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Abstract
Westudy single-voxel in vivo protonmagnetic resonance spectroscopy (MRS) ofwhite
matter in the brain of a 25 year old healthy male volunteer. The free induction decay
(FID) data of short length (0.5KB) are encoded at a long echo time (272 ms) with and
without water suppression at a clinical scanner of a weak magnetic field (1.5T). For
these FIDs, the fast Fourier transform (FFT) gives sparse, rough and metabolically
uninformative spectra. In such spectra, resolution and signal to noise ratio (SNR)
are poor. Exponential or Gaussian filters applied to the FIDs can improve SNR in
the FFT spectra, but only at the expense of the worsened resolution. This impacts
adversely on in vivo MRS for which both resolution and SNR of spectra need to be
very good or excellent, without necessarily resorting to stronger magnetic fields. Such
a long sought goal is at last within reach by means of the optimized derivative fast
Fourier transform (dFFT), which dramatically outperforms the FFT in every facet
of signal estimations. The optimized dFFT simultaneously improves resolution and
SNR in derivative spectra. They are presently shown to be of comparably high quality
irrespective of whether water is suppressed or not in the course of FID encodings.
The ensuing benefits of utmost relevance in the clinic include a substantial shortening
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of the patient examination time. The implied significantly better cost-effectiveness
should make in vivoMRS at low-field clinical scanners (1.5T) more affordable to ever
larger circles of hospitals worldwide.

Keywords NMR spectroscopy · Optimized dFFT · High resolution · Low noise

1 Introduction

One of the most powerful strategies for structure determinations of any molecule
is nuclear magnetic resonance (NMR) spectroscopy [1–8]. In medical diagnostics,
this non-ionizing and non-invasive methodology, synonymously called magnetic res-
onance spectroscopy (MRS), candetectmolecular changes prior to theirmanifestations
on anatomical images to aid the disease control and eventual cure [9–41]. Therein, data
analysis and interpretation depend critically on reliable processing of time signals that
are alternatively referred to as free induction decay (FID) data in the form of curves
[42–50].

In MRS and throughout the multi-disciplinary field of signal processing, the fre-
quently employed shape estimator is the fast Fourier transform (FFT), either in its
unweighted (unattenuated) orweighted (attenuated) versions [51, 52]. Abundant usage
of the FFT occurs despite its low resolution and poor signal-to-noise ratio (SNR) [11,
45, 46]. Such severe drawbacks should be surmountable by another shape estimator,
the unattenuated derivative fast Fourier transform (dFFT). However, this is not the
case for noisy time signals (measured or synthesized alike) [53–68].

In fact, quite the opposite occurs for noise-corrupted FIDs for which the dFFT
becomes inferior even to the already inadequate FFT regarding both resolution and
SNR. This is attributed to multiplication of the given time signal c(t) by a power
function tm (0 ≤ t ≤ T , m = 1, 2, 3, . . .). The latter monomial is produced by
applying the m th derivative operator (d/dν)m to the given continuous FFT spectrum
F(ν). Here, T is the total acquisition time of c(t) and ν is the linear frequency.

In the FFT, frequencies ν are fixed in advance (predetermined exclusively by T ).
They are artificial as they do not correspond to the characteristic frequencies from
which the given FID is built. Thementioned power function tm amplifies noise at larger
values of time t . This is exacerbated by the fact that encoded FIDs are dominated by
noise at larger t (i.e. at their tails). Therefore, the dFFT is bound to fail, as it processes
directly the unweighted product tmc(t).

The FFT is model-independent as it does not assume any mathematical function
for time signals nor spectral lineshapes. Such a critically important asset in signal pro-
cessing is inherited by the dFFT, but the expected advantage is left unexploited due to
the mentioned breakdown of the latter estimator. Moreover, the computational expe-
dience of the FFT through the fast algorithm of Cooley and Tukey [69] is preserved
by the dFFT, but this is of no practical significance either because of the unaccept-
able derivative Fourier spectra. Hence, for noise-contaminated FIDs, it would be very
important to regularize the divergence features of the dFFT so that it could syn-
chronously ameliorate resolution and SNR, while retaining the model-independence
and the fast Cooley-Tukey computations.
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For measured FIDs, resolution and SNR exhibit a dual uncertainty (indeterminacy)
relationship. The implication is that, particularly for these time signals of most interest
in practice, attempts to simultaneously improve resolution and SNR are predicted to
fail. Such restrictions amply hold true in the FFT and are much more exacerbated in
the dFFT for measured time signals [53–66]. This is a further motivation to rescue
the situation by a judicious regularization via e.g. a suitable optimization procedure
applied to the dFFT.

The sought regularization, yielding the optimized dFFT, has recently been imple-
mented for FIDs encoded by in vitro MRS [67, 68]. This is achieved through
countering the adverse effects of the monomial tm by multiplying it with a decay-
ing filter e−λp(m,T )t p , which is an exponential (p = 1) or a Gaussian (p = 2), where
λp(m, T ) > 0. The goal of the ensuing product tme−λp(m,T )t p is to strike a balance
between the derivative order m and the sought resolution for the amount of noise
contained in the encoded FID. As a result of this trade-off, the optimized dFFT can
simultaneously increase both resolution and SNR to a sufficient level needed in prac-
tice for vastly different applications.

In order to optimize resolution and SNR at the same time, these two attenuators, the
exponential filter (EF) and the Gaussian filter (GF), are adapted to the derivative order
m from the time power function tm . Appropriately then, the product tme−λp(m,T )t p is
called the adaptive power-exponential filter (APEF) for p = 1 and the adaptive power-
Gaussian filter (APGF) for p = 2. Thus, the unattenuated dFFT and the optimized
dFFT share the same monomial tm , but it is only the latter processor that additionally
includes the adaptive damping function e−λp(m,T )t p . The key advantages of the opti-
mized dFFT should be beneficial to the entire signal processing field with versatile
applications in physics, chemistry, medicine and elsewhere.

The optimized dFFT can alternatively be conceived as a special version of the atten-
uated FFT, which represents the customary FFT applied to the given FID weighted
with the APEF or APGF. This helps appreciate that the optimized dFFT can be built
directly into the magnetic resonance instruments (NMR spectrometers, clinical scan-
ners for MRS) by allowing the user of the FFT to opt for either the APEF or APGF as
the special weight function wp(t) = e−λp(m,T )t p which multiplies the encoded FID.

While viewing the optimized dFFT as this specially attenuated FFT, weighted by
the APEF or APGF, might be convenient in practice, it is nevertheless important to
always bear in mind the true origin of the monomial tm . The origin of tm in the
APEF or APGF is in applying the multi-derivative operator (d/dν)m to the harmonic
function e−2π i tν from the continuous Fourier transform. This remark (backed by the
unsmoothing property of derivatives) points to the reason for which tm by itself leads
to simultaneous lineshape narrowing (resolution improvement) and peak intensity
enhancing for noiseless FIDs.

The underlyingmechanism for the favorable effect of themulti-derivatives (d/dν)m

is best appreciated for chemical shifts away from the given k th fundamental resonance
frequency νk . Namely, from both sides of the center of a resonance, them th derivative
lineshape decays faster as 1/νm+1

k (m ≥ 1) than 1/νk in the FFT [55]. This yields the
peak base contractionwhich, in turn, suppresses the overlap of the adjacent resonances.

This lineshape tightening or localizing leads to the peak width decreasing and the
concomitant peak height increasing. The opposite occurs in the FFT lineshapes that fall
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off too slowly (∼ 1/νk , as stated) and thus exhibit far extending tails prone to partially
or completely mask the neighboring and even distant peaks. This increases the like-
lihood for overlaps of resonances. However, the powerful action of tm is annulled by
noise, which always contaminates encoded FIDs. In such cases, the damping function
e−λp(m,T )t p needs to multiply the time monomial to minimize noise amplification by
tm at larger t . In other words, the action of e−λp(m,T )t p is to temper a bad or diverging
behavior of tmc(t) at the tail of the given measured c(t).

Recently [67], the optimized dFFT has been applied to the FIDs encoded by in vitro
protonMRSat a clinical scanner of low staticmagnetic field strength (B0 = 1.5T) from
a Philips phantom [70] as well as at a 600 MHz (B0 ≈ 14.1T) Bruker spectrometer
from a specimen of human malignant ovarian cyst fluid [71]. The short FIDs (0.5KB,
total signal length N = 512) for the said phantom [70] have been encoded at a long
echo time (TE=272 ms) with as well as without water suppression, and these FIDs
were subjected to the optimized dFFT using the APEF and APGF, respectively [67].

The resulting spectra reconstructed by the optimized dFFT for thewater-suppressed
and water-unsuppressed FIDs were of a comparable excellent quality, regarding the
three pillars of proper derivative spectroscopy [67]:

• (i) high resolution with narrowest full widths at half maximae (FWHM),
• (ii) maximized SNR at all resonance frequencies,
• (iii) steady lineshapes for increasing m with no derivative-induced artifacts.

In Ref. [71], water has been suppressed in the process of encoding the long FIDs (16
KB, N = 16384) at short echo time (TE=30 ms) from a sampled biofluid (malignant
ovarian cyst) of a patient. In this case, the optimized dFFT with the APEF also showed
an excellent performance by bringing over a dozen of the well-resolved peaks close to
the chemical shift axis in an exemplified narrow frequency band around the dominant
lactate doublet resonance (a recognized cancer biomarker) [67]. This took place despite
an enormous dynamic range of spectral intensities, judged upon the peak height ratio
of the order of about 6×103 between the tallest and the shortest resonances (6041/0.85
for lactate/isoleucine).

In our follow-up study [68], some further instructive insights into the optimized
dFFT with the APEF were gained on the strongly overlapped resonances, correspond-
ing to the mentioned FID from a patient [71]. Therein, highlighted were the chemical
shift bands in the aliphatic region containing the choline compounds (recognized can-
cer biomarkers) and the citrate multiplets (potential cancer biomarkers). In particular,
it was found that an unassigned resonance, invisibly glued to free choline in the FFT
envelope, becomes sharply separated as a well-delineated peak in the optimized dFFT
spectrum.

Failing to detect this closely adjacent structurewould yield about twice the true peak
area as well as the concentration of free choline. This error would impact adversely
on the diagnostic accuracy in distinguishing between the benign and cancerous cases.
Such an example shows that the optimized dFFT can peer into the possible compos-
iteness of even an apparently symmetric singlet from the FFT (e.g. free choline).

