytes, extensive
ECM proteolysis and loss of ability to produce milk [6,7].

Involvement of Fibroblasts in Development

Fibroblasts are thought to arise from a number of cellular and
tissue origins, including from primary mesenchymal cells
such as pericytes and smooth muscle cells, and from bone
marrow derived precursors such as mesenchymal stem cells
and fibrocytes [8,9]. They are the principal component of
connective tissue and are responsible for the synthesis and
removal of the ECM via the expression of collagens, fibro-
nectin, laminins, elastins, proteoglycans, integrins, matrix me-
talloproteinases (MMPs), tissue inhibitors of matrix metallo-
proteinases (TIMPs) and a host of other ECM proteins. Fibro-
blasts are important for the regulation and maintenance of
tissue homeostasis, synthesizing and remodeling the ECM,
promoting maturation of epithelial cells and facilitating con-
traction of granulation tissue during wound healing [10,11].
Under normal conditions, fibroblasts exist in a relatively qui-
escent state, proliferating slowly and synthesizing only low
levels of ECMproteins andMMPs tomaintain ECM integrity.
After tissue injury, mechanical tension at the wound site
stimulates the differentiation of resident and recruited normal
fibroblasts (NFs) into proto-myofibroblast intermediates, then
active myofibroblasts.

During puberty, mammary fibroblasts surrounding the
branching TEBs become activated in response to estrogen
and growth hormones released by the ovary and pituitary
gland, respectively. They secrete fibroblast growth factors
(FGFs) that stimulate TEBs to promote luminal epithelial cell
expansion and ductal branching and their differentiation into
myoepithelial cells [12]. Other growth factors secreted by the
microenvironment, such as epidermal growth factor (EGF)
and growth hormone (GH), to which the fibroblasts respond,
are critical for correct mammary gland morphogenesis and
ductal branching during puberty [13,14].While little is known
about the role of fibroblasts in pregnancy, signaling through
the fibroblast growth factor receptor (FGFR2-IIIb) is essential
to stimulate normal lobuloalveolar development during preg-
nancy [15]. Fibroblasts in the involuting mammary gland
contain elevated MMPs, fibronectin and laminins, as well as
higher levels of fibrillar collagens [16,17], all of which con-
tribute to ECM/basement membrane breakdown and tissue
remodeling during involution.

Contribution of the Immune System to Mammary Gland
Development

Immune cells have been documented to supply soluble growth
and survival factors, matrix remodelling enzymes, reactive
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oxygen species, and other bioactive molecules that influence
cancer cell proliferation, angiogenesis, invasion, and metasta-
sis [18–20]. Immune cells respond to pathogens such as
invading viruses or bacteria by producing chemokines that
recruit specialized defender cells to the site of injury to phago-
cytose the intruders. This first line of defense is known as
inflammation and is a protective response involving host cells,
blood vessels and proteins that work to eliminate the initial
cause of cell injury, remove the necrotic cells and initiate
repair. Inflammation can be either acute or chronic in nature,
distinguished by the duration or type of infiltrating inflamma-
tory cells present. Acute inflammation is rapid and involves
predominantly innate immune cells such as neutrophils,
whereas chronic inflammation occurs over an extended time
(days to years) and involves both innate and adaptive immune
cells, mainly macrophages and lymphocytes. The immune
infiltrate within the mammary gland during development
and reproduction has not been described in detail, however it
is clear that immune cells have an active role in the growth of
the gland during puberty, pregnancy and lactation, and per-
haps most importantly, during mammary gland involution,
where controlled cell death and tissue remodeling are required
to return the breast to its pre-pregnant state.

Macrophages are localized to the neck region of TEBs during
puberty [21]. Their recruitment is a result of colony stimulating
factor 1 (CSF-1) secretion by mammary myoepithelial cells.
CSF-1 is a major regulator of macrophage survival, prolifera-
tion, differentiation and recruitment [22] and hence, CSF-1
deficient (Csf-1op/op) mice exhibit a severe macrophage defi-
ciency in many tissues. The Csf-1op/op mice revealed a role for
macrophages in several stages of mammary development. The-
se mice exhibit an atrophic mammary gland ductal system
during puberty with a reduced number of TEBs and reduced
ductal length and branching [23]. In pregnancy, they have
reduced secondary and tertiary branching, with premature alve-
olar growth andmilk protein expression. There are also lactation
defects, including an accumulation within the alveolar cells of
milk proteins that are neither secreted nor cleared from the ducts
[24]. Macrophages are also important for mammary stem cell
function, as Csf-1op/op mice have a reduced stem cell frequency
and activity, indicating that macrophages might also facilitate
the maintenance and/or proliferation of mammary stem cells
during puberty [25]. In addition to this, acute macrophage
depletion using the CD11b–diphtheria toxin receptor (DTR)
transgenic mice, showed that macrophages are involved in both
alveolar bud formation as well as their breakdown [26]. More-
over, acute macrophage depletion in transgenic mice carrying a
suicide gene driven by the macrophage specific CSF-1 receptor
promoter, revealed that macrophages are also important for the
involution process [27].

