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Abstract
In this paper, we propose a conceptual approach to assign a “mathematical meaning”
to the non-local function χ(r, r′). Mathematical evaluation of this kernel remains
difficult since it is a function depending on six Cartesian coordinates. The idea behind
this approach is to look for a limit process in order to explore mathematically this
non-local function. According to our approach, the bra 〈χξ

r ′ | is the linear functional
that corresponds to any ket |ψ〉, the value 〈r′|ψ〉. In condensed writing 〈χξ

r ′ | 〈r|ψ〉 =
〈r′|ψ〉, and this is achieved by exploiting the sifting property of the delta function that
gives it the sense of a measure, i.e. measuring the value of ψ(r) at the point r′. It is
worth noting that 〈χξ

r ′ | is not an operator in the sense that when it is applied on a ket,

it produces a number ψ(r = r′) and not a ket. The quantity χ
ξ

r ′(r) proceed as nascent
delta function, turning into a real delta function in the limit where ξ → 0. In this
regard, χξ

r ′(r) acts as a limit of an integral operator kernel in a convolution integration
procedure.

Keywords Conceptual DFT · Linear response function · Dirac distribution

1 Introduction

ConceptualDensityFunctionalTheory (notedC-DFT) is defined as the theoryof chem-
ical reactivity aimed to extract chemical concepts from the DFT [1]. This formalism
constitutes a paradigm for understanding chemical reactivity and selectivity in chem-
istry. Its foundationwas established in 1978 by Parr et al. [2], through the identification

of the Lagrange multiplierμ =
[

∂ E
∂ρ(r)

]
υ(r)

with the electronic chemical potential. This
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thermodynamic quantity refers to the stabilization or destabilization during the addi-
tion or subtraction of an electron and its is linked to fundamental concepts in chemistry
such as electronegativity, electronic affinity and ionization potentials [3]. The C-DFT
is originally built on the energy functional in the canonical set: E[ρ(r)] = E[N , υ(r)],
where E refers to the energy of the system, N its number of electrons and υ(r) rep-
resents the external potential at position r. However, there are other equivalent sets
of representations that involve different variables [4]. The consequences of deriva-
tive discontinuity for C-DFT have already been examined [5], since the number of
electrons is a discrete variable. The Taylor series of the energy functional E[N , υ(r)]
provides several response functions expressed in the canonical set [4]:

E[N , υ(r)] =
[

N

(
∂ E

∂ N

)

υ(r)
+

∫
dr

(
∂ E

∂υ(r)

)

N
υ(r)

]

−1

2

⎡
⎢⎢⎢⎣N 2

(
∂2E

∂ N 2

)

υ(r)
+ 2N

∫
dr

∂

∂ N

(
∂ E

∂υ(r)

)

N
υ(r)

+
∫

drdr′
(

∂2E

∂υ(r)υ(r′)

)

N︸ ︷︷ ︸
χ(r,r′)

υ(r)υ(r′) + · · ·

⎤
⎥⎥⎥⎦ (1)

This formula is not a perturbation expansion, the negative signs are very instructive
for its implications in this theory. For the interested reader, the perturbative formula is
available at the reference [6]. The general expression for successive partial derivatives
is given by [7]:

δb

δυ(r1)δυ(r2) · · · δυ(rb)

[
∂a E

∂ N a

]
(2)

The non-local second order derivative (a = 0, b = 2) of the canonical set corre-
sponds to the linear response function χ(r, r′) (noted LRF). It is a non-local descriptor
depending on two positions r and r′.