The moral of this story is that each resonance should, in principle, be treated as
a potential multiplet, prior to eventually uncovering its physical constituents as e.g.
purely true singlets, doublets, triplets, quartets, etc. In human biofluids and tissues
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scanned byMRS, tightly overlapped peaks abound because of the J-coupling of nuclei,
as well as due to the fact that many metabolites have similar intrinsic spin-spin relax-
ation times T2. Moreover, these metabolites resonate at close chemical shifts under
the same acquisition conditions.

The present analysis furthers the optimized dFFT with the help of the APEF and
APGF by focusing on the following aspects:

• Derivation of the analytical forms of the damping parametersλp(m, T ) for the opti-
mization by highlighting the origin of the simultaneous adaptation to the derivative
order m and SNR of the FID.

• Reconstructions of high-resolution and low-noise spectra by utilizing short FIDs
(0.5 KB) encoded using a low-field clinical scanner (1.5T) by in vivo proton MRS
at a long echo time (272ms) with andwithout water suppression fromwhite matter
in the brain of a 25 year old healthy male volunteer.

In pursuing this work, the related earlier studies [67, 68] on the optimized dFFT
are complemented by the present main goal for encoded FIDs:

• Verifyingwhether the performance of the optimized dFFT for these two drastically
different in vivo FIDs could be of a similar high quality as that for the mentioned
in vitro FIDs [67] under the same acquisition conditions: B0 = 1.5T, total signal
length N = 512 (0.5KB), 128 transients to be averaged for the SNR amelioration,
bandwidth BW=1000 Hz, repetition time TR=2000 ms and echo time TE=272
ms.

2 Theory

2.1 Fast Fourier transform

For a time signal c(t) or FID, given as a continuous function of independent variable
t in the interval [0, T ], the finite Fourier integral F(ν), equivalently called the finite
continuous Fourier transform (CFT), is:

CFT : F(ν) = 1

T

T∫

0

dte−2π iνt c(t), (1)

where the imaginary unity i = √−1 is the base of complex numbers. This is a contin-
uous/analog Fourier spectrum. Physically, it represents a distribution of the intensities
as a function of linear continuous frequencies ν. Here, the term intensities refers to
the intensities of the response function of the sample to the external perturbations.
Integration is a smoothing operator. Thus, the fine details in c(t) are averaged over by
integration in the CFT from (1).

In the Fourier signal processing, both t and ν are equidistantly/uniformly dis-
cretized/digitized. Thus, with e.g. t = tn = nτ (0 ≤ n ≤ N − 1), a digitized FID
is obtained as c(t) = c(nτ) ≡ cn , where τ = T /N is the sampling rate (or dwell
time). Number N is the total length of the FID (or the total duration of the FID, or the
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total acquisition time for encoding a single time transient). The bandwidth BW and
τ for a complex-valued FID (as is the case in the quadrature encoding modality from
MRS) are connected by the relation BW = 1/τ. The desired frequency content in cn
is determined by the chosen bandwidth.

A similar frequency discretization is ν = νF
k = k/T (0 ≤ k ≤ N − 1). This

procedure discretizes the continuous response function F(ν) as F(ν) = F(k/T ) ≡
Fk , which is a stick/bar spectrum (i.e. it is defined only at the Fourier grid/mesh
points νF

k ). With t and ν discretized, the CFT, F(ν), is mapped to the discrete Fourier
transform (DFT), Fk , which is simply the Riemann sum for (1):

DFT: Fk = 1

N

N−1∑
n=0

cnW
n
k , Wk = e−2π ik/N , 0 ≤ k ≤ N − 1, (2)

where use is made of the relation N = T /τ . For k = 1, the Fourier grid νF
1 = 1/T

represents the Fourier frequency resolution. Thus, the larger values of T are necessary
for an approximately adequate resolution in the Fourier spectrum Fk . Still, even for
a very long total acquisition time T , it is conceivable that none of the true resonant
frequencies {νk} (1 ≤ k ≤ K ) contained in each cn would coincide with the Fourier
grid frequencies {νF

k } = {k/T } (0 ≤ k ≤ N − 1). Moreover, extended acquisition
times T are impractical, particularly for FIDs encoded by MRS from patients.

The true (physical, genuine) frequencies {νk} (1 ≤ k ≤ K ) characterize the given
resonating system (atoms, molecules) in the scanned specimen of K constituents.
That is why they are called the characteristic or eigen or fundamental frequencies. In
signal processing, every such frequency is a complex quantity comprised of two real
numbers, associatedwith the position andwidth of the resonance peak in the spectrum.

As it stands, the DFT is recognized as the trapezoidal numerical integration.
This is the simplest numerical quadrature rule of the Fourier integral in (1). Com-
plex quantity Fk is a single polynomial of degree N − 1 in the variable Wk with
the expansion coefficients given by the FID data points {cn}. Variable Wk is the
undamped trigonometric oscillatory function, a sine and a cosine combined into
the Euler formula for an exponential (an unattenuated complex harmonic), Wn

k =
e−2π ink/N = cos (2πnk/N ) − i sin (2πnk/N ). The Fourier basis functions {Wk}
satisfy their orthonormality relation:

1

N

N−1∑
n=0

e2π i(k−k′)n/N = δk,k′ , δk,k = 1, δk,k′ = 0 (k′ 	= k), (3)

where δk,k′ is the Kronecker δ-symbol. This leads to the one-to-one correspondence
Fk ↔ cn , which implies a complete equivalence between the time and frequency
domain data in the Fourier signal processing. Such two representations are rooted in the
two complementary or canonical conjugate variables, t and ν. Consequently, the same
whole information is contained in {cn} (0 ≤ n ≤ N − 1) and {Fk} (0 ≤ k ≤ N − 1).
This feature is built into the inverse discrete Fourier transform (IDFT), which retrieves
exactly the entire input data {cn} (0 ≤ n ≤ N − 1), including noise:
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IDFT : cn =
N−1∑
k=0

Fke
2π ink/N , 0 ≤ n ≤ N − 1. (4)

The IDFT describes the time signal cn as a linear combination of the undamped com-
plex harmonics {e2π ink/N }with complex amplitudes {Fk}. Since Fk is of a polynomial
form for each k, it has no singularities. In particular, Fk is void of poles that yield the
resonance peaks. These peaks are the signatures of spectra in MRS (as well as in other
spectroscopies).

According to the time-frequency Heisenberg uncertainty principle �t�ν ≥
1/(4π), good localization (compactness) is simultaneously unachievable in both
the time and frequency domains. The most compact function in both the t− and
ν−domains is a Gaussian. For the precisely known intensity Fk at a fixed frequency
k/T , there is no information whatsoever about any particular value of the time signal
since the entire set {cn} (0 ≤ n ≤ N − 1) is averaged over in (2). Likewise, at a given
instant nτ , the time signal cn is known, but it cannot be related to any specific intensity
Fk because all of them (0 ≤ k ≤ N − 1) are summed up in (4).

Despite the absence of the polar structure in the DFT, with a sufficient number
of interferences of sines with cosines multiplying cn of long length N , it may still
become possible for Fk from (2) to roughly estimate at least some of the main spectral
lineshapes using the given FID. The sine as well as the cosine functions are periodic
and so are the harmonics {e2π ink/N }, implying that time signal cn in the Fourier
representation (4) is forced to be periodic. Thus, in theDFT, irrespective of the structure
of the processed FIDs, all time signals are treated as if they were periodic. However,
most measured time signals are not periodic.

In the DFT from (2), the product of the two sequences {ck} and {Fk} of length N
requires N 2 multiplications. These become computationally time-consuming for large
N . Advantageously, however, for a composite N , given e.g. by number 2 raised to a
positive integer, the amount ofmultiplications can be enormously reduced. Statedmore
precisely, for N = 2� (� = 1, 2, 3, . . .), the mentioned sequence multiplications scale
quasi-linearly with the FID length N as N log2N . This is the key feature of the Cooley-
Tukey algorithm [69] for converting the DFT into the FFT, which revolutionized all
fields that employ the Fourier-based signal processing, including analytical chemistry.

2.2 Usual derivative fast Fourier transform

The derivative discrete Fourier transform (dDFT) is obtained by applying the m th
derivative operator Dm = (d/dν)m to the CFT from (1) and by subsequently discretiz-
ing t and ν. The result is represented by:

dDFT : F (m)
k = 1

N

N−1∑
n=0

(−2π inτ)mcnW
n
k (0 ≤ k ≤ N − 1), (5)

F (m)
k = {DmF(ν)}ν=k/T , Dm =

(
d

d ν

)m

(m = 1, 2, . . .). (6)
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Derivative and integration operators have the opposite effects. Thus, by way of (5),
the derivative operator Dm from (6) is anticipated to unsmooth the smoothing action
of the CFT in (1). This would amount to achieving a higher resolution in the dDFT
than in the DFT, as the applications to noiseless FIDs can indeed directly confirm.

The related derivative fast Fourier transform (dFFT) is the fast computation of the
dDFT by the Cooley-Tukey algorithm [69], applied to the product of the time power
function and the FID, i.e. {(−2π i tn)mcn} (0 ≤ n ≤ N − 1). The breakdown of the
dDFT and dFFT for encoded FIDs is due to the multiplier tmn of cn . The monomial
tmn weighs most heavily the FID tail, which contains mainly noise in measured FIDs.
Therefore, with the increased derivative order m, mostly noise is processed by the
dFFT. This leads to information loss with a consequence of worsening both resolution
and SNR [53–67].

2.3 Optimized derivative fast Fourier transform

Solving the just stated problem,while preservingmodel independence and the Cooley-
Tukey algorithm [69], would require an appropriate upgrade of the dDFT from (5). To
that end, it is necessary to overcome the detrimental effect of the derivative-produced
power function tmn = (nτ)m . At larger nτ , the diverging behavior of (nτ)m with the
increased signal number n, at a fixed derivative orderm, can be judiciously regularized.
This is feasible through multiplication of (nτ)m by an attenuating function of nτ . In
an optimization procedure, the fastest decaying object functions multiplying (nτ)m

should preferably be used.
These functions are an exponential filter, the EF, e−λ1(m,T )tn and a Gaussian filter,

the GF, e−λ2(m,T )t2n . Both filters decrease with the rising time t , i.e. they have the
strictly positive damping parameters λp(m, T ) > 0. They are ingrained in the adaptive
power-exponential filter, the APEF:

APEF = (−2π inτ)me−λ1(m,T )nτ , (7)

and in the adaptive power-Gaussian filter, the APGF:

APGF = (−2π inτ)me−λ2(m,T )(nτ)2 . (8)

Employing either the discretized APEF or APGF would result in the optimized dDFT
associated with the sequences E (m)

k and G(m)
k :

E (m)
k = 1

N

N−1∑
n=0

e−2π ink/N
{
(−2π inτ)me−λ1(m,T )nτ

}
cn, (9)

G(m)
k = 1

N

N−1∑
n=0

e−2π ink/N
{
(−2π inτ)me−λ2(m,T )(nτ)2

}
cn, (10)
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respectively. Computations of the sets {E (m)
k } and {G(m)

k } by means of the Cooley-
Tukey algorithm [69] yield two versions of the optimized dFFT, one with the APEF
and the other with the APGF, respectively [68].