During puberty, the mammary gland has elevated levels of
mast cells within the stroma surrounding TEBs. Functional
studies of mammary gland mast cells indicate that they

contribute to mammary gland development by releasing
growth factors such as VEGF, and dipeptidyl peptidase I that
assists in mast cell degranulation [28,29]. Mice deficient in
mast cells have defective mammary gland branching during
puberty [28]. Mast cells also regulate post-lactational involu-
tion through their binding of plasma kallikrein [30].

Eosinophil infiltration also occurs during puberty, due to
the increased secretion of the chemokine eotaxin by TEB
epithelial cells. Eosinophil knock out mouse studies have
highlighted the role of infiltrating eosinophils in driving ductal
elongation and branching during mammary gland develop-
ment [31,32]. In addition, eosinophil knock out mice (Il-5-/-)
were unable to secrete sufficient milk for their pups, indicating
a lactation defect [32].

The role of T and B lymphocytes in mammary develop-
ment and pregnancy is less well explored. In the non-pregnant
state, the gland is thought to contain only low lymphoid
numbers, however during pregnancy and lactation the mam-
mary gland is colonized by T-cells and B cells, respectively
[33]. A more recent histological study has shown that in both
normal human breast sections and in those with lobulitis/
mastitis, there is a consistent presence of CD8+ lymphocytes
and CD11c+ dendritic cells (DCs) [34]. The exact role of these
immune cells in the steady state is unclear.

Considerablymore is known about the immune cell infiltrate
during involution, compared to other developmental or repro-
ductive states, largely due to detailed gene expression profiling
of the mouse mammary gland during development, with a
specific focus on involution. By utilization of Affymetrix
RNAmicroarrays on mammary glands from Balb/c mice, Stein
[35] identified two neutrophil associated genes (Cxcl1 and Lrg
that were highly up-regulated on the first day of involution,
indicating that neutrophils are infiltrating the mammary gland
immediately upon initiation of involution. In addition, macro-
phage and lymphocyte recruitment and differentiation-related
genes (Cxcl14,Cd68,Ctss,Mps1 and Lgals3) began to increase
on the third and fourth days of involution, associated with
infiltration of macrophages and lymphocytes [35]. These im-
mune cells are thought to play a pivotal role in mammary gland
involution by assisting in the removal of milk proteins and the
large numbers of apoptotic cells to allow the mammary gland to
return to its pre-pregnant state. Pathway analysis showed that
the immune profile was akin to an acute inflammatory response
[36]. In addition, the levels of plasma cells and eosinophils
increase during mammary gland involution, however their spe-
cific role in this process is not yet known [37,38].

Direct interaction between fibroblasts and immune cells is
predicted, but little has been reported. One of the main functions
of fibroblasts is to secrete ECM that acts to support normal
development. Immune cells such as macrophages, mast cells
and eosinophils are in high numbers in the developing pubertal
mammary gland where matrix deposition and remodelling oc-
curs to facilitate ductal growth. Themacrophages present during
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involution have been well studied and are polarized to a tissue
remodeling state, and their presence is associated with collagen
deposition and matrix remodeling [39,40]. Further studies that
characterise the immune cells present at each developmental
stage and also the specific collagens and MMPs present at this
time, will allow us to determine the depth of the stromal influ-
ence over immune cell activity during normal development. As
discussed later, more is known about the stromal influence
within cancer and other cases of chronic inflammation.

Contribution of Fibroblasts and Immune Cells to Chronic
Inflammation and Cancer

The Role of Fibroblasts in Tumor Development

Activated fibroblasts, characterized by their high expression
of alpha smooth muscle actin, are present in large numbers in
malignant breast cancers and their presence is correlated with
poor clinical outcome [41]. A recent study by Lisanti and
colleagues indicated that paracrine oxidative stress caused
by oncogenes are most likely responsible for both the forma-
tion and accumulation of these activated cancer-associated
fibroblasts (CAFs) [42]. CAFs contribute to cancer cell sur-
vival and progression by secreting high levels of nutrient rich
ECM, promoting persistent chronic inflammation within the
tumor microenvironment and inducing epithelial-
mesenchymal transition of tumor cells. One of the critical
challenges a tumor faces as it expands is to generate sufficient
energy to meet the ever-increasing demands of continued tumor