χ(r, r′) =
[

δ2E

δv(r)δv(r′)

]

N

(3)

The function χ(r, r′) is defined as the electron density response at r induced by a
change in the external potential at r′ (and vice versa) [7]:

χ(r, r′) =
[

δρ(r)
δv(r′)

]

N

(4)
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Mathematical evaluation of this kernel remains difficult since it is a function depend-
ing on six Cartesian coordinates. Concerning its chemical interpretation, the LRF is
related to the structure of the atomic electronic layers [8, 9], to the polarisability [10],
to the inductive and mesomeric effects [11, 12] as well as to the aromaticity [13, 14]
in molecules. The LRF has also proved a valuable tool for assessing and interpreting
molecular conductivity [15]. Furthermore, many other interesting applications have
been reported in the biological/pharmaceutical field, on the decomposition mecha-
nism of explosives, and transferability of functional groups [16–20]. The LRF can be
evaluated at several levels of approximation using the perturbative approach within a
Kohn–Sham formalism [21–25]. This approach is very helpful because it is consis-
tent with the chemical intuition that chemical reactivity is examined according to a
perturbation undergone by a molecule when it is approached by another molecule. In
the present study, we attempt to assign a mathematical "meaning" to LRF by com-
bining both the properties of delta function and the formalism inherent in quantum
mechanics.

2 Mathematical meaning of �(r, r′)

Some fundamental notions of quantum mechanics are given in ESI (Electronic Sup-
porting Information). These notions are helpful especially for readers who are not
familiar with the notation of quantum mechanics and will also be useful to make
the link with the subject treated in this study. Moreover, all the basic mathematical
details on the functional derivatives are rigorously defined in the following references
[26–28]. For simplification purposes, let us considerF as a set of continuous and real-
valued functions (g : R3 → R). For assessing the "action" of a distribution, we rely on
sufficiently regular functions with compact support. We denote by D∞

c (R) the space
of functions g(r) of class D∞(R)which vanish, as well as all their derivatives, outside
a closed and bounded interval. Such functions form a set of infinitely-differentiable
functions of compact support. Then, consider any functional F that maps each g ∈ F
to a number: F : F → R. By using the derivation rules of the density functionals, we
obtain:

δF := F
[
g(r) + δg(r)

] − F
[
g(r)

] ≡ δF := F
[
g(r) + hη(r)

] − F[g(r)]
(5)

The variation of g(r) by δg(r) generates δF[g(r)]. The functional F
[
g(r)+hη(r)

]
is expanded in terms of powers of h according to the Taylor series:

F
[
g(r) + hη(r)

] =
K∑

k=0

1

k!
dk F

[
g(r) + hη(r)

]

dhk

∣∣∣∣
h=0

hk + O(hK+1) (6)
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where K being either finite or infinite, h is a scalar and η is an arbitrary function in
F . The functional derivative of kth order is defined by:

dk F
[
g(r) + hη(r)

]

dhk

∣∣∣∣
h=0

=:
∫

dr1 · · · drk
δk F

[
g(r)

]

δg(r1) · · · δg(rk)
η(r1) · · · η(rk)

(7)

For k = 1 we obtain:

lim
h→0

F
[
g(r) + hη(r)

] − F[g(r)]
h

=: d F
[
g(r) + hη(r)

]

dh

∣∣∣∣
h=0

=:
∫

dr
δF

[
g(r)

]

δg(r)
η(r)

(8)

By reducing h to an infinitesimally small number, g(r)+hη(r)will become close to
g(r), since the quantity hη(r) describes the infinitesimal change to g(r). A functional
for which (8) is verified is considered differentiable. From another point of view, the
functional can be expressed in integral form as:

F
[
g(r)

] =
∫

dr δ(r − r0) g(r) = g(r0) (9)

where the generalized function δ(r − r0) plays the role of a weight function. In the
same way, we can also write:

F
[
g(r)

]n =
∫

dr δ(r − r0) g(r)n = g(r0)n (10)

The variation of this functional is calculated by a simple Taylor expansion, then:

δF
[
g(r)

]n =
∫

dr δ(r − r0)
[
(g(r) + hη(r))n − g(r)n] (11)

=
∫

dr δ(r − r0)
[
ng(r)n−1 hη(r) + n(n − 1)

2
g(r)n−2 (hη(r))2 + · · · ]

(12)

By comparing (8) and (12), the result is:

δF
[
g(r)

]n

δg(r)
= δg(r0)n

δg(r)
= δ(r − r0) n g(r)n−1 (13)

For n = 1 ⇒ = δg(r0)
δg(r)