As has been demonstrated in Ref. [67] for MRS, the resulting combined effect of
the power-exponential filter (−2π i tn)me−λ1(m,T )tn from (9) or the power-Gaussian
filter (−2π i tn)me−λ2(m,T )t2n from (10) in the optimized dFFT can lead to a hugely
improved resolution and SNR relative to the FFT from (2) as well as compared with
the usual dFFT from (5). For this to occur, the specific values of the damping parameter
λp(m, T ) > 0 for a fixed p are of practical importance.

The adverse consequences of the presence of the power function tmn are exacer-
bated for higher m. Therefore, the damping parameter λp(m, T ) for a fixed p should
be adapted to the increased m. In other words, a gradually enhanced damping should
be employed to successively match the higher powers m of tn . Moreover, the damp-
ing parameter λp(m, T ) should approximately be tailored to noise of the originally
encoded FID so as to achieve simultaneously improved SNR and frequency resolu-
tion. Incorporating these aspects into the object or merit functions such as the EF,
e−λ1(m,T )tn , or the GF, e−λ2(m,T )t2n , can be made in a computerized optimization algo-
rithm for a minimization procedure.

The Heisenberg uncertainty principle applies strictly to the FFT and yet resolution
of this processor can be surpassed by another estimator. Resolution is higher in the
optimized dFFT than in the FFT. In the optimized dFFT, the Heisenberg uncertainty
principle appears in the form of the informational uncertainty principle: no richer
information is possible to retrieve by reconstructions than that provided by the original
FID [45, 46]. Resolution in the optimized dFFT is not predetermined by T , but rather by
the spectral density (the number of the resonance peaks) in the analyzed chemical shift
band. Moreover, the optimized dFFT also mitigates the resolution-SNR uncertainty
relationship by means of the APEF or APGF, as explained.

2.4 Optimization of attenuation by analytical means

An alternative to the mentioned computerized optimization is a practical, quick and
useful optimization by analytical means [67, 68]. It is based on a closed expression
for λp(m, T ) with a fixed p. This analytical formula is derived here after the salient
preliminary considerations.

2.4.1 Resonance parameters in MRS

Acrude estimate of the SNR in the encoded {cn} is the ratio of the time signal intensities
at e.g. t = 0 and t = T , i.e. at the onset and at the end of the time-domain encodings,
respectively. The decaying feature of a typical FID transient of total length N = T /τ

encoded by e.g. proton single-voxel MRS (from a sample containing a mixture of
substances with various metabolites) is a linear combination of a number of attenuated
complex exponentials of the type:

c(t) = Ae2π iν0t+iϕ0−t/T 

2 , 0 ≤ t ≤ T , (11)
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where ϕ0 is the phase offset at t = 0. Noise is implicitly assumed, but for brevity,
is omitted in the explicit writing from (11). Here, T 


2 is the exponential decay time
constant:

1

T 

2

= 1

T2
+ γ�B0, (12)

where γ (in MHz/T) is the gyromagnetic ratio (quotient of the angular and magnetic
moments).1 Constant A > 0, as the magnitude of the initial intensity of the given FID,
i.e. |c(t)| at t = 0, is directly proportional to the magnitude of the bulk magnetization
vector M of the sample. Therefore, |c(0)| is also directly proportional to the number
of the resonating protons (contributing to the time-domain response of the sample to
the external excitation) and, hence, to the metabolite concentration.

Linear fundamental frequency ν0 (in Hz) from (11) refers to the characteristic oscil-
lations of the excited protons. Quantity T2 (in ms) from (12) is the natural transversal
relaxation time from the spin-spin interactions of the resonating protons. In reality,
T2 is perturbed by several factors, including the static magnetic field inhomogene-
ity γ�B0 (in Hz), as seen in (12). Generally, �B0 can be positive or negative. For
γ�B0 > 0, there will be a line-breadth widening in the peak from the frequency
spectrum associated with (11).

The perturbed value of T2 is called the effective transversal time and denoted by
T 

2 (in ms). This is the time needed to elapse before the bulk magnetization M of

the excited sample attains the equilibrium distribution (alignment with the externally
applied static polarizing magnetic field of strength B0). The reciprocal 1/(πT 


2 ) is
the FWHM for an absorptive bell-shaped symmetric Lorentzian peak (ϕ0 = 0) in the
spectrum computed using (11):

FWHM = 1

πT 

2

. (13)

Therefore, the FID from (11) can equivalently be written in terms of the FWHM as:

c(t) = Ae2π iν0t+iϕ0−π ·FWHM·t . (14)

The same FWHM also enters the definition of the peak height and peak area of an
absorptive Lorentzian profile, respectively:

Peak Height = A

FWHM
, (15)

Peak Area = π

2
FWHM × (Peak Height) = π

2
A. (16)

1 Note that the same capital letter, but in the Roman and Italic fonts, refers to different quantities: T for the
unit of tesla and T for the total acquisition time.
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2.4.2 Ameasure of the closeness of the FID decay to zero

For insufficiently long T (as is the case in FID encodings by MRS in the clinic), the
time signals may have not decayed to zero at t = T . This amounts to a truncation
of the FID. Truncation of c(t) is represented as c(t)H(T − t), where H(T − t) is the
Heaviside step function. This rectangular function is also called the rec-function or
the box-function, which is equal to 1 and 0 for t ≤ T and t > T , respectively. The
Heaviside step function is the continuous counterpart of the Kronecker symbol from
(3). The CFT from (1) with c(t) replaced by c(t)H(T − t) represents a convolution.
A convolution in the time domain corresponds to a product in the frequency domain.

The Fourier transform of the rec-function is the sinc-function, which is defined as
[sin (πν)]/(πν). Thus, a truncation of c(t) yields the product of the Fourier spectrum
and the sinc-function. Since the sinc-function decays in an oscillatory manner, every
peak in the CFT, F(ν), computed from (1) with c(t)H(T − t), will be distorted,
including its base and thewings/tails. This phenomenon is known as theGibbs ringing.
A potential reduction of such lineshape deformations would be important because they
impede on extracting the reliable quantitative spectral information (e.g. peak areas and
concentrations of metabolites in the tissue or biofluid scanned by MRS).

It is of practical interest for optimization to roughly quantify the closeness to zero
of the FIDs at the end of encodings (t = T ). Such FIDs can be considered to have
decayed sufficiently close to zero at t = T if therein the intensity of a typical transient
c(T ) from (11) is less than or equal to about 5% of the associated initial intensity at
t = 0. Fromhere, the condition that the decaying part Ae−T /T 


2 of the FID in (11) drops
to about 5% of A (i.e. to become 0.05A or A/20), would read as Ae−T /T 


2 = 0.05A,
which corresponds to T /T 


2 ≈ 2.9957.
Simplifying then, by setting T /T 


2 = 3, we have e−T /T 

2 = e−3 ≈ 0.0498, where

rounding of 0.0498 to 0.05 approximately yields the sought 5% of the initial intensity
A of FID (t = 0)2. Instead of having SNRwith the fixed percentage as [A(0)/A(T )]×
100% = 5%, or the fraction 0.05, we can take a more generic fraction ρ > 1 (as the
selected threshold for considering that the FID tail is sufficiently immersed into noise)
to rewrite the just stated condition as:

Ae−T /T 

2 = A

ρ
, ρ ∝ SNR (ρ > 1), (17)

which then implies

T

T 

2

= ln ρ. (18)

For ρ > 1, it follows that ln ρ > 0, which is compatible with the necessary physical
positive-definiteness (T /T 


2 > 0) of the lhs of Eq. (18). Number ρ is proportional to

2 In Ref. [68], there were two misprints that are corrected here as: (i) e−3 ≈ 0.4598 should read
e−3 ≈ 0.0498 and (ii) tm amplies noise at larger t should read −→ tm amplifies noise at larger t . The
reconstructions from Ref. [68] were not influenced by the misprint (i) since the optimized dFFT employed
the correct approximate value 0.0498 for e−3.
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SNR of the input FID. In the encoded c(t) for 0 ≤ t ≤ T , noise prevails when t tends
to T . In other words, the FID closely matches the noise level near the end of the total
acquisition time T . Thus, condition (17) means that the distortion of the FID due to
the truncation artifacts is smaller than the noise level in the encoded FID at t = T .

Quotient T /T 

2 represents the extent of damping of c(t) from (11). An undamped

transient in the FID corresponds to T /T 

2 = 0. A nonzero finite damping, like the

discussed attenuation rate T /T 

2 = 3, refers to a transient which is reasonably well

relaxed (i.e. embedded in noise) since it decayed to about 5% of its initial intensity at
the onset of encodings (t = 0). An idealized, unrealistic FID with T /T 


2 = ∞ would
be completely damped (fully relaxed), in the sense of exactly coinciding with zero at
the end of encodings, i.e. c(T = ∞) = 0, as per (11).

2.4.3 Adaptive filters

TheEF andGF themselves improve SNRand reduce the FID truncation artifacts. Thus,
they belong to the category of denoising functions. Both filters perform smoothing of
the given FID. Noise can, to a certain extent, be averaged out by smoothing. However,
the EF and GF lead to resolution loss due to line broadening. The widened spectral
profiles enhance the peak overlaps and this decreases resolution. Such an effect ham-
pers quantification of the closely spaced resonances of interest. On the other hand,
while the power function tm greatly improves resolution for noise-free FIDs [55], this
same monomial lowers SNR for encoded noise-corrupted FIDs and, by implication,
deteriorates resolution. Hence, such two diametrically opposite trends from tm and EF
or GF ought to be reconciled for the success of an optimization.

The situation is salvaged by combining the two functions as their products through
e.g. the APEF, tme−λ1(m,T )t or the APGF, tme−λ2(m,T )t2 . In these products, the power
function and an attenuated exponential (or a Gaussian) filter are designed to com-
pensate their individual deficiencies. More precisely, noise produced by tm should be
damped by e−λp(m,T )t p in the combination tme−λp(m,T )t p for the chosen p.

Conversely, the line broadening effect causedby the attenuation function e−λp(m,T )t p

is supposed to be balanced/mitigated by tm . Of course, such two-way compensations
are limited by the SNRof the input FID. Since tm itself amplifies noisewith augmented
m, a trade-off is needed for determining the practical upper limit of the derivative order
to secure the acceptable spectral lineshapes amenable to a reliable quantification.

