
Journal of Mathematical Chemistry (2024) 62:2191–2221
https://doi.org/10.1007/s10910-024-01646-0

ORIG INAL PAPER

Cost-reduction implicit exponential Runge–Kutta methods
for highly oscillatory systems

Xianfa Hu1 ·Wansheng Wang1 · Bin Wang2 · Yonglei Fang3

Received: 8 May 2024 / Accepted: 21 June 2024 / Published online: 8 July 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
In this paper, two novel classes of implicit exponential Runge–Kutta (ERK) methods
are studied for solving highly oscillatory systems. First of all, symplectic conditions
for two kinds of exponential integrators are derived, and we present a first-order sym-
plectic method. High accurate implicit ERKmethods (up to order four) are formulated
by comparing the Taylor expansion of the exact solution, it is shown that the order con-
ditions of two new kinds of exponential methods are identical to the order conditions
of classical Runge–Kutta (RK) methods. Moreover, we investigate the linear stability
properties of these exponential methods. Numerical examples not only present the
long time energy preservation of the first-order symplectic method, but also illustrate
the accuracy and efficiency of these formulated methods in comparison with standard
ERK methods.
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1 Introduction

It is well known that classical Runge–Kutta methods have a wide range of applications
in scientific computing. Especially, symplectic methods can preserve the symplec-
ticity of the original systems, and symplectic or symmetric methods provide long
time energy preservation applied to a Hamiltonian system. Symplectic algorithms for
Hamiltonian systems appeared in 1980s, and the earliest significant contribution to
this field were due to Feng Kang (see [1, 2]). It is worth noting the earlier important
work on symplectic integration by Sanz-Serna, who first found and analyzed symplec-
tic Runge–Kutta schemes for Hamiltonian systems (see [3]). Symplectic exponential
Runge–Kutta methods for solving Hamiltonian systems were proposed by Mei et al.
[4], and shown better performance than classical symplectic Runge–Kutta schemes.
However, the coefficients of these exponential integrators are strongly dependent on
the computing or approximating the product of a matrix exponential function with a
vector. As a consequence, we try to design two novel classes of implicit exponential
Runge–Kutta methods with lower computational cost.

In this work, we consider the first-order initial value problem

{
y′(t) + My(t) = f (y(t)), t ∈ [t0, tend],
y(t0) = y0,

(1)

where the matrix M ∈ R
m×m is symmetric positive definite or skew-Hermitian with

eigenvalues of large modulus. Problems of the form (1) arise frequently in a variety of
applied science such as quantummechanics, flexible mechanics, and electrodynamics.
Some highly oscillatory problems (see, e.g. [5, 6]), Schrödinger equations (see, e.g.
[7–9]) and KdV equations (see, e.g. [10]) can be converted into (1) with appropriate
spatial discretizations. Using the Volterra integral formula

y(t0 + h) = e−hM y(t0) + h
∫ 1

0
e−(1−τ)hM f (y(t0 + hτ))dτ, (2)

Hochbruch and Ostermann [11] formulated exponential Runge–Kutta methods of col-
location type. It is noted that exponential Runge–Kutta (ERK) methods were based
on the stiff-order conditions (comprise the classical order conditions) [5, 11–13]. In
formula (2), e−hM is generally the matrix exponential function, and exponential inte-
grators can exactly integrate the linear equation y′(t)+My(t) = 0,which indicates that
exponential integrators have unique advantages for solving highly oscillatory prob-
lems than non-exponential integrators. Exponential integrators have received more
attention [5, 14–22]. It is also worth mentioning that extended Runge–Kutta-Nyström
(ERKN) methods [23–30], as the exponential integrators, which were formulated for
effectively solving second-order oscillatory systems.

On the other hand, (1) frequently possesses some important geometrical or physical
properties. When f (y) = J−1∇U (y) and −M = J−1Q, with the skew-symmetric

J =
(

0 I
−I 0

)
,
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where U (y) is a smooth potential function, Q is a symmetric matrix and I is the
identity matrix, the problem (1) can be converted into a Hamiltonian system. Owing
to this, our study starts by deriving symplectic conditions of these methods. In this
paper, the coefficients of implicit exponential methods are real constants, therefore
our study is related to the classical order, not satisfy the stiff order conditions. We
have presented that two new kinds of explicit ERK methods up to order four reduce
to classical Runge–Kutta (RK) methods once M → 0 [31, 32]. In what follows, we
will study the implicit ERK methods.

The paper is organized as follows. In Sect. 2, we investigate symplectic conditions
for the simplified version of ERK (SVERK) and modified version of ERK (MVERK)
methods, respectively, and present a first-order symplectic SVERKmethod. The order
conditions of implicit SVERK and MVERKmethods are derived in Sect. 3, which are
identical to the order conditions of RKmethods. Section4 is devoted to linear stability
regions of implicit SVERK and MVERK methods. In Sect. 5, numerical experiments
are carried out to show the structure-preserving property of the symplectic method,
and present the comparable accuracy and efficiency of these implicit ERK methods.
The last section is concerned with concluding remarks.

2 Symplectic conditions for two new classes of ERKmethods

In [31], we have formulated the modified and simplified versions of explicit ERK
methods for stiff or highly oscillatory problems, and analyzed the convergence of
explicit exponential methods. Meanwhile, it has been pointed out that the internal
stages and update of SVERK methods preserve some properties of matrix-valued
functions, and MVERK methods inherit the internal stages and modify the update of
classical RK methods, but their coefficients are independent of matrix exponentials
ϕk(−hM) defined by (30).

Definition 2.1 ([31]) An s-stage SVERK method for the numerical integration (1) is
defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi = e−ci hM y0 + h
s∑

j=1

ai j f (Y j ), i = 1, . . . , s,

y1 = e−hM y0 + h
s∑

i=1

bi f (Yi ) + ws(z),

(3)

where ai j , bi are real constants for i, j = 1, . . . , s, Yi ≈ y(t0 + ci h) for i = 1, . . . , s,
ws(z) depends on h, M , and ws(z) → 0 when M → 0.

Definition 2.2 ([31]) An s-stage MVERK method for the numerical integration (1) is
defined as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ȳi = y0 + h
s∑

j=1

āi j (−MȲ j + f (Ȳ j )), i = 1, . . . , s,

ȳ1 = e−hM y0 + h
s∑

i=1

b̄i f (Ȳi ) + w̄s(z),

(4)

where āi j , b̄i are real constants for i, j = 1, . . . , s, Ȳi ≈ y(t0 + c̄i h) for i = 1, . . . , s,
w̄s(z) is related to h and M , and w̄s(z) → 0 once M → 0.