growth. To overcome this, tumor cells induce the functional
activation of CAFs by promoting oxidative stress through their
upregulation of transforming growth factor beta (TGF-β) sig-
naling [43,44]. As a result, these catabolic CAFs provide tumor
cells with excess nutrients, secreting essential molecules such as
L-lactate, ketones, glutamine, fatty acids and amino acids. These
fuels are taken up by the nearby anabolic tumor cells and
converted to energy through the tricarboxylic acid cycle and
oxidative phosphorylation, ultimately sustaining tumor cell sur-
vival and promoting tumor cell proliferation [45]. This meta-
bolic coupling is an important component of tumor develop-
ment, since tumor cells would struggle to survive in their
hypoxic environment without this support.

As well as supplying metabolic support, the tumor micro-
environment also has an indispensable role in promoting
chronic inflammation at the tumor site. Such chronic inflam-
mation triggers the release of pro-inflammatory cyto-
kines that disrupt the normal cytokine balance and pro-
mote tumor cell growth through stimulation of angiogenesis
and lymphangiogenesis, while also inhibiting activation of
cytotoxic immune cells. A recent article proposed that consti-
tutively active CAFs are responsible for this switch from acute
resolving inflammation, which occurs during a natural wound
healing response, to persistent chronic inflammation in the
presence of a tumor [46]. CAFs continually secrete high
levels of pro-inflammatory cytokines, such as IL-1β, IL-
8, IL-10, tumor necrosis factor-alpha (TNFα), monocyte
chemoattractant protein-1 (CCL2), stromal derived factor-1
(CXCL12) and interferon-beta (IFNβ) that have a range of
effects on the immune system [46,47] (Fig. 1). For example,

Fig. 1 Cancer Associated Fibroblasts (CAFs) and the chronic persistence
of inflammation. CAFs mediate the persistent chronic inflammation in the
tumour microenvironment via their production of growth factors, cyto-
kines and chemokines. The CAFs stimulate the recruitment and activation
of monocytes, macrophages and lymphocytes. Specifically Tcells become
Th2 rather than Th1 polarized and the macrophages become M2 rather
than M1 polarized, both of which are pro-tumorigenic. The CAFs also
express Vegf that leads to the accumulation of MDSC and Treg cells.

Fibroblast activated protein blocks the T cell effector functions, including
CD4+ and CD8+Tcells. Another growth factor released by CAFs, TGFB,
is able to inhibit the cytotoxic effects of CD8+ T cells and NK cells, and
also control the ECM production and degradation through production of
collagenases, proteases, collagens, fibronectin, chondroitin dermatan sul-
fate and proteoglycans. Below each of the immune cells we have depicted
with a positive or negative symbol whether they stimulate or inhibit
tumorigenesis.
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secretion of CCL2 promotes the chemotactic recruitment of
monocytes and T lymphocytes to the tumor site, ultimately
modulating the release of anti-inflammatory cytokines as well
as inhibiting the formation of tumor-reactive T cells [48].
Together, the release of these cytokines promotes the genera-
tion of a Th2 pro-inflammatory immune response [49,50].

The Contribution of Fibroblasts to Chronic Inflammation

In addition to their role in stimulating tumor development,
fibroblasts have been implicated in the pathogenesis of chron-
ic inflammatory diseases, such as rheumatoid arthritis and
chronic obstructive pulmonary disease (COPD) [51–53]. It
has been suggested that fibroblasts mediate the transition from
acute to chronic inflammation by inappropriately providing
recruitment, survival and retention signals to infiltrating leu-
kocytes, thus inhibiting the normal resolution of inflammation
[46,54].

COPD is characterized by a chronic obstruction of expira-
tory flow affecting peripheral airways, associated with chronic
bronchitis and emphysema, which includes mucus hyperse-
cretion and goblet cell and submucosal gland hyperplasia as
well as the destruction of airway parenchyma. Both occur
along with fibrosis, tissue damage and inflammation of the
small airways. Fibroblasts isolated from lungs of patients with
COPD secrete increased levels of pro-inflammatory factors
compared with normal fibroblasts [55].

Rheumatoid arthritis (RA) is a chronic autoimmune disease
of unknown origin that primarily affects the joints and ulti-
mately leads to their destruction. Activated fibroblasts in RA
produce a variety of cytokines, chemokines and matrix-
degrading enzymes that regulate the inflammatory and endo-
thelial cells known to be responsible for the progressive de-
struction of articular cartilage and bone. The cytokines and
chemokines produced within the rheumatoid synovium
recruit T cells, macrophages and neutrophils that, in turn,
attract more inflammatory cells and ultimately enhance the
activated state of the rheumatoid arthritic synovial fibro-
blasts and osteoclasts [56].