For this to occur with a model weighting function, it is natural to first implement
the exponential filter, the EF, because an FID transient from encoding byMRS is itself
exponentially damped, as per (11). Nevertheless, it is convenient to consider the EF
and GF in concert by keeping p as a generic number (i.e. without fixing it in advance
to the particular values p = 1 or p = 2).

To proceed further, the following condition is of key importance for analytically
optimized filters [68]:

tme−λp(m,T )t p = e−mαp , t = T , (19)

where αp > 0 is a constant which is adapted to SNR of the original FID. The condition
(19) at t = T acquires the form (T eαp )m = eλpT p

. Taking the natural logarithm of
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both sides of the latter expression, it follows m ln (T eαp ) = λpT p. This gives the
formula for the sought damping parameter λp ≡ λp(m, T ):

λp(m, T ) = mμp, μp = 1

T p
ln (T eαp ). (20)

In particular, the constant α1 in (19) plays the role of the amount of damping T /T 

2

in c(t) from (11) at t = T . Specifically, for m = 1, the cut-off factor e−α1 in (19)
is reminiscent of e−T /T 


2 from (11) at t = T . Further, observe that, similarly to the
monomial tm , the corrective terme−αp is also taken to the samepowerm ≥ 1 tobecome
e−mαp in (19). This, in turn, implies that the larger amount of noise produced by tm

in tme−λp(m,T )t p c(t) is countered by a stronger damping due to the filter e−λp(m,T )t p

where λp(m, T ) = (m/T p) ln (T eαp ) as per (20).
Overall, it is the powered corrective term e−mαp on the rhs Eq. (19) that adapts the

ensuing filter tme−λp(m,T )t p to both the derivative order m and SNR of the FID. For
a fixed p, this simultaneous adaptation is achieved by introducing a single positive
parameter, which is αp.

Therefore, for the two cases of particular interest (EF: p = 1 and GF: p = 2) of
the general filter e−λp(m,T )t p = e−mμpt p , the APEF and APGF from (7) and (8), can
now acquire their digitized explicit forms:

APEF = (−2π inτ)me−λ1(m,T )nτ

= (−2π inτ)me−mμ1nτ

= (−2π inτ)me−(m/T )nτ ln (T eα1 )

= (−2π inτ)me−m(n/N ) ln (T eα1 ), (21)

APGF = (−2π inτ)me−λ2(m,T )(nτ)2

= (−2π inτ)me−mμ2(nτ)2

= (−2π inτ)me−(m/T 2)(nτ)2 ln (T eα2 )

= (−2π inτ)me−m(n/N )2 ln (T eα2 ), (22)

where the relation τ/T = 1/N is used. Recall that integers n and m in (21) and
(22) are the time signal numbers (n = 0, 1, . . . , N − 1) and the derivative order
(m = 1, 2, 3, . . .), respectively.

Notice that besides the generally unequal constants α1 and α2, the expressions for
theAPEFandAPGF from (21) and (22) contain twoother different termsnτ/T = n/N
and (nτ/T )2 = (n/N )2 that multiply m ln (T eα1) and m ln (T eα2), respectively.

In Ref. [68], we used the notations {λE, α} (exponential damping) and {λG, β}
(Gaussian damping) that now correspond to {λ1, α1} and {λ2, α2}, respectively. The
notations {λ1, α1} and {λ2, α2} permit a more compact writing since the single expres-
sion (−2π inτ)me−m(nτ/T )p ln (T eαp ) can be either the APEF (p = 1) or the APGF
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(p = 2). Moreover, p need not be restricted to 1 or 2 alone. Of course, for any p, the
associated αp must always be a positive number, αp > 0, as stated with (19).

2.4.4 The width of the adaptive power-exponential filter

It is deemed illustrative to specify some parameters from the preceding expositionwith
their quantitative values regarding e.g. the line broadening (LB) and the corresponding
time constant (TC) [28]. The aim is to see whether a case of the matched filter could
emerge, signifying that the TC of the APEF is close to the spin-spin relaxation time
T 

2 of a metabolite physically present in the scanned tissue or biofluid.
To that end, consider an example with the APEF (p = 1), which uses the EF

(μp = μ1, αp = α1) in the attenuation function e−mμ1nτ . An attenuation of the FID
through multiplication of c(t) from (11) by e−λ1(m,T )t gives:

c̃(t) ≡ c(t)e−λ1(m,T )t = Ae2π iν0t+iϕ0−t/T̃ 

2 , (23)

1

T̃ 

2

= 1

T 

2

+ πLB, T̃ 

2 = T̃ 


2 (m, T ), (24)

where the line broadening LB (in Hz) represents the width of the APEF,

LB = λ1(m, T )

π
, LB = LB(m, T ) > 0. (25)

The corresponding time constant TC (in ms) of the APEF is the reciprocal of πLB
and thus equal to 1/λ1(m, T ):

TC = 1

πLB
= 1

λ1(m, T )
, TC = TC(m, T ) > 0. (26)

Comparing (12) and (24), it follows that the filter e−λ1(m,T )t acts as yet another per-
turber, which further broadens the natural relaxation time T2 on top of the already
existing line-breadth widening due to the magnetic field inhomogeneity for�B0 > 0:

1

T̃ 

2

=
(

1

T2
+ γ�B0

)
+ πLB =

(
1

T2
+ γ�B0

)
+ 1

TC
. (27)

To exemplify the LB and TC factors, let us consider the acquisition parameters of the
FIDs encoded at 1.5T clinical scanner from white matter in the brain of a 25 year old
healthy male volunteer (as in Sect. 3). These are short FIDs (total length N = 512),
sampled at rate τ = 1ms (BW=1000 Hz) for which T = Nτ = 512ms. To obtain the
damping time constant TC in (26) and the line broadening factor LB in (25) for the
EF part e−mμ1nτ of the APEF, we choose α1 = 3, as in the already discussed example
T /T 


2 = 3 associated with (11), and set m = 1 (the first derivative).
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The LB and TC parameters of this specific APEF are calculated from (25) and
(26) with the results LB = [1/(πT )] ln (T eα1) = 1.4489Hz and TC = 1/(πLB) =
219.6888ms, respectively. The latter finding of about 220 ms for TC (corresponding
to the LB of about 1.45 Hz) is close to the effective relaxation time T 


2 ≈ 217ms of
metabolite creatine (Cr), N(CH3), resonating at 3.03 ppm (parts per million) [28].

For m ≥ 2, the values of LB and TC will rise and fall, respectively. Thus, for e.g.
m = 2, we have LB = 2.8978 Hz (TC = 109.8444ms). On the other hand, form = 4,
it follows LB = 5.7956 Hz (TC = 54.9222 ms). By referring to free choline (Cho),
N(CH3)3 and water, H2O, resonating at 3.19 ppm and 4.70 ppm (temperature 37◦),
the values of T 


2 are 162 ms and 60-130 ms, respectively [28]. Thus, as the derivative
order m is augmented, the damping time constant TC of the exemplified APEF is
decreasing and attaining its values that range between the relaxation times T 


2 of Cr
and H2O.

The usual matched filters (either an exponential or a Gaussian) for a chosen damp-
ing parameter can describe only one metabolite (including, eventually, its very small
neighborhood). It would then be tempting to think that for a fixed m in the optimized
dFFT, a single datum for the TC parameter from theAPEF could likewisematch the T 


2
value of one metabolite alone (and possibly a very few adjacent resonances assigned
to different metabolites). However, practice shows that the optimized dFFT (at a single
m yielding the stabilized lineshape) using the APEF or APGF can accurately describe
many resonance profiles from the entire chemical shift band of the main interest, e.g.
0.0-4.25 ppm (see Refs. [67, 68] and the present Sect. 3).

The currently elaborated general forms of the damping parameters λ1(m, T ) and
λ2(m, T ) in APEF and APGF, respectively, from the optimized dFFT have recently
been used in Ref. [67]. Therein, the optimized dFFT for the FIDs encoded with and
without water suppression by in vitro proton MRS at a 1.5T clinical scanner resulted
in a powerful performance yielding simultaneously improved resolution and SNR
relative to the FFT. Similarly successful applications of the optimized dFFT, with
narrowed lineshapes and enhanced heights of physical resonances, have also been
reported [67] by employing the APEF for an FID encoded with water suppression by
in vitro proton MRS at a 600 MHz (≈14.1T) Bruker spectrometer.

2.4.5 Normalized magnitude spectra

Given that the peak heights keep on rising with augmentedm, it is impractical to moni-
tor stabilization in the derivative lineshape developments for the successive derivative
orders m. This obstacle is easily surmounted by using the normalizing magnitude
lineshapes. A normalized spectrum |DmFFT|N (m > 0) is obtained by scaling the
derivative spectrum |DmFFT| (m = 1, 2, . . .). Firstly, in a narrow chemical shift band
around a selected peak, for a fixed derivative order m, we extract the maximum value
max |DmFFT| of the sequence |DmFFT| from its set at the N Fourier grid frequencies
νF
k (0 ≤ k ≤ N − 1):

max |DmFFT| ≡ |DmFFT|max (m fixed). (28)
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This relation includes the nonderivative case (m = 0) as |FFT|max, which itself is not
normalized. Secondly, the scaling factors Rm > 0 are defined as:

Rm = |DmFFT|max

|FFT|max (m fixed). (29)

Thirdly, the normalized spectrum is set up by the relation:

|DmFFT|N = |DmFFT|
Rm

(m fixed). (30)

This, on account of (29), can equivalently be rewritten according to:

|DmFFT|N = |DmFFT| |FFT|max

|DmFFT|max (m = 1, 2, . . .). (31)

Therefore, for each fixed positive m, the normalized magnitude derivative spec-
trum |DmFFT|N is the product of the unnormalized spectrum |DmFFT| with
|FFT|max / |DmFFT|max . The latter quantity is the ratio of the maximal nonderivative
(m = 0) and the maximal unnormalized derivative spectra (m > 0). The notations
(28)-(31) refer explicitly to the optimized dFFT with either the APEF (p = 1) or
the APGF (p = 2). The same relation can, of course, be also employed for the unat-
tenuated dFFT which, however, will not be shown in Sect. 3 because of its inferior
performance [53–68].