The ws(z) and w̄s(z) also depend on the term f (·) and initial value y0 once we
consider the order of SVERK and MVERK methods which satisfies p ≥ 2. If we
consider the first-order methods, then ws(z) = 0 and w̄s(z) = 0. It should be noted
that the SVERK or MVERK methods with the same order share the same ws(z) or
w̄s(z), and ws(z) is different from w̄s(z) when p ≥ 3 in [31, 32]. It is clear that
SVERK and MVERK methods reduce to classical RK methods when M → 0, and
these methods exactly integrate the first-order homogeneous linear system

y′(t) = −My(t), y(0) = y0, (5)

with the exact solution

y(t) = e−tM y0.

The SVERK method (3) can be displayed by the following Butcher Tableau

c e−chM A

e−hM ws(z) bᵀ
=

c1 e−c1hM a11 · · · a1s
...

...
...

...
...

cs e−cshM as1 · · · ass

e−hM ws(z) b1 · · · bs

(6)

where ci = ∑s
j=1 ai j for i = 1, . . . , s. Similarly, the MVERK method (4) also can

be expressed in the Butcher tableau

c̄ I Ā

e−hM w̄s(z) bᵀ
=

c̄1 I ā11 · · · ā1s
...

...
...

...
...

c̄s I ās1 · · · āss

e−hM w̄s(z) b̄1 · · · b̄s

(7)

with c̄i = ∑s
j=1 āi j for i = 1, . . . , s.

It is true that (1) becomes a Hamiltonian system when f (y) = J−1∇U (y) and
M = −J−1Q, where U (y) is a smooth potential function and Q is a symmetric
matrix. Thus, we consider the following Hamiltonian system{

y′(t) − J−1Qy(t) = J−1∇U (y), t ∈ [t0, tend],
y(t0) = y0.

(8)
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Under the assumptions of ws(z) = 0 and w̄s(z) = 0, we will analyze symplectic
conditions for SVERK andMVERKmethods. In fact,ws(z) = 0 and w̄s(z) = 0mean
that the order of SVERK and MVERK methods satisfies p ≤ 1. Since ws(z) 	= 0 and
w̄s(z) 	= 0, the ws(z) and w̄s(z) will break the formal conservation of the symplectic
invariant, hence the following analysis does not involve high order methods.

Theorem 2.3 Suppose that the coefficients of an s-stage SVERK method withws(z) =
0, which satisfy the following conditions:

{
e−(1−ck )hMG−1

k = G−1
k (e−(1−ck )hM )ᵀ, k = 1, . . . , s,

bkbl = bkakl Je−(1−ck )hM J−1 + blalk(e−(1−ck )hM )ᵀ, k, l = 1, . . . , s,
(9)

where G−1
k = ∇2U (yn + h

∑s
l=1 aklξl) and ξk = f (yn + h

∑s
l=1 aklξl), then the

SVERK method is symplectic.

Proof A numerical method is said to be symplectic if the numerical solution yn+1

satisfies (
∂ yn+1
∂ y0

)ᵀ J (
∂ yn+1
∂ y0

) = (
∂ yn
∂ y0

)ᵀ J (
∂ yn
∂ y0

). Under the assumption ws(z) = 0, we
rewrite the SVERK method as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξk = f
(
e−ckhM yn + h

s∑
l=1

aklξl
)
, k = 1, . . . , s,

yn+1 = e−hM yn + h
s∑

k=1

bkξk .

(10)

Letting�k = ∂ξk
∂ y0

,�n+1 = ∂ yn+1
∂ y0

, and Gk = ∇2U
(
e−ckhM yn +h

∑s
l=1 aklξl

)
for k =

1, . . . , s. Moreover, assuming the symmetric matrices G1, . . . ,Gs are nonsingular,
we apply (10) to a Hamiltonian system (8), the derivative of yn+1 with respect to y0
is

�n+1 = e−hM�n + h
s∑

k=1

bk�k . (11)

It is easy to obtain

�
ᵀ
n+1 J�n+1 =

(
e−hM�n + h

s∑
k=1

bk�k

)ᵀ
J
(
e−hM�n + h

s∑
k=1

bk�k

)

= (e−hM�n)
ᵀ J (e−hM�n) + h

s∑
k=1

bk(e
−hM�n)

ᵀ J�k

+ h
s∑

k=1

bk�
ᵀ
k Je

−hM�n

+ h2
s∑

k=1

s∑
l=1

bkbl�
ᵀ
k J�l . (12)
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It follows from (10) that

�k = J−1Gk
(
e−ckhM�n + h

s∑
l=1

akl�l
)
, k = 1, . . . , s, (13)

thus

�n = eckhMG−1
k J�k − h

s∑
l=1

akle
ckhM�l , k = 1, . . . , s. (14)

In view of (14), we have

h
s∑

k=1

bk(e
−hM�n)

ᵀ J�k = h
s∑

l=1

bl
(
eclhMG−1

l J�l − h
s∑

k=1

alke
cl hM�k

)ᵀ
(e−hM )ᵀ J�l

= h
s∑

k=1

bk�
ᵀ
k J

ᵀG−1
k (e−(1−ck)hM )ᵀ J�k

− h2
s∑

k=1

s∑
l=1

blalk�
ᵀ
k (e−(1−ck)hM )ᵀ J�l ,

(15)

and

h
s∑

k=1

bk�
ᵀ
k Je

−hM�n = h
s∑

k=1

bk�
ᵀ
k Je

−hM(
eckhMG−1

k J�k − h
s∑

l=1

akle
ckhM�l

)

= h
s∑

k=1

bk�
ᵀ
k Je

−(1−ck )hMG−1
k J�k

− h2
s∑

k=1

s∑
l=1

bkakl�
ᵀ
k Je

−(1−ck )hM�l .

(16)

Inserting (15) and (16) into (12) yields

�
ᵀ
n+1 J�n+1 = �

ᵀ
n J�n + h

s∑
k=1

bk�
ᵀ
k

(
JᵀG−1

k (e−(1−ck)hM )ᵀ + Je−(1−ck )hMG−1
k

)
J�k

− h2
s∑

k=1

s∑
l=1

blalk�
ᵀ
k (e−(1−ck)hM )ᵀ J�l

− h2
s∑

k=1

s∑
l=1

bkakl�
ᵀ
k Je

−(1−ck )hM�l

+ h2
s∑

k=1

s∑
l=1

bkbl�
ᵀ
k J�l
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= �
ᵀ
n J�n + h

s∑
k=1

bk�
ᵀ
k J

(
e−(1−ck )hMG−1

k − G−1
k (e−(1−ck)hM )ᵀ

)
J�k

+ h2
s∑

k=1

s∑
l=1

�
ᵀ
k

(
bkbl − bkakl Je

−(1−ck )hM J−1 − blalk(e
−(1−ck )hM )ᵀ

)
J�l .