Periodontal diseases range from simple gum inflammation
to serious diseases that result in major damage to the soft
tissue and bone supporting the teeth. Bacteria induce tissue
destruction indirectly by activating host defense cells that
produce and release mediators that stimulate the effectors of
connective tissue breakdown [57]. T cells activated by the
bacteria produce pro-inflammatory cytokines that activate
fibroblasts and macrophages to produce enzymes that degrade
the ECM, leading to tissue destruction. The activation of T
cells also facilitates bone resorption [58].

Benign prostatic hyperplasia (BPH), or non-cancerous en-
largement of the prostate, is a common condition associated
with aging. It is characterized by the proliferation of
fibroblasts/myofibroblasts and epithelial cells within the

peri-urethral or transitional zone of the prostate gland. The
role of fibroblasts in BPH has been highlighted by studies
showing an age-related loss of the anti-proliferative effect of
prostate fibroblasts on prostate epithelial cells [59]. Prostate
fibroblasts in BPH secrete cytokines and chemokines that
foster an inflammatory proliferative microenvironment [60].
The transcriptome of the aging prostate stroma is character-
ized by the up-regulation of several genes that encode secreted
inflammatory mediators, including CXC-type chemokines
(CXCL1, CXCL2, CXCL5, CXCL6, CXCL12), interleukins
(IL-11, IL-33), and transcripts with cytokine homology
(CYTL1). The majority of these cytokines and chemokines
are pro-angiogenic, and chemotactic factors for neutrophils.
Activated neutrophils and macrophages secrete cytokines,
such as IL-1, IL-6, and IL-8 that are chemotactic for various
types of lymphocytes involved in the chronic inflammatory
response [61,62].

Immune Cells and Cancer

The interplay between the tumor and the immune system
during tumor progression is called immunoediting, involving
immune-mediated tumor cell cytotoxicity, immune cell and
tumor cell equilibrium, and the development of immunologi-
cally undetectable tumour cell variants. Immunoediting com-
prises three phases: elimination, equilibrium and escape
[63,64], but here we will also discuss the initial phase of
transformation. The earliest stage of tumor development is
the transformation of normal somatic cells. Tumor cells arise
due to mutations in either proto-oncogenes or tumor suppres-
sor genes, ultimately leading to the disruption of intrinsic or
extrinsic mechanisms regulating cell growth and proliferation
[65]. A small proportion of tumor cells may survive the initial
phase of immunoediting, the elimination phase, allowing
them to enter a state of dynamic equilibrium where they are
continually subjected to potent and selective pressure from
lymphocytes and IFNγ [66]. This selective pressure is pre-
dicted to maintain but not eliminate all tumor cells [67]. In the
escape phase of immunoediting, new genetic variants of tumor
cells are able to proliferate without recognition by the immune
system, resulting in expansion of the tumor to a clinically
detectable size. The role of immune cells in cancer has been
subjected to many studies. Innate immune cells such as mac-
rophages are enriched in the premalignant and malignant
setting and contribute to tumor formation by regulating the
ECM, angiogenesis and proliferation. Immune cells sup-
ply both direct and indirect mitogenic growth mediators
that stimulate proliferation of neoplastic cells and other
stromal cells [68]. They also express diverse classes of
proteolytic enzymes that cleave and modify the structure
of the ECM [69].

Historically breast cancer was not considered to be immu-
nogenic, as the incidence of breast cancer is not increased in
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transplant patients who are immune suppressed. In contrast,
non-melanoma skin cancers, lip cancer, Kaposi sarcoma, non-
Hodgkin’s lymphoma and cancers of the anogenital tract are
increased [70]. Similarly, patients with HIV have an increased
risk of the same cancers [71]. Together these data indicated
that breast cancer incidence was not altered in the absence of a
functional immune system. However there are now irrefutable
data demonstrating that the immune cell infiltrate of a breast
tumor affects both its growth and metastasis. The data for a
role of the immune system in breast cancer initiation are
sparse, however limited studies indicate that even at these
early stages of transformation, immune cells may be involved.
Emerging research indicates that some breast cancer subtypes
may be more immunogenic than others. Lymphocytic infiltra-
tion is associated with good prognosis in rapidly dividing
tumors and triple negative tumors [72,73], but not in other
subtypes. This may be due to the high genomic instability and
poor differentiation of these tumors.