3 Results and discussion

Standard single-voxel in vivo proton MRS was employed to encode the FIDs from
white matter in the brain of a 25 year old healthy male volunteer. Encodings with
and without water suppression have been made at the Karolinska Hospital in Stock-
holm, using a 1.5T General Electric (GE) clinical scanner with the conventional
point-resolved spectroscopy sequence (PRESS). The acquisition parameters consist
of the Larmor frequency νL = 63.8646MHz for the static magnetic field strength
B0 = 1.5T, the bandwidth BW = 1000Hz, the FID full length N = 512, the sam-
pling rate or the dwell time τ = 1/BW = 1ms, the repetition time TR = 2000ms,
the number of excitations NEX = 128 and the echo times TE = 13, 23 and 272ms.

As is customary, the applied quadrature encoding provided the two-channel FIDs,
one for the real (Re) and the other for the imaginary (Im) parts. The usual time signal
arithmetic averaging for each set of the acquired 128 FIDs is made in the scanner to
improve the signal to noise ratio, SNR. It is these averaged FIDs that are subjected
to our data analysis. Among the mentioned three echo times, the present illustrations
are focused upon TE = 272ms alone (from a different aspect, the results for TE = 13
and 23 ms will be reported separately).

Figure1 shows the encoded time signals alongside the corresponding reconstructed
FFT spectra in the usual nonderivative form (m = 0). The displayed FIDs represent
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Fig. 1 In vivo MRS for white matter in the brain of a 25 year old healthy male volunteer. Multiple time
signals or FIDs have been encoded with and without water suppression by single-voxel in vivo proton MRS
at a GE clinical scanner (1.5T). The acquisition parameters were: N = 512, NEX=128, BW=1000 Hz,
τ = 1ms, TR=2000 ms and TE=272 ms. The encoded raw 128 FIDs were averaged. The averaged FIDs
(a, b; e, f) are not zero-filled, nor modified in any other way (no multiplying weight function, no phasing,
no eddy current corrections, etc.). The FFT magnitude spectra (c, d) and (g, h) are for the averaged FIDs
that are, however, extrapolated to 2N by one zero filling. The spectral intensities on the ordinates are in
arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units,
parts per million (ppm). For details, see the text
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the raw data of the original length (512 ms) with no correction whatsoever. However,
prior to passing to the frequency domain, these FIDs are zero-filled once to compute
the shown FFT spectra. In Fig. 1, the left and right columns are for the FIDs encoded
without and with water suppression, respectively. The top two pairs of panels (a, b;
e, f) are for the FIDs, whereas the associated couple of the bottom panels (c, d; g, h)
are for the FFT spectra in the magnitude mode (no weighting function multiplying
the processed FIDs). The real parts of the complex-valued FIDs are on panels (a, e),
while panels (b, f) are for the imaginary parts of the time signals. For convenience,
the ordinates on panels (e, f) are multiplied by a factor of 100.

It is seen that the lines on panels (a, b) for the water-unsuppressed FIDs represent
mainly the smooth time-domain envelopes. In these waveforms, there is only a broad-
shaped dip on panel (a), whereas on panel (b), merely a saturation-type waveform is
seen for the increased time. The reason for such structureless patterns is in the usual
dominance of the water concentration with no hint about the actual presence of any
other constituents. The water response to the external excitations during the MRS
scans is the strongest among all other metabolites because of the dominance of the
H2O molecules in the brain tissue.

On the other hand, the water-suppressed FIDwaveforms (e, f) are structured, show-
ing very sharp oscillations superimposed on the time-domain envelopes.With thewater
abundance significantly reduced (by the standard inversion recovery procedure) dur-
ing the measurements, such structures clearly emerge. This could arguably open the
chance to peer more deeply into the fuller content of the FIDs acquired with water
suppression. Of course, the sought content of the water-suppressed FIDs is still opaque
and inaccessible to a direct interpretation by inspecting solely the drawings of the time
domain data on panels (e, f).

Looking at panels (a, b) or (e, f), it follows that at any given time point, say t = nτ ,
on the abscissae, the FID intensities {Re(cn), Im(cn)} on the ordinates arewell defined
(minimal uncertainties), respectively. On the other hand, there are maximal uncertain-
ties in spectra |Fk | on panels (c, d) or (g, h) (and indeed from the entire Nyquist range)
as to which frequencies have actually generated the specific values {Re(cn), Im(cn)},
respectively. This is a consequence of the time-frequencyHeisenberg uncertainty prin-
ciple since, as stated in Sect. 2, all the N frequencies k/T from Eq. (2) contributed to
any given value of cn .

The usefulness of the information-preserving frequency-domain representation of
the encoded time signals, as shown by the FFT spectra (c, d; g, h), offers an exploratory
avenue for data analysis, which complements the message conveyed by panels (a, b; e,
f). This approachwith the FFT ismore amenable to at least a preliminary interpretation.
Panels (c, g) are for a wider chemical shift band 1.75-6.0 ppm, which includes the
water peak located at 4.68 ppm. Thus, on panel (c) for the water-unsuppressed FID,
besides the giant and perfectly symmetric water singlet resonance peak with its long
tail nothing else is noticeable.

The situation changes markedly for the FFT spectrum on panel (g) with the water-
suppressed FID, where some additional small peaks appear. These peaks are assigned
to the molecules of nitrogen-acetyl aspartate (NAA), total creatine (tCr) and total
choline (tCho) that resonate at their characteristic frequencies near 2.0, 3.0 and 3.2
ppm, respectively. The tCrmetabolite is comprised of creatine and phosphocreatine, Cr
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and PCr, respectively. The tCho metabolite contains the free choline, phosphocholine
and glycerophosphocholine, Cho, PC and GPC, respectively.

There is also a more spread-out spectral structure near 3.95 ppm, a part of which is
assigned to yet another tCr. This small portion of the spectrum ismost heavily distorted
because it is the closest neighbor of the still large water residual peak at 4.68 ppm.
Especially on the base (bottom, foot), the residual water peak on panel (g) does not
preserve the ideal symmetry of its predecessor, which is the H2O resonance on panel
(c).

Panels (d, h) for the FFT spectra are for a smaller chemical shift sub-band 1.75-
4.25 ppm, which excludes the water peak. Even in this zoomed frequency window, the
spectrum on panel (d) for the water-unsuppressed FID persists to be uninformative in
its entirety. It shows only some glimpses of the severely deformed minuscule spectral
humps close to the locations of NAA (∼2.0 ppm), tCr (∼3.0 ppm) and tCho (∼3.2
ppm). These lineshape profiles are glued to a considerably elevated background, which
stems mostly from the long-extended tail of the water resonance and partly from
macromolecules (proteins,…).

On panel (h) for the water-suppressed time signal, the FFT envelope takes a form
which is more reminiscent of the normal-appearing total shape spectrum for the white
matter of the brain in a healthy adult. Besides a clear visibility of the peaks for NAA
(∼2.0 ppm), tCr (∼3.0 ppm) and tCho (∼3.2 ppm), there is also a small supplement
set of the resonance-type spectral structures. They are positioned at 2.3-2.6 ppm and
assigned to the multiplets of NAA and Glx, where the latter notation refers to the
sum of the contributions from glutamine (Gln) and glutamate (Glu). Moreover, the
multiplet of myo-inositol (m-Ins) can be noted at 3.5-3.7 ppm. This is followed by
the widened structure at 3.9-4.25 ppm to which the other mentioned tCr resonance is
amalgamated near 3.95 ppm. The irregularly clustered step-wise shape of the wide
spectral structure at 3.9-4.25 ppm indicates a significant extent of distortion produced
by the incomplete water suppression in the process of the FID encodings.

All these spectral profiles on panel (h) are asymmetric and strongly deformed, par-
ticularly at their bottom sections. There are several reasons for such an occurrence.
They include the presence of the said large residual water peak as well as broader
macromolecules, constructive/destructive interference of the real and imaginary parts
of the FFT magnitude spectrum, tightly overlapped lineshapes of the adjacent reso-
nances due to similar spin-spin relaxation times of many tissue metabolites, etc. These
lineshape distortions are further exacerbated by the ever present phasemismatch of the
neighboring resonances. The phase disparities among various resonances are attributed
to different lineshape modifications caused by a time delay between the end of the
excitation pulse and the beginning of the FID encodings.

No spectral mode, including the magnitude mode, is immune to such phase mis-
matching. To roughly rectify the deformed lineshapes of the real quasi-absorptive part
of a complex spectrum, the encoded FIDs are customarily multiplied by a zero-order
frequency-independent phase.However, no single phase correction can simultaneously
ameliorate the unequally phase-distorted lineshapes of all the peaks located at differ-
ent resonance frequencies. Moreover, an FID phasing can lead to resonance inversion,
i.e. to converting some of the upward-oriented peaks to the peaks pointing downward.
Further, the zero-order phase correction even with a minimal background baseline
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does not yield the strictly positive-definite envelope throughout the frequency range
of interest. By definition, the magnitude mode is positive-definite and hence insensi-
tive to any zero-order phase correction of either the complex spectrum or the complex
time signal.

Overall, Fig. 1 shows that the FFT can yield only crude metabolic information.
For the FIDs encoded without water suppression, the FFT is meaningful only for the
water molecules. On panel (c), the spectroscopic data from the water resonance could
be approximately parametrized by extracting the FWHM, peak height and peak area.
This would be a rough estimate as it does not rule out the realistic possibility that
even the isolated and presumed structureless bell-shaped peaks could hide some other
resonances [64, 65]. In order to use water as an internal reference metabolite, the
computed dimensionless area of the H2O peak is to be calibrated, i.e. expressed in the
appropriate biochemical units (e.g moles per kilogram, M/kg or mole per liter, M/L).

This can be done through multiplication of the reconstructed water peak area by an
independently known physical constant in biochemical units (e.g.M/kg orM/L) for the
normal brain of the specified tissue and region. Such a calibration can establish water
as an internal reference standard for concentrations. Subsequently, computing the
other peak areas in the given spectrum would give the concentrations of the remaining
assigned metabolites, quantitatively expressed also in the biochemical units (M/kg,
M/L) as the percentage of the water concentration.

Evidently, the obtained results for all the other metabolites represent their relative
concentrations because they are referred to another metabolite (e.g. water, as the inter-
nal standard, in this discussion). The same statement also applies to external standards,
employed for samples from in vitro MRS as in e.g. Refs. [67, 68, 71] and elsewhere
in the MRS literature.

However, for metabolites other than the H2O molecules, the FFT envelopes on
panels (c, d) of Fig. 1 cannot be quantified even approximately by using the water-
unsuppressed FID. This is the main reason for which the great majority of FID
encodings are preferentially carried out with water suppression. Such an alternative
leads tomore informative FFT spectra, as is clear on panels (g, h).Nevertheless, despite
this visual qualitative improvement relative to panels (c, d), no quantification is hardly
possible on panels (g, h) either. The reason is in the considerable lineshape distortions
and peak overlaps. For example, the peak area determinations by any quadrature rule
cannot be done on panel (h) since no profile therein is amenable to its reliable enclos-
ing/boxing within the well-defined chemical shift bounds for a numerical integration.
It then follows that also for the FIDs encoded with water suppression, the FFT is not
of much practical use for in vivo MRS.