= δ(r − r0) = δ(r0 − r) (14)

Applying this definition to LRF within the C-DFT framework, we find:

χ(r, r′) =
[

δ2E

δv(r)δv(r′)

]

N

= δ(r − r0)δ(r′ − r0) = δ(r − r′) (15)
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This equality means that one of the members can be replaced by the other when
it is under an integration symbol with respect to r. Suppose a set of functions of r,
χr ′(r), marked by the continuous index r′ and defined by:

χr ′(r) = δ(r − r′) = δ(x − x ′) δ(y − y′) δ(z − z′) (16)

Actually, χr ′(r) represents the set of functions centered at r′. We have already
written the following equality (see Eq. 5 in ESI):

ψ(r) =
∫

ψ(r′) δ(r − r′) d3r ′ (17)

The integration bounds −∞ and +∞ have been issued to avoid unnecessarily bur-
dening the mathematical writings. The integral (17) is a functional ofψ(r′) depending
on r as a parameter. The terms "function of a function" or "functional transform" are
commonly used for functions that themselves depend on variables. Then,

ψ(r′) =
∫

δ(r′ − r) ψ(r) d3r (18)

That we can also write as:

ψ(r) =
∫

ψ(r′) χr ′(r) d3r ′ (19)

And,

ψ(r′) =
∫

χr ′(r)∗ ψ(r) d3r (20)

The relation (19) states that any wave function can be expanded in a unique way
along χr ′(r). In contrast, the relation (20) denotes that the component of ψ(r) on
χr ′(r) is specifically ψ(r′) = ψ(r = r′). In this regard, the relation (20) is equivalent
to that of cn (see ESI for more details):

cn =
∫

n(r)∗ ψ(r) d3r (21)

Therefore, ψ(r′) is the equivalent of cn , these two complex numbers represent the
coordinates of the same ψ(r) function in two different basis {χr ′(r)} and {n(r)}. Let
us also mention that the functions of the basis {χr ′(r)} are orthonormal and verify the
closure relation:

∫
χr ′(r) χr ′(r′′)∗ d3r ′ =

∫
δ(r − r′) δ(r′′ − r′) d3r ′ = δ(r − r′′) (22)
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And,

〈χr ′ |χr ′′ 〉 =
∫

δ(r − r′) δ(r − r′′) d3r = δ(r′ − r′′) (23)

Strictly speaking, |χr 〉 is not square integrable and therefore /∈ H (does not belong
to the state space), since:

r = r′ ⇒
∫

δ(r − r′)︸ ︷︷ ︸
δ(0)

d3r −→ ∞ (24)

It is indispensable that any acceptable function be square integrable, otherwise the
inner product is inexistent. Although |χr 〉 does not describe the state of a system, it is
a very useful computational intermediate for operations onψ(r), which can describe a
physical state. However, it is still possible to assign a very localized summable square
function around r′: χ

ξ

r ′(r) = δξ (r − r′), where χ
ξ

r ′(r) exhibits a peak of width ξ and
height 1/ξ centered at r′, such that:

∫
χ

ξ

r ′(r) d3r = 1 (25)

In such situation χ
ξ

r ′(r) denotes a function in the usual meaning, which can be a

Gaussian, Lorentzian in absorption or a retangular function. The set of functionsχ
ξ

r ′(r)
then naturally takes the name of the set of trial functions or nascent delta function [29,
30]. These few examples of trial functions have a width of order ξ and a maximum
amplitude of order ξ−1, which systematically gives an integral of ξ × ξ−1 = 1. When
lim
ξ→0

χ
ξ

r ′(r) = χr ′(r) which is not square integrable, then if ξ �= 0 ⇒ |χξ

r ′ 〉 ∈ H and

〈χξ

r ′ | ∈ H∗ (the dual space). Then we can write ∀ |ψ〉 ∈ H:

〈χξ

r ′ |ψ〉 =
∫

χ
ξ

r ′(r)ψ(r) d3r (26)

In addition,

ψ(r) = ψ(r′) ⇒ 〈χξ

r ′ |ψ〉 = ψ(r′)
∫

χ
ξ

r ′(r) d3r (27)