Immune Cell Involvement in the Early Stages of Breast
Cancer Development

As mentioned above, limited data on the role of immune cells
in the very early stages of breast cancer are available. A large
global analysis of immune cells in 53 mastectomy samples
ranging from normal to invasive ductal carcinoma has been
reported [74]. The number of CD20+ B cells, CD68+ mono-
cytes and macrophages, CD3+ T cells and granzyme B+ cyto-
toxic T cells was assessed. The most significant finding was a
30-fold increase in CD3+ T cells during the transition from
normal to benign stage of disease. This increase was sustained
during cancer development and progression. There were also
smaller increases in CD20+ B cells and CD68+ macrophages
[74] Together these data indicate that both the innate and
adaptive immune systems are important in the initiation of
breast cancer. This research is supported by more recent data
showing a significant increase in leukocyte infiltration with
tumor progression. Normal breast had minimal leukocyte
infiltration, whilst ductal carcinoma in-situ (DCIS) and inva-
sive ductal carcinoma (IDC) showed a higher percentage
(28 % and 44 % respectively) of strong staining [75].

Immune Cell Involvement in Established Cancers

Many studies have correlated prognosis with the influx of
immune cells into primary breast cancers. The levels of tumor
associated macrophages (TAMs), CD4+ T helper cells and
CD8+ cytotoxic T cells have been shown to predict breast
cancer outcome. Patients whose tumors had a CD68hi, CD4hi

and CD8low immune profile (rather than CD68low CD4low and
CD8high) had decreased overall survival and relapse-free sur-
vival [76]. This immune profile also held true when assessed
in two independent tissue cohorts [77,78] and agrees with

earlier work in predicting disease-free survival by measuring
the ratio of CD4+ T cells to CD8+ T cells [79].

The orientation of immune cell subsets dictates their pro-
tumor versus anti-tumor activity. TAM infiltration is associat-
ed with worse prognosis in many cancers [80,55]. For exam-
ple, IL-10, TGFβ and other cytokines from the tumor micro-
environment switch macrophages from an M1-like (pro-
inflammatory or classically activated) macrophages to M2-
like (anti-inflammatory or alternatively activated) TAMs. M2-
like TAMs support tumor growth through promotion of an-
giogenesis, matrix remodeling andmetastasis, and by suppres-
sion of adaptive immunity [81,82]. There are also a number
of subtypes within the T helper cell population, including
Th1, Th2, Th9, Th17, Th22 and ThFH cells, that differ in
their functions, signature cytokine profile and cell targets
[83]. T helper cells present during acute inflammation are
primarily Th1 polarized, enhancing anti-tumor responses
by secreting cytokines such as IFNγ, TNFα and IL-2
[79]. These cytokines promote antigen processing in the
proteasome, induce major histocompatibility complex
(MHC) expression, stimulate activation of macrophages
and increase antigen display by tumor cells. In contrast,
T helper cells present during chronic inflammation and
cancer are predominantly Th2 polarized, assisting in tumor
growth and progression by expressing IL-4, IL-5, IL-6, IL-
10 and IL-13 that can inhibit T cell mediated cytotoxicity
and enhance chronic B cell immunity [79].

Generally the presence of increased numbers of cytotoxic T
cells in a tumor is associated with better prognosis [79,84].
Under the influence of immunosuppressive cytokines howev-
er, the levels of cytotoxic T cell numbers are reduced and anti-
tumor Th1 T helper cells are converted to tumor-tolerant Th2
T helper cells [85].

DCs express MHC Class II and can present their antigenic
peptides to CD4+ Tcells. They are the most professional of the
antigen presenting cells (APCs), since they can quickly inter-
nalize tumor antigens, degrade them into peptides and present
them on both MHC class I and II molecules to CD4+ and
CD8+ T cells, respectively. They essentially prime tumor
specific effector T cells to attack the tumor. DCs are found
in most tumors and are thought to play an important role in
shaping the host response to the tumor. Interactions between
DCs and dying cells are determined by a balance of several
(often opposing) molecular interactions that regulate recogni-
tion, uptake, processing and ultimately, the presentation of
cellular antigens to the immune system. DC maturation and
survival are impaired in the immunosuppressive tumor micro-
environment. While the percentage of myeloid-derived
DCs does not relate to clinical outcome in breast cancer
patients, the infiltration of plasmacytoid DCs (pDCs) into
primary breast tumors is correlated with poor clinical
outcome, thereby indicating that pDCs contribute to
breast cancer progression [86].
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Turning to consider metastatic breast cancer, the role of the
immune system has recently been reviewed extensively [87].
Suffice to say that suppression of metastasis in mice has been
shown by two groups to be dependent, at least in part, on CD8+

T cells [88,89]. In humans, breast tumor infiltrating CD8+ T
cells predict favorable prognosis [90,91]. The innate immune
system also contributes to metastasis, with natural killer (NK)
cell deficient SCID mice developing higher levels of breast
cancer metastasis [92] [93], as do NOD/SCID/IL2R-/- (NSG)
mice [88]. NK cells isolated from patients with advanced
breast cancer have impaired function [94].