As the coefficients of a SVERK method satisfy the conditions (9), a direct calculation
leads to

�n+1 J�n+1 = �n J�n .

Therefore the SVERK method is symplectic. The proof is complete. 
�

Remark 2.4 It can be observed that symplectic conditions of SVERK methods with
ws(z) = 0 reduce to symplectic conditions of classical RK methods once M → 0. A
choice is that b1 = 1, c1 = 1 and a11 = 1/2, we can obtain the first-order symplectic
SVERK method

⎧⎨
⎩
Y1 = e−hM yn + h

2
f (Y1),

yn+1 = e−hM yn + h f (Y1).
(17)

For (1), the method (17) reduces to the implicit midpoint method when M → 0.
Unfortunately, there is no existing the symplectic SVERK method with order p ≥ 2
due to ws(z) 	= 0.

The next theorem will present symplectic conditions of MVERK methods with
w̄s(z) = 0.

Theorem 2.5 Suppose that the coefficients of an s-stageMVERKmethodwith w̄s(z) =
0, which satisfy the following conditions:

⎧⎨
⎩

Dᵀ
i J e

−hM + (e−hM )ᵀ J Di = 0, i = 1, . . . , s,
b̄i b̄ j = b̄i āi j J e−hM J−1 + b̄ j ā j i e−hM , i, j = 1, . . . , s,
b̄ j ā j i Mᵀ(e−hM )ᵀ J D j + b̄i āi j D

ᵀ
i J e

−hMM = 0, i, j = 1, . . . , s,
(18)

with Di = ∂ f (Ȳi )
∂ y0

, then the MVERK method is symplectic.

Proof Setting Di = ∂ f (Ȳi )
∂ y , Xi = ∂Ȳi

∂ y0
, and �n+1 = ∂ ȳn+1

y0
. Similarly, we apply the

MVERK method (4) with w̄s(z) = 0 to a Hamiltonian system (8), the derivative of
this scheme with respect to y0 is
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⎧⎪⎪⎨
⎪⎪⎩

Xi = ∂Ȳi
∂ y0

= �n + h
s∑

j=1
āi j (−MX j + Dj X j ),

�n+1 = e−hM�n + h
s∑

i=1
b̄i Di Xi .

(19)

Then, we have

�
ᵀ
n+1 J�n+1 =

(
e−hM�n + h

s∑
i=1

b̄i Di Xi

)ᵀ
J
(
e−hM�n + h

s∑
i=1

b̄i Di Xi

)

= (e−hM�n)
ᵀ J (e−hM�n) + h

s∑
i=1

b̄i (e
−hM�n)

ᵀ J Di Xi

+ h
s∑

i=1

b̄i (Di Xi )
ᵀ Je−hM�n

+ h2
s∑

i=1

s∑
j=1

b̄i b̄ j (Di Xi )
ᵀ J D j X j .

(20)

Using the first formula of (19), we obtain

Xᵀ
i (e−hM )ᵀ J Di Xi = �ᵀ

n (e−hM )ᵀ J Di Xi

+h
s∑

j=1

āi j (−MX j + Dj X j )
ᵀ(e−hM )ᵀ J Di Xi ,

(Di Xi )
ᵀ Je−hM Xi = (Di Xi )

ᵀ Je−hM�n

+h
s∑

j=1

āi j (Di Xi )
ᵀ Je−hM (−MX j + Dj X j ), (21)

thus

�ᵀ
n (e−hM )ᵀ J Di Xi = Xᵀ

i (e−hM )ᵀ J Di Xi

−h
s∑

j=1

āi j (−MX j + Dj X j )
ᵀ(e−hM )ᵀ J Di Xi ,

(Di Xi )
ᵀ Je−hM�n = (Di Xi )

ᵀ Je−hM Xi

−h
s∑

j=1

āi j (Di Xi )
ᵀ Je−hM (−MX j + Dj X j ). (22)

123



Journal of Mathematical Chemistry (2024) 62:2191–2221 2199

Inserting (22) into (20) leads to

�
ᵀ
n+1 J�n+1 = �ᵀ

n J�n + h
s∑

i=1

b̄i X
ᵀ
i (e−hM )ᵀ J Di Xi

− h2
s∑

i=1

s∑
j=1

b̄ j ā j i (−MXi + Di Xi )
ᵀ(e−hM )ᵀ J D j

× X j + h
s∑

i=1

b̄i (Di Xi )
ᵀ JehM Xi

− h2
s∑

i=1

s∑
j=1

b̄i āi j (Di Xi )
ᵀ J S(−MX j + Dj X j )

+ h2
s∑

i=1

s∑
j=1

b̄i b̄ j (Di Xi )
ᵀ J (Dj X j )

= �ᵀ
n J�n + h

s∑
i=1

b̄i X
ᵀ
i

(
Dᵀ
i J e

hM + (ehM )ᵀ J Di
)
Xi

+ h2
s∑

i=1

s∑
j=1

(Di Xi )
ᵀ(
b̄i b̄ j − b̄ j āi j (e

−hM )ᵀ − b̄i āi j J S J
−1)J D j X j

+ h2
s∑

i=1

s∑
j=1

Xᵀ
i

(
b̄ j ā j i M

ᵀ(e−hM )ᵀ J D j + b̄i āi j D
ᵀ
i J e

−hMM
)
X j .

As the coefficients of the MVERK method satisfy conditions (18), it can be verified
that

�
ᵀ
n+1 J�n+1 = �ᵀ

n J�n,

whence the MVERK method is symplectic. The proof is complete. 
�
Remark 2.6 Theorem 2.5 presents symplectic conditions of MVERK methods with
ws(z) = 0. However, when bi (i = 1, . . . , s) are constants, the second formula of
(18) can never be satisfied. Symplectic conditions ofMVERKmethodswithws(z) 	= 0
can be analyzed by the sameway, unfortunately, theMVERKmethods with w̄s(z) 	= 0
can not preserve the symplectic invariant.

Corollary 2.7 There does not exist any symplectic MVERK methods.

3 Highly accurate implicit ERKmethods

Section 2 is concerned with symplectic conditions for SVERK andMVERKmethods.
However, the symplectic SVERK method only has order one, and there is no existing
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symplectic MVERKmethods. In practice, we need some highly accurate and effective
numerical methods, hence the high order implicit SVERK (IMSVERK) and implicit
MVERK (IMMVERK) methods are studied in this section.

We now consider a one-stage IMSVERK method with w2(z) = − h2M f (y0)
2!

⎧⎨
⎩
Y1 = e−c1hM y0 + ha11 f (Y1),

y1 = e−hM y0 + hb1 f (Y1) − h2M f (y0)

2! ,
(23)

and one-stage IMMVERK method with w̄2(z) = − h2M f (y0)
2!