Such a situation calls for some other types of signal processing in an attempt to go
beyond the FFT (unweighted or weighted alike). To that end, while still staying within
the Fourier-based estimations, the optimized dFFT is one of the promising candidates
also for in vivo MRS. Such an expectation is based on the previous applications of
this processor to in vitro MRS. The optimized dFFT, which starts as a shape estimator
and finishes as a parameter estimator, has been shown to have an unprecedented per-
formance for the FIDs encoded by in vitro proton MRS at both low and high magnetic
fields [67] (1.5T) and [68] (14.1T).
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Of particular relevance to the current study, this processor gave in Ref. [67] the
comparable high-resolution spectra for the short FIDs (0.5KB) encoded from a Philips
phantom [70] of excellent SNR by in vitro MRS with and without water suppression
at a GE clinical scanner (1.5T). It is important to find out whether a similar success can
be replicated for the present short noisy FIDs (0.5KB) encoded by in vivo MRS from
a human brain also at a GE clinical scanner (1.5T) with and without water suppres-
sion. This would be significant, especially given the potential clinical ramifications
mentioned in Ref. [67].

Thus, the remaining four figures are on derivative estimations by the optimized
dFFT with 1 ≤ m ≤ 3 using the FIDs encoded with and without water suppression.
The FFT spectra (d, h) in Fig. 1 will be shown again as the reference/seed envelopes.
To highlight the main metabolites of interest to diagnostics by MRS, all the spectra
shall be depicted at frequencies below 4.25 ppm, i.e. without the presence of the water
peak. The retrieved spectra for the two dramatically different FIDs from panels (a, b; e,
f) of Fig. 1 will be compared with each other. In the computations, we employ both the
adaptive power-exponential filter, the APEF, and the adaptive power-Gaussian filter,
the APGF, with the varying damping/attenuation parameters α1 and α2 from Eqs. (21)
and (22), respectively.

The derivative spectra for the FIDs with and without water suppression are jointly
displayed in Figs. 2 and 3. They both refer to the first three derivative orders (1 ≤
m ≤ 3). This is followed by Figs. 4 (m = 3) and 5 (1 ≤ m ≤ 3) with five and two
damping parameters, respectively. The APGF is on Figs. 2 (α2 = 5) and 4 (α2 =
1.75, 2.0, 2.25, 2.5, 5.0), whereas the APEF is on Figs. 3 (α1 = 3) and 5 (α1 =
1.5, 3). The purpose of this specific protocol is to test the sensitivity/stability of the
optimized dFFT to the derivative order m and to the amount of damping αp in the
APEF (p = 1) and APGF (p = 2). Thus, Figs. 2 and 3 vary the derivative order
(m = 1 − 3) for the fixed damping coefficient α2 = 5 (Gaussian) and α1 = 3
(exponential), respectively. On the other hand, Fig. 4 is for a fixed derivative order
(m = 3), while varying the Gaussian damping (α2 = 1.75−5.0). Finally, Fig. 5 varies
both the derivative order (1 ≤ m ≤ 3) and the exponential damping (α1 = 1.5, 3.0).

To recall,we reemphasize that the amount of an exponential and aGaussian damping
αp in the APEF (p = 1) and APGF (p = 2), respectively, represents an approximate
measure of SNR through the closeness of the decline of the encoded FID to zero at
the end of the total acquisition time, i.e. at t = T . This factor αp enters the overall
smoothing parameter λp in the given attenuation filter exp{−λp(m, T )(nτ)p} with
λp(m, T ) = (m/T p)ln(T eαp ).

Moreover, the smoothing parameter λp also controls resolution since it is propor-
tional to the line broadening. Thus, the same parameter λp can judiciously balance
SNR and resolution. To that end, a practical trade-off between SNR and resolution is
necessary. According to Refs. [67, 68], it is possible to simultaneously improve SNR
and resolution by reliance upon the analytically derived optimization (20) of λp. In Eq.
(25), the line broadening for the APEF (p = 1) is denoted by LB = (1/π)λ1(m, T ).

The way this design works is fully explained in Sect. 2 and, to better follow the fur-
ther exposition, it shall now be succinctly recapitulated. An attenuation filter broadens
each spectral line by the same constant. This constant may be different for the EF
and GF. As stated, both the EF and GF can improve SNR, but they reduce resolution.
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It should be remarked that even if the damping factors α1 in the APEF and α2 in
the APGF are numerically identical, these two filters will have different smoothing
parameters λ1 and λ2 on account of the relation λ2(m, T ) = (1/T )λ1(m, T ) valid for
α1 = α2.

On the other hand, the purpose of derivative estimation is to increase both SNR and
resolution in concert. Thus, for a better resolution, it seems counter-intuitive that the
encoded FID should be weighted by a filter which, in turn, produces a line-broadening
and enhances the resonance overlaps. However, the EF and GF, if implemented by the
APEF and APGF, respectively, actually constitute a virtue of the optimized dFFT. In
this processor, the following twofold feature operates synergistically: for noisy FIDs,
the reduced SNR due to tm is compensated by exp{−λp(m, T )(nτ)p} and the lowered
frequency resolution due to exp{−λp(m, T )(nτ)p} is countered by tm .

As a net result, the optimized dFFT improves simultaneously SNR and resolution.
Such an outcome is due to the usage of the product tmexp{−λp(m, T )(nτ)p}. This
product minimizes the deficiencies of tm and exp{−λp(m, T )(nτ)p}, while maximiz-
ing the benefits furnished by these latter two separate weighting functions.

With the outlined refreshment, borrowed fromSect. 2, we can nowpass onto Figs. 2-
5. As announced, the first comparisons of the spectra from the optimized dFFTwith the
three derivative orders (1 ≤ m ≤ 3) for the FIDs with and without water suppression
are on Fig. 2 for the APGF at the Gaussian damping α2 = 5.0. Such a strong FID
attenuation with the ensuing enhanced lineshape smoothing in the derivative spectra is
anticipated not to split apart the tightly overlapped resonances. This is indeed observed
in Fig. 2, where the derivative spectra at 1 ≤ m ≤ 3 in the optimized dFFT on panels
(b-d) and (f-h) for the FIDs without and with water suppression, respectively, are
relatively sparse.

The said spectral sparsity is partially due to the long echo time TE = 272ms at
which the short-lived resonances have either decayed or significantly reduced their
intensities. However, the most important information is on the panels (a-d) from the
left column of Fig. 2 displaying the spectra from the FID encoded without water
suppression. The associated FFT spectrum (a) is impoverished as it barely visualizes
only the three minuscule bumps for NAA, tCr and tCho riding on the elevated tail of
the water peak.

This is contrasted to the corresponding derivative spectra for 1 ≤ m ≤ 3 (b-d).
The improvement is obvious already with the first derivative with m = 1 (b), where
the smoothly decaying lineshape with m = 0 (a) is now segmented into a number of
spectral structures. Therein, the most prominently occurring is the large NAA peak
near 2.0 ppm. Further, one can identify the inverted two peaks of tCr (∼3.0, ∼3.95
ppm). Likewise, the peaks of m-Ins (∼3.6 ppm) and tCho (∼3.2 ppm) are pointing
downward. Also visible within 2.1-2.6 ppm is the smaller NAA peak as well as the
two adjacent Glx resonances preceded by the peak of gamma amino butyric acid
(GABA). All these weak-intensity structures ride on the water tail, which appears to
be considerably lowered relative to panel (a).

The second derivativewithm = 2 (c) visibly suppresses the ridge from thewater tail
around 4.0 ppm. As a consequence, below 3.75 ppm, the whole background baseline
is brought down closer to the chemical shift axis. Above 3.75 ppm, the still elevated
baseline leads to an overestimation of the tCr peak height near 3.95 ppm. All the earlier
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Fig. 2 Single-voxel in vivo protonMRS for white matter in the brain of a 25 year old healthymale volunteer.
For spectra, the averaged values of the encoded 128 FIDs are used. Nonderivative (m = 0) and derivative
(m > 0)magnitude spectra for the water-unsuppressed and water-suppressed zero-filled FIDs are on panels
(a-d) and (e-h) in the left and right columns, respectively. The FFT spectra (a, e) with m = 0 are with no
filtering. The optimized dFFT spectra (b-d; f-h) with the derivative orders 1 ≤ m ≤ 3 are normalized and
refer to the adaptive power-Gaussian filter, the APGF, for the damping parameter α2 = 5. The spectral
intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the
abscissae are in dimensionless units, parts per million (ppm). For details, see the text
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mentioned peaks on panel (b) remain on panel (c), but now they point upward. The
peaks of NAA (∼2.0 ppm), tCr (∼3.0 ppm) and tCho (∼3.2 ppm) are intense and well
delineated. Below 2.0 ppm, there is no appreciable change in the low-lying spectral
wiggles immersed in noise.

The 3rd derivative with m = 3 (d) markedly reduces the water tail, including its
remaining ridge above 4.0 ppm. Such an effect further flattens the background baseline
throughout the shown frequency range. This spectrum begins to exhibit the embryo of
an additional Glx peak positioned near 2.15 ppm, climbing as a shoulder of the large
NAA peak (∼ 2.0 ppm). Note that the dip near 3.1 ppm between the tCr (∼3.0 ppm)
and tCho (∼3.2 ppm) peaks has now fully descended to the chemical shift axis. This
is a notable improvement relative to the corresponding elevated valley on panel (c).

Taken together, the overall performance of the optimized dFFT on panels (b-d)
is commendable, in spite of the seemingly insurmountable challenges posed by the
encoded water-unsuppressed FID. This is all the more remarkable, especially given
the corresponding completely uninterpretable FFT spectrum withm = 0 (a). The first
derivative with m = 1 (b) sets the stage towards the further improvement. Subse-
quently, the steady progress is secured by the second and third derivatives withm = 2
(c) and m = 3 (d), respectively.

As to the right column of Fig. 2, the optimized dFFT with 1 ≤ m ≤ 3 (f-h) is tasked
to refine the FFT (e). This is easier because of the usage of the water-suppressed
FID for which the FFT (e) itself is not unreasonable. Already the first derivative with
m = 1 (f) delivers an adequate lineshape, which brings the background very close to
the chemical shift axis at all the displayed frequencies. The improvement on panel (f)
relative to panel (e) is observed everywhere and most notably at the end of the range,
in the vicinity of 4.0 ppm. Therein, with just its first derivative (m = 1), the optimized
dFFT (f) maps the irregular and highly deformed spectral structure around 3.95 ppm
from panel (e) into a well-delineated tCr peak.