Macrophages and neutrophils are also major mediators of
metastasis. While it was generally predicted that TAMs would
promote metastatic disease, inhibition of macrophages by
targeting CSF-1/CSF-1R signaling did not impact on either
primary tumor growth or metastasis in the MMTV-PyMT
transgenic mouse [76], and in our study, blockade of CSF-
1R signaling in two mammary transplant models actually
increased metastasis without altering primary tumor growth
[95]. However, metastasis was reduced in the Csf-1op/op

mouse [96], demonstrating that genetic loss of Csf-1 results
in a different response to that of pharmacological inhibition of
CSF-1 signaling. In the mammary transplant models, the
pharmacological blockade of Csf-1R signaling led to an in-
crease in metastasis-promoting neutrophils that could be over-
come by treatment of the mice with a neutralizing antibody
targeting the granulocyte-CSF receptor [95].

Are the Fibroblasts Orchestrating the Immune Cell Response
During Tumorigenisis?

There are many differences between normal and chronically
inflamed or activated fibroblasts, including their ability to
influence leukocyte survival, differentiation and accumulation
through their expression of pro-inflammatory mediators
[97,46,98,99]. The interrelationship between stromal cells
and immune cells in cancer is supported by gene expression
studies showing that a stromal microenvironment with expres-
sion of genes proposed to lead to an anti-tumor immune cell
environment can accurately predict tumor prognosis [100].
CAFs manipulate the inflammatory microenvironment
through two distinct mechanisms. They have a pro-
inflammatory expression profile that recruits macrophages,
neutrophils and other stimulatory immune cells (Fig. 1)
[101,48,102] and they can suppress tumor detection and re-
jection by the host immune system by immunoediting [103].
For example, melanoma derived CAFs, but not normal skin
stromal cells, can impede NK cell cytotoxicity via cell to cell
contact and release of PGE2 [104].

Through IL-4 secretion, CAFs can help to polarize macro-
phages toward an M2 phenotype [105]. CAF mediated re-
cruitment of T cells is facilitated by secretion of chemokines
and cytokines, including CXCL9, CXCL10 and CXCL12/

SDF-1α [106]. In addition to promoting the recruitment of T
cells into tumors, CAFs sway the balance of tumor promoting
lymphocytes such as regulatory T cells (Tregs) and T helper
subtypes Th2 and Th17, versus cytotoxic T cells and tumor
suppressing Th1 cells (Fig. 1) [107]. CAFs can also recruit
and expand Th17 cells in tumors. Th17 is a newly defined T
helper cell population that expresses IL-17 [108]. These T
helper cells regulate leukocyte recruitment and activation and
contribute to the pathogenesis of autoimmune diseases and
inflammation. Fibroblasts found in the chronic inflammatory
milieu of rheumatoid arthritis promote the stimulation of Treg
cells via IL-15 secretion (Fig. 1) [109].

CAFs also produce vascular endothelial growth factor
(VEGF) that is known to impact on immune cells. VEGF
causes immunosuppression by affecting T cell progenitors
and by altering the maturation and function of DCs and APCs.
High expression of VEGF in tumors can lead to increased
infiltration of Tregs and myeloid derived suppressor cells
(MDSCs) (Fig. 1) [110,111]. T cell function can also be
inhibited through the expression of the immunosuppressive
cytokine TGFβ1 by CAFs. TGFβ1 suppresses the acquisition
and function of effector T cells [112], leading to inhibition of
the anti-tumor activity of NK cells and CD8+ cytotoxic T cells
(Fig. 1).

The role of CAFs was analysed in the K14-HPV16 mouse
model of multistep squamous skin carcinogenesis [113,114]
where the pre-neoplastic stage is well characterised. During
this stage, there is extensive remodelling of the underlying
dermal stroma, facilitating both angiogenesis and eventual
tumor cell invasion. This extensive stromal remodelling be-
gins at the dysplastic stage and is characterized by a chronic
inflammatory response. When stromal cells from normal and
dysplastic skin of K14-HPV16 transgenic mice were assessed
using genMAPP pathway profiling, inflammatory response
and immune cell chemotaxis pathways were implicated [97].
This predominantly pro-inflammatory gene signature consists
of two chemokines that are chemoattractants for neutrophils
and macrophages (CXCL1 and CXCL2) as well as the pro-
inflammatory cytokines IL-1β and IL-6, the latter being im-
plicated in the link between inflammation and cancer
[115,116]. This pro-inflammatory gene signature was also
present in breast and pancreatic cancers [97], which are
characterised by extensive desmoplastic stroma [117–119]
and was identified subsequently in inflammation-induced gas-
tric cancer [120]. It was shown that the CAF derived IL-6
caused differentiation of CD14+CD1A− monocytes into mac-
rophages rather than into antigen presenting DC cells that
would aid in tumor destruction [121].