⎧⎨
⎩
Ȳ1 = y0 + hā11(−MȲ1 + f (Ȳ1)),

ȳ1 = e−hM y0 + hb̄1 f (Ȳ1) − h2M f (y0)

2! .
(24)

A numerical method is said to be of order p if the Taylor expansion of the numerical
solution y1 or ȳ1 and the exact solution y(t0 + h) coincides up to h p about y0. For
convenience, we denote g(t0) = −My(t0) + f (y(t0)), the Taylor expansion for the
exact solution y(t0 + h) is

y(t0 + h) = y(t0) + hy′(t0) + h2

2! y
′′(t0) + h3

3! y
′′′(t0) + h4

4! y
(4)(t0) + O(h5)

= y(t0) + hg(t0) + h2

2! (−M + f ′
y(y0))g(t0)

+ h3

3!
(
M2g(t0) + (−M + f ′

y(y(t0))) f
′
y(y(t0))g(t0)

− f ′
y(y(t0))Mg(t0) + f ′′

yy(y(t0))(g(t0), g(t0))
)

+ h4

4!
( − M3g(t0) + M2 f ′

y(y(t0))g(t0) − M f ′
y(y(t0))

× (−M + f ′
y(y(t0)))g(t0) − M f ′′

yy(y(t0))(g(t0), g(t0))

+ f ′′′
yyy(y(t0))(g(t0), g(t0), g(t0)) + 3 f ′′

yy(y(t0))

× ((−M + f ′
y(y(t0)))g(t0), g(t0))

+ f ′
y(y(t0))(−M + f ′

y(y(t0)))(−M + f ′
y(y(t0)))g(t0)

+ f ′
y(y(t0)) f

′′
yy(y(t0))(g(t0), g(t0))

) + O(h5).

Under the assumption y0 = y(t0), the Taylor expansions for numerical solutions y1
and ȳ1 are

y1 = (I − hM + h2M2

2! + O(h3))y0 + hb1 f (y0 − c1hMy0

+ a11h f (y0) + O(h2)) − h2M f (y0)

2!
123
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= y0 − hMy0 + h2M2

2! y0 + hb1 f (y0)

+ h2b1c1 f
′
y(y0)(−My0 + f (y0)) − h2M f (y0)

2! + O(h3)

= y0 − hMy0 + hb1 f (y0) + h2

2! (−M)(−My0 + f (y0))

+ h2b1c1 f
′
y(y0)(−My0 + f (y0)) + O(h3),

and

ȳ1 = (I − hM + h2M2

2! + O(h3))y0

+ hb̄1
[
f (y0) + hā11 f

′
y(y0)(−My0 + f (y0) + O(h))

] − h2M f (y0)

2!
= y0 − hMy0 + hb̄1 f (y0) + h2M2

2! y0

+ h2b̄1ā11 f
′
y(y0)(−My0 + f (y0)) − h2M f (y0)

2! + O(h3)

= y0 − hMy0 + hb̄1 f (y0) + h2

2! (−M)(−My0 + f (y0))

+ h2b̄1ā11 f
′
y(y0)(−My0 + f (y0)) + O(h3).

If we consider the implicit second-order ERK methods with one stage, then b1 =
b̄1 = 1 and a11 = ā11 = 1

2 . Therefore, the second-order IMSVERK method with one
stage is given by

⎧⎪⎨
⎪⎩
Y1 = e− 1

2 hM y0 + h

2
f (Y1),

y1 = e−hM y0 + h f (Y1) − h2M f (y0)

2! ,

(25)

which can be denoted by the Butcher tableau

1
2 e− 1

2 hM 1
2

e−hM w2(z) 1
. (26)

The second-order IMMVERK method with one stage is shown as

⎧⎪⎨
⎪⎩
Ȳ1 = y0 + h

2
(−MȲ1 + f (Ȳ1)),

y1 = e−hM y0 + h f (Ȳ1) − h2M f (y0)

2! ,

(27)
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which also can be indicated by the Butcher tableau

1
2 I 1

2

e−hM w̄2(z) 1
. (28)

ERK methods of collocation type were formulated by Hochbruck and Ostermann,
and their convergence properties also were analyzed in [11]. Using the collocation
code c1 = 1/2, then the implicit second-order (stiff) ERK method with one stage is

1
2

1
2ϕ1(− 1

2hM)

ϕ1(−hM)

(29)

with

ϕi j (−hM) = ϕi (−c j hM) =
∫ 1

0
e−(1−τ)c j hM τ i−1

(i − 1)!dτ. (30)

We notice that when M → 0, the methods (26), (28), and (29) reduce to the implicit
midpoint rule.

Now, we consider fourth-order IMSVERK and IMMVERK methods with two
stages. The order conditions for the implicit fourth-order RK method with two stages
are

b1 + b2 = 1,

b1c1 + b2c2 = 1

2
,

b1c
2
1 + b2c

2
2 = 1

3
,

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) = 1

6
,

b1c
3
1 + b2c

3
2 = 1

4
,

b1c1(a11c1 + a12c2) + b2c2(a21c1 + a22c2) = 1

8
,

b1(a11c
2
1 + a12c

2
2) + b2(a21c

2
1 + a22c

2
2) = 1

12
,

(b1a11 + b2a21)(a11c1 + a12c2) + (b1a12 + b2a22)(a21c1 + a22c2) = 1

24
.

(31)

Under the assumptions c1 = a11 + a12 and c2 = a21 + a22, it has a unique solution
[33, 34]. The following theorem verifies that the order conditions of fourth-order
IMSVERK methods with two stages are identical to (31).
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Theorem 3.1 Suppose that the coefficients of a two-stage IMSVERK method with
w4(z)

⎧⎨
⎩
Y1 = e−c1hM y0 + h

[
a11 f (Y1) + a12 f (Y2)

]
,

Y2 = e−c2hM y0 + h
[
a21 f (Y1) + a22 f (Y2)

]
,

y1 = e−hM y0 + h(b1 f (Y1) + b2 f (Y2)) + w4(z),
(32)

where

w4(z) = −h2

2! M f (y0) + h3

3!
(
(M − f ′

y(y0))M f (y0) − M f ′
y(y0)g(y0)

)

+ h4

4!
(
(−M + f ′

y(y0))M
2 f (y0)

+ M2 f ′
y(y0)g(y0) − M f ′′

yy(y0)
(
g(y0), g(y0)

)
− M f ′

y(y0)(−M + f ′
y(y0))g(y0) − f ′

y(y0)M f ′
y(y0)

× g(y0) − f ′
y(y0) f

′
y(y0)M f (y0) + 3 f ′′

yy(y0)
( − M f (y0), g(y0)

))
,

which satisfy (31), then the IMSVERK method has order four.