Moreover, unlike some of the inverted and tilted peaks on panel (b), superimposed
on the water tail, which keeps on rising with the augmented frequencies, all the peaks
on panel (f) are pointed upward and lying straight on the flat background. This is the
result of a more marked narrowing of the bottom/base of the H2O peak (not shown) in
the first derivative spectra from the water-suppressed than for the water-unsuppressed
FIDs.

From the jagged left hand side of the broad spectral structure around 4.0 ppm on
panel (e), there is only a small leftover on panel (f). However, this remainder, which
distorts the lower left part of the tCr peak at 3.95 ppm, is strongly diminished by
the second derivative with m = 2 (g). Comparing the left and right columns, it is
observed that for most of the shown frequencies (i.e. within 0.0-3.75 ppm), the second
derivative spectra on panels (c) and (g) without and with water suppression in the
FIDs, respectively, are quite alike. The significant difference between these two spectra
occurs only in a small range above 3.9 up to 4.25 ppm. This remaining discrepancy is
due to the distorting effect of the unsuppressed water in the FID processed on panel
(c).

By going to the third derivative with m = 3 (h), the resulting lineshape is seen to
be very similar to the predecessor spectrum with m = 2 (g). This points to a relative
stability with no derivative-induced spectral distortions for the increased derivative
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order m. In fact, all the presently considered derivative orders are low (m ≤ 3). Near
2.15 ppm, the slight left shoulder of the NAA peak from panel (g) begins to form
another Glx resonance. Importantly, throughout the analyzed frequency interval, there
is also a very good agreement between the two derivative spectra withm = 3 on panels
(d) and (h) for the FIDs without and with water suppression, respectively.

Such agreement is on the level of the shape of the spectra on panels (d, h). The
dimensionless ordinates in arbitrary units show the values of the spectral intensities that
are numerically different in the optimized dFFT for the FIDs without (d) and with (h)
water suppression. This is not unexpected. Firstly, the intensities in the corresponding
seed spectra from the FFT (to which the derivative operator Dm is applied) on panels
(d, h) of Fig. 1 differ even much more appreciably. Secondly, the numbers in arbitrary
units on the ordinates carry no physical information, which is obtainable only after
the appropriate calibration, as mentioned.

Moreover, since the ordinates are dimensionless, the approximately converged spec-
tra in the optimized dFFT on panels (d, h) of Fig. 2 might as well be normalized to
each other. In such a case, most of the individual peak areas on these panels for the
FIDs without and with water suppression would turn out to be very similar to each
other. So would be the related metabolite concentrations in biochemical units. This is
what matters diagnostically in MRS, and not some numbers in arbitrary units on the
ordinates. In the MRS literature, the ordinates in spectra are most frequently drawn
with no numbers at all.

For in vivoMRS, agreement between panels (d, h) of Fig. 2 cannot be understated. It
corroborates the like conclusion regarding in vitroMRS fromRef. [67]. The latter study
was on the optimized dFFT for the FIDs encoded with and without water suppression
from aPhilipsMRSphantom [70]. Still, the stated successful outcome from comparing
panels (d, h) of Fig. 2 is not the end-point of the analysis as there is still room for
further improvements. Namely, the intense Gaussian damping λ2 = 5 on panels (d,
h) effectively precludes achieving a finer resolution with more spectral details.

In Fig. 3, we switch to the other filter, i.e. the APEF and choose the exponential
damping α1 = 3. In this setting too, we apply the optimized dFFT to the same FIDs
encodedwith andwithout water suppression. Herein, however, a shorter chemical shift
band is considered, which unlike Fig. 2, now starts from 1.75 ppm. The reason is in
Fig. 2, where the sub-band 0.0-1.75 ppm shows that the lineshapes on both the left and
right columns are embedded in the background with no pronounced resonances to be
assigned to the known metabolites. For the same reason, Figs 4 and 5 will begin with
1.75 ppm, as well.

Figure3 is of the same configuration as Fig. 2. It also shows the spectra for the FIDs
without and with water suppression on the left and right columns, respectively. At
the common frequencies, the global features of the spectra for the APEF (Fig. 3) are
quite similar to their counterparts for the APGF (Fig. 2). This occurs in spite of the
difference between the damping parameters α2 = 5 and α1 = 3 from the APGF and
APEF in Figs. 2 and 3, respectively. We recall that, even if α1 and α2 were the same,
the smoothing parameters λ1(m, T ) in the APEF and λ2(m, T ) in the APGF would
still be different, i.e. λ2(m, T ) = (1/T )λ1(m, T ) for α2 = α1.

As to the said similarities, the first derivative spectra with m = 1 (b) in Figs. 2 and
3 also shows the inverted peaks at 3.0-4.0 ppm for the same three resonances assigned

123



1276 Journal of Mathematical Chemistry (2024) 62:1251–1286

Fig. 3 Single-voxel in vivo protonMRS for white matter in the brain of a 25 year old healthymale volunteer.
For spectra, the averaged values of the encoded 128 FIDs are used. Nonderivative (m = 0) and derivative
(m > 0) magnitude spectra for the water-unsuppressed and water-suppressed zero-filled FID are on panels
(a-d) and (e-h) in the left and right columns, respectively. The FFT spectra (a, e) with m = 0 are with
no filtering. The optimized dFFT spectra (b-d; f-h) with the derivative orders 1 ≤ m ≤ 3 are normalized
and refer to the adaptive power-exponential filter, the APEF, for the damping parameter α1 = 3. The
spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on
the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
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to tCho, m-Ins and tCr. However, there are some differences between Figs. 2 and 3 for
e.g. the third derivative spectra withm = 3 (d). These latter spectra are better resolved
in Fig. 3 than in Fig. 2. In Fig. 3 too, the numbers on the ordinates differ even for the
converged derivative spectra on panels (d) and (h) for the FIDs without and with water
suppression, respectively. The parlance about this point goes in the same vein as with
Fig. 2.

Focusing upon Fig. 3 alone, it appears that in some parts of the third derivative
spectra with m = 3 (d, h), at e.g. 2.2-2.7 ppm and 3.30-4.25 ppm, the lineshapes are
better resolved for the FIDs without than with water suppression. This is especially
true for the m-Ins triplet (∼4.07 ppm) and the NAA doublet (∼4.17 ppm). Further, on
panel (d), the tCr peak (∼3.95 ppm) exhibits the shoulders on both side, as opposed
to its broad structureless counterpart on panel (h). Moreover, the resonance assigned
to glucose (Glc, ∼3.85 ppm) is seen on panel (d), but not on panel (h).

Within e.g. 2.2-2.7 ppm in Fig. 3, this favorable trend toward higher resolution for
the FID without water suppression is initiated by the second derivative spectra with
m = 2 (c). In this latter tight sub-band, unlike the situation in panel (g), some notches
appear on panel (c) at the top of the peaks near 2.35 and 2.6 ppm for the Glx and
NAA metabolites, respectively, marking the onset of separations of the overlapping
resonances. This finding for α1 = 3 in the APEF indicates that the procedure of water
suppression in the course of the FID encodings is prone to introduce certain visible
distortions in the spectra (e.g. the blur of the finer structures) even within the bands
that are quite distant from the H2O chemical shift, 4.68 ppm.

In Fig. 4, we are back to the APGF in the optimized dFFT, which is for the water-
unsuppressed FID alone. The derivative order is fixed atm = 3, whereas the Gaussian
damping parameter α2 is varied through some five values (1.75, 2.0, 2.25, 2.5, 5.0).
Actually, the spectra in the optimized dFFT are plotted in the reverse orders (from 5.0
to 1.75) on panels (b-f), respectively. They are seen to undergo substantial alterations
when α2 is gradually reduced from 5.0 (b) to 1.75 (f). Herein, the spectrum on panel (b)
for α2 = 5 is sparse and populated by broad, rounded resonances first encountered in
Fig. 2d. This intense smoothing is a direct consequence of the strong damping, α2 = 5,
which prevents the peak splitting.

However, by halving the value of the damping parameter α2 to 2.5 (c), some
refinements begin to develop through a partial unsmoothing in most of the spectrum,
particularly at 2.3-2.9 ppm and 3.3-4.05 ppm. Importantly, another manifestation of
the weaker damping (α2 = 2.5), with the ensuing diminished smoothing on panel (c),
is the appearance of the additional five resonances. They are assigned to glucose (Glc,
∼3.85 ppm), m-Ins (∼3.7 ppm), taurine (tau,∼3.4 ppm), scyllo-inositol (s-Ins,∼3.35
ppm) and aspartate (Asp, ∼2.8 ppm).

On the right panels, the dampingparameter is sequentially and equidistantly reduced
by a factor of 0.25 so as to have α2 = 2.25 (d), α2 = 2.0 (e) and α2 = 1.75 (f). Peak
delineations and the overall resolution is significantly improved on panel (d) relative to
(c). This trend is pursued further on panels (e) and (f). They both propel two additional
peak assigned to glutathione (GSH, ∼2.9 ppm) and nitrogen acetyl aspartyl glutamic
acid (NAAG, ∼2.1 ppm). On panel (e), the NAAG peak begins its slight separation,
which eventually becomes more pronounced on panel (f). Moreover, the latter panel is
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Fig. 4 Single-voxel in vivo proton MRS for white matter in the brain of a 25 year old healthy male
volunteer. For spectra, the averaged value of the encoded 128 FIDs is used. Nonderivative (m = 0) and
derivative (m > 0) magnitude spectra are for the water-unsuppressed zero-filled FID. The FFT spectrum
(a) with m = 0 is with no filtering. The optimized dFFT (b-f) with the single derivative order m = 3
are normalized and refer to the adaptive power-Gaussian filter, the APGF, for five damping parameters
α1 = 1.75, 2.0, 2.25, 2.5 and 5.0. The spectral intensities on the ordinates are in arbitrary units (au).
Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million
(ppm). For details, see the text
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supplemented by an extra resonance, assigned to gamma amino butyric acid (GABA,
∼1.9 ppm).

It is then seen that the usage of a fixed derivative order (m = 3) in conjunction with
the varying Gaussian damping parameter α2 proves helpful. It offers an opportunity
to monitor the pattern of the gradual, systematic and simultaneous improvement of
resolution and SNR by the optimized dFFT for the FIDs encoded without water sup-
pression. Such an outcome gains in its importance especially when juxtaposed to the
FFT (a), which provides no meaningful information. The optimized dFFT makes a
notable progress by fine-tuning the smoothing parameter α2. This results in an almost
doubling of the number of the identified physical resonances K when decreasing α2 by
a factor of 2.857 during the passage from α2 = 5 (b), yielding K = 11, to α2 = 1.75
(f), giving K = 20.