The relation (27) should beperceived as the result of a limitingprocess. In particular,

ξ → 0 ⇒
∫

χ
ξ

r ′(r) d3r = 1 ⇒ 〈χξ

r ′ |ψ〉 = 〈r′|ψ〉 (28)

Which can also be written as,

〈χξ

r ′ | 〈r|ψ〉 = 〈r′|ψ〉 ≡ 〈χξ

r ′ |r〉〈r|ψ〉 = 〈r′|ψ〉 ≡ χ
ξ

r ′(ψ(r)) = ψ(r′)
(29)
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Therefore, the bra 〈χξ

r ′ | is the linear functional (or linear form) that corresponds

to any ket |ψ〉, the value ψ(r) taken at r′. The relation (28) indicates that χ
ξ

r ′ is

homogeneous to the inverse of the dimension of r. It is worth noting that 〈χξ

r ′ | is not
an operator in the sense that when it is applied on a ket, it produces a numberψ(r = r′)
and not a ket. The set of all linear functionals form a dual vector space.More generally,
we can write for all regular functions, as small as ξ (ξ << b − a):

∫ b

a
χ

ξ

r ′(r) ψ(r) d3r  ψ(r′) (30)

And then,

lim
ξ→0

∫ b

a
χ

ξ

r ′(r) ψ(r) d3r = ψ(r′) (31)

The displacement of the peak does not affect the total area if the interval from a to
b contains the peak. From this point of view, χ

ξ

r ′(r) is related to ψ(r) in an integral
whose integration interval contains not only r but also the finite interval ξ , for which
χ

ξ

r ′(r) is not null. Thus,χ
ξ

r ′(r) is only defined in terms of a limit, and/or in terms of how
it behaves inside integrals, it is not actually a function but rather a generalized function
or a functional. This is equivalent to a physical system where its linear response to the
functions χ

ξ

r ′(r) is known for any ψ(r) input, whatever its complexity. This is even
more true as ξ tends to zero. Moreover, the variables r and r′ are obviously defined on
the same interval and play a symmetrical role since χ

ξ

r ′(r) = χ
ξ
r (r′) (or equivalently

δ(r− r′) = δ(r′ − r)). This last equality shows that χξ

r ′ is an even function. These two
last integrals correspond to a translation of the initial wave function by one value of
r′, which can be seen as a convolution product by χ

ξ

r ′(r). The wave function ψ(r) is

invariant, it is just shifted. Provided that it exists, the convolution between χ
ξ

r ′(r) and
ψ(r) has the Fourier transform

√
2π F(u) G(u), where F(u) and G(u) are the Fourier

transforms of χ
ξ

r ′(r) and ψ(r) respectively, and this transformation is reciprocal.

3 Conclusion

In this study, we have attempted to clarify the mathematical meaning of the linear
response function (LRF) through a purely conceptual approach. The idea behind this
approach is to look for a limit process in order to explore mathematically this non-
local function. Formally, LRF has been defined from classical tools of mathematical
analysis through a limit process. The limit process has been presented in a somewhat
general way, but it is relatively easy to make it explicit by choosing a function (a kind
of trial function) reproducing χ

ξ

r ′ . For instance, this function can be a Gaussian or a
Lorentzian, one thing is certain whatever the chosen function, at the limit all these
functions generate the Dirac distribution. Moreover, by reasoning before the limit
step, it is possible to analyze the operational role of the χ

ξ

r ′ functions, if a difficulty
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arises after the application of this rule of thumb, it is still possible to go back and
introduce a new χ

ξ

r ′ with the appropriate physical scales of the analyzed problem

and to perform the limit step correctly. The introduction of χ
ξ

r ′ is justified since all

measuring instruments exhibit a spatial extension. Convolution of ψ(r) with χ
ξ

r ′ at r′

is equivalent to shifting ψ by r′. The idea of convolution by χ
ξ

r ′ is consistent with an
electron density (ρ(r) = |ψ(r)|2) shift that is physically similar to a polarization and
electron delocalization phenomenon.
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