Proof Ignoring the termO(h5), and the Taylor expansion for numerical solution y1 is
shown by

y1 = e−hM y0 + hb1 f
(
(I − c1hM + (c1hM)2

2! − (c1hM)3

3!
+ O(h4))y0 + ha11 f (Y1) + ha12 f (Y2)

) + hb2

× f
(
(I − c2hM + (c2hM)2

2! − (c2hM)3

3! + O(h4))y0

+ ha21 f (Y1) + ha22 f (Y2)
) + w4(z) + O(h5)

= (I − hM + h2M2

2
− h3M3

3! + h4M4

4! + O(h5))y0

+ h(b1 + b2) f (y0) + h2b1 f
′
y(y0)(−c1My0 + a11

× f (Y1) + a12 f (Y2) + h(c1M)2

2
y0 − h2(c1M)3

3! y0

+ O(h3)) + h2b2 f
′
y(y0)(−c2My0 + a21 f (Y1)

+ a22 f (Y2) + h(c2M)2

2
y0 − h2(c2M)3

3! y0 + O(h3))

+ h3

2
b1 f

′′
yy(y0)

( − c1My0 + a11 f (Y1) + a12

× f (Y2) + h(c1M)2

2
y0,−c1My0 + a11 f (Y1) + a12 f (Y2) + h(c1M)2

2
y0

)

+ h3

2
b2 f

′′
yy(y0)

(
− c2My0
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+ a21 f (Y1) + a22 f (Y2) + h(c2M)2

2
y0,−c2My0 + a11 f (Y1)

+ a12 f (Y2) + h(c2M)2

2
y0

)
+ h4

3! b1
× f ′′′

yyy(y0)
( − c1My0 + a11 f (Y1) + a12 f (Y2),

− c1My0 + a11 f (Y1) + a12 f (Y2),−c1My0 + a11

× f (Y1) + a12 f (Y2)
) + h4

3! b2 f
′′′
yyy(y0)(−c2My0

+ a21 f (Y1) + a22 f (Y2),−c2My0 + a21 f (Y1)

+ a22 f (Y2),−c2My0 + a21 f (Y1) + a22 f (Y2)) + w4(z) + O(h5). (33)

Under the appropriate assumptions ci = ∑s
j=1 ai j for i = 1, . . . , s, we have

y1 = e−hM y0 + h(b1 + b2) f (y0) + h2b1 f
′
y(y0)

( − c1My0

+ a11 f (Y1) + a12 f (Y2) + h(c1M)2

2
y0

− h2(c1M)3

3! y0
) + h2b2 f

′
y(y0)

( − c2My0 + a21 f (Y1)

+ a22 f (Y2) + h(c2M)2

2
y0 − h2(c2M)3

3! y0
)

+ h3

2
b1 f

′′
yy(y0)

( − c1My0 + a11 f (Y1) + a12 f (Y2)

+ h(c1M)2

2
y0,−c1My0 + a11 f (Y1) + a12 f (Y2)

+ h(c1M)2

2
y0

) + h3

2
b2 f

′′
yy(y0)

( − c2My0 + a21 f (Y1)

+ a22 f (Y2) + h(c2M)2

2
y0,−c2My0 + a21

× f (Y1) + a22 f (Y2) + h(c2M)2

2
y0

)

+ h4

3! b1 f
′′′
yyy(y0)

(
c1(−My0 + f (y0)), c1(−My0 + f (y0)), c1

× (−My0 + f (y0))
) + h4

3! b2 f
′′′
yyy(y0)

(
c2(−My0

+ f (y0)), c2(−My0 + f (y0)), c2(−My0 + f (y0))
)

+ w4(z) + O(h5).

Inserting Y1 and Y2 of (32) into f (Y1) and f (Y2) yields

a11 f (Y1) = a11 f

(
y0 − c1hMy0 + ha11 f (Y1) + ha12 f (Y2) + (c1hM)2

2! y0

)

123



Journal of Mathematical Chemistry (2024) 62:2191–2221 2205

= a11 f (y0) + h f ′
y(y0)

( − c1My0 + a11 f (y0)

+ ha11 f
′
y(y0)(−c1My0 + a11 f (y0) + a12 f (y0))

+ a12 f (y0) + ha12 f
′
y(y0)

(
−c2My0

+a21 f (y0) + a22 f (y0)) + h(c1M)2

2
y0

)
+ h2

2
a11c

2
1

× f ′′
yy(y0)(g(y0), g(y0))

= a11 f (y0) + ha11c1 f
′
y(y0)g(y0)

+ h2(a211c1 + a11a12c2) f
′
y(y0) f

′
y(y0)g(y0)

+ h2

2
a11c

2
1 f

′
y(y0)

× M2y0 + h2

2
a11c

2
1 f

′′
yy(y0)(g(y0), g(y0)),

and

a12 f (Y2) = a12 f (y0) + ha12c2 f
′
y(y0)g(y0)

+ h2(a12a21c1 + a12a22c2) f
′
y(y0) f

′
y(y0)g(y0) + h2

2
a12c

2
2

× f ′
y(y0)M

2y0 + h2

2
a12c

2
2 f

′′
yy(y0)(g(y0), g(y0)).

Hence, we obtain

h2b1 f
′(y0)

(
−c1My0 + a11 f (Y1) + a12 f (Y2) + h(c1M)2

2
y0 − h2(c1M)3

3! y0

)

= h2b1c1 f
′
y(y0)g(y0)

+ h3

2
b1c

2
1 f

′
y(y0)M

2y0 − h4

3! b1c
3
1 f

′
y(y0)M

3y0

+ h3b1(a11c1 + a12c2) f
′
y(y0) f

′
y(y0)g(y0) + h4b1(a

2
11c1

+ a11a12c2 + a12a21c1 + a12a22c2) f
′
y(y0) f

′
y(y0) f

′
y(y0)g(y0)

+ h4

2
b1(a11c

2
1 + a12c

2
2)

(
f ′
y(y0) f

′
y(y0)M

2

× y0 + f ′
y(y0) f

′′
yy(y0)(g(y0), g(y0))

)
,

and

h2b2 f
′(y0)

(
−c2My0 + a21 f (Y1) + a22 f (Y2) + h(c2M)2

2
y0 − h2(c2M)3

3! y0

)

= h2b2c2 f
′
y(y0)g(y0)
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+ h3

2
b2c

2
2 f

′
y(y0)M

2y0 − h4

3! b2c
3
2 f

′
y(y0)M

3y0

+ h3b2(a21c1 + a22c2) f
′
y(y0) f

′
y(y0)g(y0) + h4b1(a

2
22c2

+ a22a21c1 + a21a12c2 + a21a11c1) f
′
y(y0) f

′
y(y0) f

′
y(y0)g(y0)

+ h4

2
b2(a21c

2
1 + a22c

2
2)

(
f ′
y(y0) f

′
y(y0)M

2

× y0 + f ′
y(y0) f

′′
yy(y0)(g(y0), g(y0))

)
.