Monitoring the relative stabilization of the derivative spectra from the optimized
dFFT should likewise be instructive for the water-suppressed FIDs. This is illustrated
Fig. 5, which differs from the preceding figure in several aspects. It uses the APEF
(exponential damping) instead of the APGF (Gaussian damping). It runs through the
derivative orders from one to three as opposed to having a single fixed values of
m. It employs two damping parameters. In Fig. 5, the selected exponential damping
parameters are α1 = 3 (b-d) and α1 = 1.5 (f-h).

The FFT spectra on panels (a) and (e) are in the quasi-absorptive and magnitude
modes, respectively. On panel (a), the real part of the complex FFT spectrum is for
the FIDs multiplied by eiϕ0 , where ϕ0 = 80◦ (1.3963 rad). Such a phasing of the FID
reduces the baseline which, in turn, allows a more identifiable tCr peak on panel (a)
near 3.95 ppm than on panel (e). However, the spectrum on panel (a) is not positive-
definite everywhere within 1.75-4.05 ppm. Therein, some of the inverted peaks have
their negative intensities, as visible near 2.8 and 2.48 ppm. It then appears that the
quasi-absorptive spectrum (a) is not of much help in practice. This finding echoes the
already discussed unfavorable status of the magnitude envelope (e).

On the other hand, the derivative spectra from the optimized dFFT (b-d, f-h) in
Fig. 5 possess a richer informational content than that from the FFT (a, e). This holds
true for both spectral sets (b-d) and (f-h) with α1 = 3 and α1 = 1.5, respectively. With
the forced stronger damping of the encoded FID by using α1 = 3, the three spectra
(1 ≤ m ≤ 3) have their relatively stable lineshapes (b-d). Herein, some improvements
can be observed by going fromm = 1 (b) tom = 3 (d), especiallywith the dip between
the tCr (∼3.0 ppm) and tCho (∼3.2 ppm) peaks as well as with the delineation of the
Glx peak (∼2.15ppm). Otherwise, for m = 1 (b), m = 2 (c) and m = 3 (d), the
number of the identified metabolites stays put at K = 12 for α1 = 3.

However, for the twice weaker smoothing (α1 = 1.5), there are more pronounced
changes in the derivative profiles when passing from m = 1 (f), through m = 2 (g)
to m = 3 (h). This is reflected in more splittings of the overlapped peaks, as seen
in K = 15 (f) compared to K = 19 (g, h). For m = 1 (f), the tCr peak (∼3.95
ppm) is not deconvolved into Cr and PCr. Moreover, the Glc peak (∼3.85 ppm) is
unidentifiable for m = 1 (f). Further, only the slight shoulders appear for m = 1 (f) at
the expected peak locations assignable to the NAAG (∼2.1 ppm) and GABA (∼1.9
ppm) metabolites.
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Fig. 5 Single-voxel in vivo protonMRS for white matter in the brain of a 25 year old healthymale volunteer.
For spectra, the averaged value of the encoded 128 FIDs is used. Nonderivative (m = 0) and derivative
(m > 0) magnitude spectra are for the water-suppressed zero-filled FID. The FFT spectra with m = 0 in
the quasi-absorptive (a) and magnitude (e) modes are with no filtering. The real part (a) of the complex FFT
spectrum is for the complex zero-order phase-corrected FID, which is multiplied by eiϕ0 , where ϕ0 = 80◦
(or 1.3963 rad). The optimized dFFT spectra (b-d; f-h) in the magnitude mode alone with the derivative
orders 1 ≤ m ≤ 3 refer to the adaptive power-exponential filter, the APEF, for two damping parameters
α1 = 1.5 and 3.0. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies
(chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the
text
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All these four deficiencies for m = 1 (f) are rectified either in part or with a fuller
extent for m = 2 (g) and m = 3 (h), respectively. For example, the most pronounced
improvements for m = 3 (h) are for the NAAG (∼2.1 ppm) and GABA (∼1.9 ppm)
peaks. These two resonances are remarkably well separated from the dominant NAA
peak (∼2.0 ppm) all the way down to the chemical shift axis. Thus, in the optimized
dFFT, compared to the left column (b-d) forα1 = 3, the right column (f-h) forα1 = 1.5
is manifestly superior regarding both resolution and SNR.

As emphasized, Figs. 4 and 5 are for the water-unsuppressed and water-suppressed
FIDs, respectively. The main finding from the panel (h) in Figs. 4 and 5 is that the
relatively stabilized derivative spectra for m = 3 are of comparably high-resolution
and low noise. This is achieved with two different filters, the APGF (Fig. 4) and APEF
(Fig. 5) using the smallest among several considered values of the damping parameters,
i.e. α2 = 1.75 (Gaussian attenuation) and α1 = 1.5 (exponential attenuation).

It is gratifying that the derivative spectra from the optimized dFFT using the FIDs
encoded by in vivo proton MRS with and without water suppression are of a similar
excellent quality. This should be of particular importance in practice because of the
possibility to significantly reduce the patient examination time which, in turn, could
make MRS more cost-effective in the clinic.

In practice, e.g. the GE MRS protocol allows encodings of a collection of water-
unsuppressed FIDs to have the reference data. Subsequently, after water suppression
(by e.g. inversion recovery or selective excitation), the water-suppressed FIDs are
acquired. Obviously, it would be hugely advantageous (for the patient as well as for
in vivo MRS as a whole) if the water-unsuppressed FIDs could provide spectra of
clinical reliability comparable to those from water-suppressed FIDs. As shown here,
such a goal is untenable with the FFT, but it is achievable with the optimized dFFT.

4 Conclusions

The usual unattenuated derivative fast Fourier transform (dFFT) completely breaks
down for measured time signals. These include free induction decay (FID) data
encoded by in vitro or in vivo magnetic resonance spectroscopy (MRS). Such time
signals are invariably dominated by noise at their tails, i.e. toward the end of the total
acquisition time. The failure of the unattenuated dFFT in this case is attributed to
multiplication of the given encoded FID by a time power function (a monomial) stem-
ming from the frequency derivative operators applied to the unattenuated fast Fourier
transform (FFT). This eliminates the possibility for splitting the overlapping spectral
resonances and, moreover, it worsens the signal-to-noise ratio (SNR).

A solution to this problem is provided by an adaptive optimization of the unattenu-
ated dFFT. This is accomplished by means of the attenuated exponential or Gaussian
filters. Each of these is completely specified by a single damping parameter derived in
the simple analytical forms. These universally applicable optimal filters are simulta-
neously tailored to the derivative order, frequency resolution and SNR of the FID. The
damping parameter is not a constant, but rather it is updated by being appropriately
scaled with the derivative order. The virtues of the ensuing optimized dFFT for the
phase-insensitive magnitude-mode spectra are:
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• automated application,
• user-independence,
• fast computation by the Cooley-Tukey algorithm,
• no modeling of the FIDs nor of the spectra,
• symmetrized lineshapes,
• narrowed widths of metabolite peaks (the smallest full widths at half maximae),
• simultaneously enhanced resolution as well as SNR,
• absence of lineshape distortions for increasing derivative orders,
• suppression of sidelobes, and
• background reduction.

The listed beneficial features are of relevance to the field of signal processing, in
general, and to medical diagnostics by MRS, in particular, all marred by the common
‘identification problem’. This problem refers to the accurate and reliable determination
of the individual components hidden (folded, masked) within the overlapped spectral
bands. By reliance upon shape estimation alone, the optimized dFFT can decompose
the given FFT envelope (total shape spectrum) into its true non-overlapping partial
lineshapes of resonances assignable to individual constituents of the investigated spec-
imen and amenable to straightforward quantification by e.g. integration.

It is the adaptive power-exponential filter (APEF) or the adaptive power-Gaussian
filter (APGF) in the magnitude spectra from the optimized dFFT that tightens the
peak base, narrows the peak width, increases the peak height, enhances resolution and
suppresses noise, background and the peak sidelobes. As opposed to the magnitude
lineshapes, in the ‘absorption’ mode spectra, the derivative peak sidelobe intensities
increase with the augmented derivative order and can be misinterpreted as physical
resonances. The tightened peak base translates into the lineshape localization to a
very narrow range around the genuine resonance frequency. In particular, for the
water resonance, this amounts to a veritable water suppression. The net result from
this novel water suppression device based on the optimized dFFT is the emergence
of the other peaks assignable to metabolites of diagnostic relevance. Formerly, these
latter peaks were hidden in the macromolecular background superimposed on the long
and elevated water tails.

The presently reported spectra from the optimized dFFT are for short FIDs (0.5
KB), encoded at a low-field clinical scanner (1.5T) using a long echo time (272 ms)
with and without water suppression by proton MRS from white matter in the brain of
a 25 year old healthy male volunteer. For both extremely different FIDs, this processor
reconstructs spectra of similarly high resolution and low noise. This shows that proton
MRS at 1.5T clinical scanners can provide fully respectable FIDs and it is only the
matter of employing an adequate estimator, such as the optimized dFFT, for appropri-
ate signal processing. Encoding the water-unsuppressed FIDs alone can considerably
shorten the patient examination time and contribute to significantly improved cost-
effectiveness of MRS as a necessary requirement for becoming a standard everyday
diagnostic modality in the clinic.
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I. Tkáč, D.B. Vigneron, F.A. Howe, Methodological consensus on clinical proton MRS of the brain:
Review and recommendations. Magn. Reson. Med. 82, 527–550 (2019)

16. C. Cudalbu, K.L. Behar, P.K. Bhattacharyya, W. Bogner, T. Borbath, R.A. de Graaf, R. Gruetter, A.
Henning, C. Juchem, R. Kreis, Contribution of macromolecules to brain 1H MR spectra: Experts’
consensus and recommendations. NMR Biomed. 34, e4393 (2021)
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45. Dž. Belkić,Quantum-Mechanical Signal Processing and Spectral Analysis (Taylor & Francis, London,
2005)
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59. Dž. Belkić, K. Belkić, Derivative NMR spectroscopy for J-coupled multiplet resonances with short
time signals (0.5KB) encoded at low magnetic field strengths (1.5T): Part II, Water Unsuppressed. J.
Math. Chem. 59, 405–443 (2021)
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61. Dž. Belkić, K. Belkić, High-resolution at 3T for in vivo derivative NMR spectroscopy in medical
diagnostics of ovarian tumor: Exact quantification by shape estimations. J. Math. Chem. 59, 2218–
2260 (2021)
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