A recent study of breast cancer has indicated that CAFs
regulate tumor prognosis largely through their ability to mod-
ulate the immune microenvironment [100]. Finak assessed 53
primary breast tumors, taking care to measure stromal and
cancer cell expression signatures separately. Importantly, it
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was the differential gene expression from the stroma that was
linked to clinical outcome [100]. The 200 most variable genes
organised the 53 stromal samples into three clusters. Cluster 1
had a reduced rate of recurrence and longer relapse-free sur-
vival compared to Cluster 2 that had an increased rate of
recurrence and a shorter relapse free survival, whilst Cluster
3 was mixed [100]. The good outcome cluster was indepen-
dent of ER, HER2 and lymph node status as well as age, grade
and tumor size and the type of therapy. The gene set predom-
inantly expressed in the good outcome cluster was enriched
for elements of Th1 immune response including T cell recep-
tor complex (CD8a, CD247, CD3D), MHC class I protein
binding and granzyme A and B activity. They also observed
elevated levels of CD8a and CD247 positive cells in tumor
stroma from individuals from good outcome cluster compared
to those in the poor outcome cluster, indicating an increased
recruitment of activated T cells and NK cells to tumors in the
good outcome group. Instead of the immune cell signature in
tumor stroma being associated with good outcome, the
poor outcome stroma showed markers of increased hyp-
oxia and angiogenesis and a decrease in chemokines that
stimulate NK migration and mediate pro-survival signals
in T lymphocytes [100].

Another study by Peng and colleagues took CAFs and NFs
from early stage breast cancers and assessed their gene ex-
pression profiles. They found that the ATM pathway, a set of
cell cycle genes and immune associated signaling were al-
tered. The immune genes that were abnormally expressed in
CAFs included those associated with NK cell mediated cyto-
toxicity, Fc gammaRmediated phagocytosis, antigen process-
ing and presentation, immune network for IgA production,
TCR activation (Lck and Fyn tyrosine kinases) and B lym-
phocyte cell surface molecules [122]. Neither study attempted
to characterize the relationship between the CAF and immune
profiles any further. They did not use flow cytometry or
immunohistochemistry to show the immune cell infiltrate,
not did they show in vitro that NFs and/or CAFs could
physically attract certain immune cell subsets.

Immunotherapies and Stromal Specific Therapies
in Clinical Trials

Immune Based Therapies

As described by the immunoediting hypothesis, tumor cells
eventually evade immune recognition and grow unrestricted.
This phenomenon has led to the idea of targeting tumor-
immune interactions to enhance the anti-tumor immune re-
sponse. Such immunotherapies can be direct, with a number
of monoclonal antibodies specifically targeting tumor interac-
tions with Tcells recently being developed, as well as indirect,
with recent evidence indicating that some conventional

chemotherapeutics have off-target immune effects, both of
which lead to enhanced anti-tumor immunity. Some recent
examples of both direct and indirect immunotherapies and
their possible role in breast cancer treatment are discussed
below.

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is a surface
receptor present on activated T cells, acting as a negative
regulator in the expansion and activity of effector T cells
[123]. CTLA-4 expression is up-regulated on a number of
cancer cells including melanomas [124], lymphomas [125],
breast cancers [126] and prostate cancers [127], resulting in
enhanced immune escape of tumor cells. Consequently, anti-
CTLA-4 monoclonal antibodies (mAb) have been developed
to reverse this T cell inhibition. Two anti-CTLA-4 mAb
(ipilimumab and tremelimumab) were originally developed,
passing both Phase I/II clinical trials. Phase III clinical trials
revealed treatment with 3 mg/kg every 3 weeks for 4 treat-
ments improved the median overall survival of melanoma
patients by 3.7 months [128], while treatment of 15 mg/kg
tremelimumab every 90 days improved the median overall
survival of patients by only 1.9 months [129]. As a result,
tremelimumab was dropped from further trials, while
ipilimumab was FDA approved for the treatment of advanced
melanoma in March 2011. Although originally tested in mel-
anoma and prostate cancer patients, ipilimumab recently be-
gan Phase I/II clinical trials for the treatment of breast cancer.