Likewise, a direct calculation leads to

h3

2
b1 f

′′
yy(y0)

(
−c1My0 + a11 f (Y1) + a12 f (Y2)

+h(c1M)2

2
y0,−c1My0 + a11 f (Y1) + a12 f (Y2) + h(c1M)2

2
y0

)

= h3

2
b1 f

′′
yy(y0)

(
c1g(y0) + h(a11c1 + a12c2) f

′
y(y0)g(y0)

+ h(c1M)2

2
y0, c1g(y0) + h(a11c1 + a12c2)

× f ′
y(y0)g(y0) + h(c1M)2

2
y0)

)

= h3

2
b1c

2
1 f

′′
yy(y0)(g(y0), g(y0)) + h4b1(a11c1 + a12c2)

c1 f
′′
yy(y0)( f

′
y(y0)g(y0), g(y0)) + h4

2
b1c

3
1 f

′′
yy(y0)(M

2y0, g(y0)),

and

h3

2
b2 f

′′
yy(y0)

(
−c2My0 + a21 f (Y1) + a22 f (Y2)

+h(c2M)2

2
y0, −c2My0 + a21 f (Y1) + a22 f (Y2) + h(c2M)2

2
y0

)

= h3

2
b2c

2
2 f

′′
yy(y0)(g(y0), g(y0)) + h4b2(a21c1 + a22c2)c2 f

′′
yy(y0)( f

′
y(y0)g(y0), g(y0))

+ h4

2
b2c

3
2 f

′′
yy(y0)(M

2y0, g(y0)).

To sum up, the Taylor expansion for the numerical solution y1 is

y1 = y0 − hMy0 + h(b1 + b2) f (y0) − h2Mg(y0)

2!
+ h2(b1c1 + b2c2) f

′
y(y0)g(y0) − h3

3! f ′
y(y0)M f (y0)
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+ h3

3! M(M − f ′
y(y0))g(y0) + h3

2
(b1c

2
1 + b2c

2
2)

(
f ′
y(y0)M

2y0 + f ′′
yy(y0)(g(y0), g(y0))

)
+ h3(b1(a11c1 + a12c2) + b2(a21c1 + a22c2)) f

′
y(y0) f

′
y(y0)g(y0)

+ h4

4!
( − M3g(y0) + M2 f ′

y(y0)g(y0)

− M f ′
y(y0)(−M + f ′

y(y0))g(y0) − M f ′′
yy(y0)(g(y0), g(y0))

− f ′
y(y0)M f ′

y(y0)g(y0) − f ′
y(y0) f

′
y(y0)M f (y0)

+ f ′
y(y0)M

2 f (y0) + 3 f ′′
yy(y0)(−M f (y0), g(y0))

)

+ h4(b1c
3
1 + b2c

3
2)

( 1
3! f

′′′
yyy(y0)(g(y0), g(y0), g(y0)

+ 1

2
f ′′
yy(y0)(M

2y0, g(y0)) − 1

3! f
′
y(y0)M

3y0
)

+ h4(b1c1(a11c1 + a12c2) + b2c2(a21c1 + a22c2)) f
′′
yy(y0)( f

′
y(y0)g(y0), g(y0))

+ h4

2

(
b1(a11c

2
1 + a12c

2
2) + b2(a21c

2
1 + a22c

2
2)

)
f ′
y(y0)( f

′′
yy(y0)(g(y0), g(y0))

+ f ′
y(y0) f

′
y(y0)M

2y0)

+ h4
(
b1(a

2
11c1 + (a11 + a22)a12c2 + a12a21c1)

+ b2(a
2
22c2 + (a11 + a22)a21c1 + a21a12c2)

)
( f ′

y(y0))
3

× g(y0) + O(h5).

By comparing with the Taylor expansion of the exact solution y(t0 + h), it can be
verified that the IMSVERK method with coefficients satisfying the order conditions
(31) has order four. The proof of the theorem is complete. 
�

Theorem 3.1 indicates that there exists a unique fourth-order IMSVERK method
with two stages:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = e− 3−√
3

6 hM y0 + h
[1
4
f (Y1) + 3 − 2

√
3

12
f (Y2)

]
,

Y2 = e− 3+√
3

6 hM y0 + h
[3 + 2

√
3

12
f (Y1) + 1

4
f (Y2)

]
,

y1 = e−hM y0 + h

2
( f (Y1) + f (Y2)) − h2

2! M f (y0)

+h3

3!
(
(M − f ′

y(y0))M f (y0) − M f ′
y(y0)g(y0)

)

+h4

4!
(
(−M + f ′

y(y0))M
2 f (y0) + M2 f ′

y(y0)g(y0) − M f ′′
yy(y0)

(
g(y0), g(y0)

)
−M f ′

y(y0)(−M + f ′
y(y0))g(y0) − f ′

y(y0)M f ′
y(y0)g(y0)

− f ′
y(y0) f

′
y(y0)M f (y0) + 3 f ′′

yy(y0)
( − M f (y0), g(y0)

))
.

(34)
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The method (34) can be displayed by the Butcher tableau

1
2 −

√
3
6 e− 3−√

3
6 hM 1

4
3−2

√
3

12

1
2 +

√
3
6 e− 3+√

3
6 hM 3+2

√
3

12
1
4

e−hM w4(z)
1
2

1
2

. (35)

The following theorem shows the order conditions of the fourth-order IMSVERK
method with two stages are exactly identical to (31) as well.

Theorem 3.2 Suppose that the coefficients of a two-stage IMMVERK method with
w̄4(z)

⎧⎨
⎩
Ȳ1 = y0 + h

[
ā11(−MȲ1 + f (Ȳ1)) + ā12(−MȲ2 + f (Ȳ2))

]
,

Ȳ2 = y0 + h
[
ā21(−MȲ1 + f (Ȳ1)) + ā22(−MȲ2 + f (Ȳ2))

]
,

ȳ1 = e−hM y0 + h(b̄1 f (Ȳ1) + b̄2 f (Ȳ2)) + w̄4(z),
(36)

where

w̄4(z) = −h2

2! M f (y0) + h3

3! (M2 f (y0) − M f ′
y(y0)g(y0))

+ h4

4! (−M3 f (y0) + M2 f ′
y(y0)g(y0) − M f ′′

yy(y0)

× (g(y0), g(y0)) − M f ′
y(y0)(−M + f ′

y(y0))g(y0)),

which satisfy (31), then the IMMVERK method has order four.

Proof Under the assumptions c̄1 = ā11 + ā12 and c̄2 = ā21 + ā22, by comparing the
Taylor expansion of numerical solution ȳ1 with exact solution y(t0 +h), the result can
be proved in a same way as Theorem 3.1. Therefore, we omit the details. 
�

Then, we present the unique fourth-order IMMVERK method with two stages

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = y0 + h
[1
4
(−MY1 + f (Y1)) + 3 − 2

√
3

12
(−MY2 + f (Y2))

]
,

Y2 = y0 + h
[3 + 2

√
3

12
(−MY1 + f (Y1)) + 1

4
(−MY2 + f (Y2))

]
,

y1 = e−hM y0 + h

2
( f (Y1) + f (Y2)) − h2

2! M f (y0) + h3

3! (M2 f (y0) − M f ′
y(y0)g(y0))

+ h4
4! (−M3 f (y0) + M2 f ′

y(y0)g(y0) − M f ′′
yy(y0)(g(y0), g(y0))

−M f ′
y(y0)(−M + f ′

y(y0))g(y0)),

(37)
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with g(y0) = −My0 + f (y0), which can be denoted by the Butcher tableau

1
2 −

√
3
6 I 1

4
3−2

√
3

12
1
2 +

√
3
6 I 3+2

√
3

12
1
4

e−hM w̄4(z)
1
2

1
2

. (38)

In view of (34) and (37), two methods reduce to the classical implicit fourth-order
RK method with two stages by Hammer and Hollingsworth (see, e.g. [33]) once
M → 0. It should be noted that (34) and (37) use the Jacobian matrix and Hessian
matrix of f (y) with respect to y at each step, however, to our knowledge, the idea
for stiff problems is no by means new (see, e.g. [35–37]). Using the Gaussian points

c1 = 1
2 −

√
3
6 and c2 = 1

2 +
√
3
6 , the ERK method of collocation type with two stages

has been formulated byHochbruck et al. [11], which can be represented by the Butcher
tableau

1
2 −

√
3
6

√
3
6 ϕ1(−c1hM) − √

3c21ϕ2(−c1hM) −√
3c21ϕ1(−c1hM) + √

3c21ϕ2(−c1hM)

1
2 +

√
3
6

√
3c22ϕ1(−c2hM) − √

3c22ϕ2(−c2hM) −
√
3
6 ϕ1(−c2hM) + √

3c22ϕ2(−c2hM)

√
3c2ϕ1(−hM) − √

3ϕ2(−hM) −√
3c1ϕ1(−hM) + √

3ϕ2(−hM)

.

(39)

It is clear that the coefficients of (39) are matrix exponentials ϕk(−hM) (k > 0), their
implementation depends on the computing or approximating the product of a matrix
exponential function with a vector. As we consider the variable stepsize technique, the
coefficients of these exponential integrators are needed to recalculate at each step. In
contrast, the coefficients of SVERK andMVERKmethods are the real constants, their
operations can reduce the computation of matrix exponentials to some extent. On the
other hand, compared with standard RK methods, these ERK methods possess some
properties of matrix-valued functions and exactly integrate the homogeneous linear
equation (5).

4 Linear stability

In what follows we investigate the linear stability properties of IMMVERK and
IMSVERK methods. For classical RK methods, the linear stability analysis is related
to the Dahlquist test equation [34]

y′ = λy, λ ∈ R.

When we consider exponential integrators, the stability properties of an exponential
method are analyzed by applying the method to the partitioned Dalquist equation [38]

y′ = iλ1y + iλ2y, y(t0) = y0, λ1, λ2 ∈ R. (40)
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Fig. 1 a Stability region for explicit second-order MVERK (EXMVERK21) method with two stages. b
Stability region for implicit second-order MVERK (IMMVERK12) method. c Stability region for implicit
second-order SVERK (IMSVERK12) method

i.e., solving (40) by a partitioned exponential integrator, and treating the iλ1
exponentially and the iλ2 explicitly, then we have the explicit scalar form

yn+1 = R(ik1, ik2)yn, k1 = hλ1, k2 = hλ2. (41)

Definition 4.1 For an exponential method with R(ik1, ik2) given by (41), the set S of
the stability function R(ik1, ik2)

S = {
(k1, k2) ∈ R

2 : |R(ik1, ik2)| ≤ 1
}
,

is called the stability region of the exponential method.

Applying the IMMVERK method (27) and IMSVERK method (25) to (40), the
stability regions of implicit second-order ERK methods are respectively depicted in
Fig. 1b and c, andwe also plot the stability region of the explicit second-orderMVERK
method with two stages (see, e.g. [31]) in Fig. 1a. For fourth-order ERK methods, we
select the IMMVERK method (37), IMSVERK method (34) and the explicit SVERK
method with four stages (see, e.g. [32]) to make a comparison, the stability regions
of these methods are shown in Fig. 2. It can be observed that implicit exponential
methods possess the comparable stability regions than explicit exponential methods.

5 Numerical Experiments

In this section, we apply the symplectic method (17) and high accurate IMSVERK and
IMMVERKmethods to highly oscillatory problems. In order to illustrate the accuracy
and efficiency of these exponential methods, we select implicit ERKmethods to make
comparison. Thesemethods are implicit, andwe use the fixed-point iteration, the itera-
tion will be stopped once the norm of the difference of two successive approximations
is smaller than 10−14. Matrix exponentials ϕk(−hM) (k > 0) are evaluated by the
Krylov subspace method [39], which possesses the fast convergence. In all numerical
experiments, the explicit fourth-order (stiff) ERKmethod with five stages in [13] with
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Fig. 2 a Stability region for explicit fourth-order SVERK (EXSVERK41) method with four stages. b
Stability region for implicit fourth-order MVERK (IMMVERK24) method. c Stability region for implicit
fourth-order SVERK (IMSVERK24) method

smaller time stepsize is employed as the reference solutions, andwe take the Euclidean
norm for global errors (GE) and denote by GEH the global error of Hamiltonian. The
following numerical methods are chosen for comparison:

• First-order methods:

– IMSVERK1: the 1-stage implicit SVERKmethod (17) of order (classical) one
presented in this paper;

– EEuler: the 1-stage explicit exponential Euler method of order (stiff) one
proposed in [13];

– IMEEuler: the 1-stage implicit exponential Euler method of order (stiff) one
proposed in [11].

• Second-order methods:

– IMMVERK12: the 1-stage implicit MVERK method (27) of order (classical)
two presented in this paper;

– IMSVERK12: the 1-stage implicit SVERK method (25) of order (classical)
two presented in this paper;

– IMERK12: the 1-stage implicit ERKmethod (29) of order (stiff) two proposed
in [11].