The most recent immunotherapeutic inhibitors to be devel-
oped are the anti-PD-1 and anti-PD-L1 mAbs. Tumor cells
express PD-L1 and PD-L2 that interact with the PD-1 receptor
on the surface of T cells, preventing their activation and
cytotoxic activity and resulting in immune evasion. Both
PD-1 receptor and PD-L1 ligand mAbs have been developed
to block this interaction between tumor cells and T cells,
thereby promoting T cell activation and anti-tumor cytotoxic-
ity [130]. These mAbs are currently in Phase II clinical trials
for the treatment of over 30 types of cancers, with Phase III
trials being planned for non-small cell lung carcinoma, mela-
noma and renal cell cancer. Of these, lambrolizumab (MK-
3475) looks to be the most promising, with a 52 % response
rate observed in advanced stage 4 melanoma patients treated
with 10 mg/kg every 2 weeks. Of these patients, reduced
tumor burden was observed in 77 %, while 10 % of patients
had a complete response [131]. Interestingly, cytotoxic che-
motherapies such as paclitaxel, etoposide and 5-fluorouracil
have been shown to induce PD-L1 expression on breast cancer
cells in vitro [132]. Furthermore, Balb/c mice with subcuta-
neously established 4 T1 tumors treated with anti-PD-1 mAb,
and anti–GITR mAb (which targets glucocorticoid-induced
tumor necrosis factor receptor family–related protein on Treg
cells), and with either cisplatin or paclitaxel, showed signifi-
cantly reduced tumor growth and 80 % tumor free-survival
compared to chemotherapy alone [133]. These results validate
the PD-1 pathway as an effective target to prevent tumor
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immune resistance, providing a new opportunity for anti-
cancer immunotherapy in a wide range of malignancies, in-
cluding breast cancer.

Trastuzumab is an FDA approvedmAb targeting the HER2
receptor present on a subpopulation of breast cancers.
Trastuzumab is efficacious both as a single agent [134] and
in combination with chemotherapy (Marty et al, 2005). Its
mechanisms of action include degradation of the HER2 re-
ceptor on cancer cells [135] and inhibition of the MAPK and
PI3K/Akt pathways to promote cell cycle arrest [136,137].
Interestingly, trastuzumab efficiency has also been correlated
with lymphocyte infiltration within the tumor, with an in-
crease in CD3+ T cells, CD68+ macrophages and NK1.1+

NK cells in patients treated with trastuzumab [138,139]. This
result indicates that trastuzumab may also act by attracting
immune cells to the tumor site to induce antibody-dependent
cellular cytotoxicity [138].

Fibroblast Based Therapies

There have been fewer developments in fibroblast directed
therapies. Fibroblast activated protein (FAP) is a serine prote-
ase involved in extracellular matrix remodeling [140] and has
high expression in cancer associated stroma, in wound healing
and in fibrotic conditions such as liver fibrosis. It shows little
if any expression in normal fibroblasts or other normal tissues
[141,142,140]. In several preclinical studies, targeting FAP
genetically or with vaccines or pharmacological agents, resulted
in impaired tumor progression inmice [143–145,107,146–148].
However the clinical studies targeting FAP with monoclonal
antibodies F19 and its humanized version Sibrotuzumab
[149–151], or the FAP enzyme inhibitor Talabostat did not
show clinical efficacy. The lack of other fibroblast-based ther-
apies is possibly due to the paucity of specific CAF markers.
There are two Phase 1 clinical trials in progress that are using
fibroblasts to attempt to stimulate the immune system to fight
cancer. The first, NCT00793208, is using lethally irradiated,
semi allogenic human fibroblasts transfected with DNA from
the patients own tumor to treat non small cell lung cancer. The
trial will evaluate the safety, immunogenicity and feasibility of
this new vaccine. The second trial, NCT00058799, is assessing
whether autologous fibroblasts engineered in culture to express
genes known to prime the immune system towards killing
cancer cells (CD40L and IL-2) can do so when given to the
patient along with small amounts of their own acute leukemic
cancer cells.

Concluding Remarks

Both CAFs and the immune cell microenvironment within a
tumor affect the ability of breast cancer to grow and

metastasize. Emerging data indicate that even the early stages
of breast cancer initiation may be shaped by the immediate
microenvironment. We have discussed the evidence that indi-
cates that stromal fibroblasts are directly mediating the im-
mune cell microenvironment in cancer and we discuss the
possible connections that may exist in normal mammary gland
development. Future research assessing how fibroblasts di-
rectly mediate immune cell activation and orientation will
surely aid in the development of more targeted therapies using
both immune targets and activation markers within
fibroblasts.
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