• Fourth-order methods:

– IMMVERK24: the 2-stage implicit MVERK method (37) of order (classical)
four presented in this paper;

– IMSVERK24: the 2-stage implicit SVERK method (34) of order (classical)
four presented in this paper;

– IMERK24: the 2-stage implicit ERK method (39) proposed in [11].
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Fig. 3 Results for Problem 1. a The log–log plots of global errors (GE) against h. b The energy preservation
for method IMSVERK1s1

Problem 1 The Hénon–Heiles Model is used to describe the stellar motion (see, e.g.
[34]), which has the following identical form

⎛
⎜⎜⎝
x1
x2
y1
y2

⎞
⎟⎟⎠

′

+

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1
x2
y1
y2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

−2x1x2
−x21 + x22

⎞
⎟⎟⎠ .

The Hamiltonian of this system is given by

H(x, y) = 1

2
(y21 + y22 ) + 1

2
(x21 + x22 ) + x21 x2 − 1

3
x32 .

We select the initial values as

(
x1(0), x2(0), y1(0), y2(0)

)ᵀ =
(√

11

96
, 0, 0,

1

4

)ᵀ
.

At first, Fig. 3a presents the problem is solved on the interval [0, 10] with stepsizes
h = 1/2k, k = 2, . . . , 6 for IMSVERK1s1, EEuler, IMEEuler, it can be observed
that the IMSVERK1s1 method has higher accuracy than first-order exponential Euler
methods. We integrate this problem with stepsize h = 1/30 on the interval [0, 100],
the relative errors RGEH = GEH

H0
of Hamiltonian energy for IMSVERK1s1, EEuler

and IMEEuler are presented by Figs. 3b and 4, which reveals the structure-preserving
properties of the symplectic method. Finally, we integrate this system over the interval
[0, 10]with stepsizes h = 1/2k for k = 2, . . . , 6, Figs. 5 and 6 display the global errors
against the stepszies and the CPU time (seconds) for IMMVERK12, IMSVERK12,
IMERK12, IMMVERK24, IMSVERK24, IMERK24.
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Fig. 4 Results for Problem 1: the energy preservation for methods EEuler (a) and IMEEuler (b)
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Fig. 5 Results for Problem 1. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time

Problem 2 Consider the Duffing equation [4]

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,
(42)

where 0 ≤ k < ω.

Set p = q̇ , z = (p, q)ᵀ. We rewrite the Duffing equation as

(
p
q

)′
+

(
0 ω2

−1 0

)(
p
q

)
=

(
k2(2q3 − q)

0

)
.
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Fig. 6 Results for Problem 1. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time
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Fig. 7 Results for Problem 2. a The log–log plots of global errors (GE) against h. b the energy preservation
for method IMSVERK1s1

It is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

Let ω = 30, k = 0.01. This problem is solved on the interval [0, 100] with
the stepsize h = 1/30, Figs. 7 and 8 show the energy preservation behaviour for
IMSVERK1s1, EEuler and IMEEuler. We also integrate the system over the interval
[0, 10] with stepsizes h = 1/2k, k = 4, . . . , 8 for IMSVERK1s1, EEuler, IMEEuler,
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Fig. 8 Results for Problem 2: the energy preservation for methods EEuler (a) and IMEEuler (b)
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Fig. 9 Results for Problem 2. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time

IMMVERK12, IMSVERK12, IMERK12, IMMVERK24, IMSVERK24, IMERK24,
which are shown in Figs. 7a, 9 and 10.

Problem 3 Consider the sine-Gorden equation with periodic boundary conditions [4]

⎧⎨
⎩

∂2u

∂t2
= ∂2u

∂x2
− sin(u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t).
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Fig. 10 Results for Problem 2. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time

Discretising the spatial derivative ∂xx by the second-order symmetric differences,
which leads to the following Hamiltonian system

d

dt

(
U ′
U

)
+

(
0 M

−I 0

) (
U ′
U

)
=

(− sin(U )

0

)
, t ∈ [0, tend],

whose Hamiltonian is shown by

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
UᵀMUᵀ − (cos u1 + · · · + uN ).

In here, U (t) = (u1(t), . . . , uN (t))T with ui (t) ≈ u(xi , t) for i = 1, . . . , N , with

x = 2/N and xi = −1 + i
x , F(t,U ) = − sin(u) = −(sin(u1), . . . , sin(uN ))T ,
and

M = 1


x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠

.

In this test, we choose the initial value conditions

U (0) = (π)Ni=1, U ′(0) = √
N

(
0.01 + sin

(2π i
N

))N

i=1

with N = 48, and solve the problem on the interval [0, 1] with stepsizes h =
1/2k, k = 4, . . . , 8. The global errors GE against the stepsizes and the CPU
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Fig. 11 Results for Problem 3. aThe log–log plots of global errors (GE) against h. b the energy preservation
for method IMSVERK1s1
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Fig. 12 Results for Problem 3. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time

time (seconds) for IMSVERK1s1, EEuler, IMEEuler, IMMVERK12, IMSVERK12,
IMERK12, IMMVERK24, IMSVERK24, IMERK24, which are respectively pre-
sented in Figs. 11a, 12 and 13. Then we integrate this problem on the interval [0, 100]
with stepsize h = 1/40, the energy preservation behaviour for IMSVERK1s1, EEuler,
IMEEuler are shown in Figs. 11b and 14.

6 Conclusion

Exponential Runge–Kuttamethods have the unique advantage for solving highly oscil-
latory problems, however the implementation of ERK methods generally requires
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Fig. 13 Results for Problem 3. a The log–log plots of global errors (GE) against h. b The log–log plots of
global errors against the CPU time
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Fig. 14 Results for Problem 3: the energy preservation for methods EEuler (a) and IMEEuler (b)

the evaluations of products of matrix functions with vectors. To reduce the compu-
tational cost, two new classes of explicit ERK integrators were formulated in [31,
32], and we studied the implicit ERK methods in this paper. Firstly, we analyzed
symplectic conditions and verified the existence of the symplectic method, how-
ever, the symplectic method only had order one. Then we designed some practical
and effective numerical methods (up to order four). Furthermore, we plotted linear
stability regions for implicit ERK methods. Numerical results presented the energy
preservation behaviour for IMSVERK1s1, and demonstrated the comparable accu-
racy and efficiency for IMSVERK1s1, IMMVERK12, IMMVERK24, IMSVERK12,
IMSVERK24, when applied to the Hénon–Heiles Model, the Duffing equation and
the sine-Gordon equation.
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Exponential integrators show the better performance than non-exponential inte-
grators. High accuracy and structure preservation for exponential integrators can be
further investigated.
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