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Abstract
Sulfur dioxide  (SO2) belongs to the highly reactive group of gases familiar as 
“Oxides of Sulfur”.  SO2 has lots of adverse effects on plants, respiratory system and 
many other environmental issues. Sulfur dioxide is a primary pollutant which is reg-
ulated worldwide, due to the combustion of fuel. Different approaches are adopted 
to economically control the  SO2 in the environment which causes the production of 
sulfuric acid that is reflected in acid rain. The aim of this study is to investigate the 
invariant regions and solution pathways for the formation of  H2SO4 in a multi-step 
reaction mechanism. The employed Model Reduction Techniques (MRTs) such as 
Spectral Quasi Equilibrium Manifold (SQEM) and Intrinsic Low Dimensional Man-
ifold (ILDM) give the solution curves, which functions as a primary approxima-
tion to invariant manifold. It is achieved that each chemical specie can be assessed 
rather than taking the overall mechanism. The new discovery suggests that we could 
achieve the invariant regions for  SO2 and  H2SO4.  SO2 emissions, along with emis-
sion norms, will be disclosed. The comparison of MRTs is depicted through tabu-
lar and graphical representations, while theoretical results are demonstrated through 
computer simulations using MATLAB.
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1 Introduction

The Clean Air Act of 1970 mentions six air pollutants: Sulfur dioxide, carbon 
monoxide, ozone, nitrogen dioxide, and lead. The high emission of  SO2 is respon-
sible for environmental and human health problems and acidification of water and 
soil. Some health issues due to  SO2 are arising like breathing difficulties, respira-
tory illness and cardiovascular diseases, etc. Due to solvability in water, it can be 
oxidized with airborne water droplets to produce Sulfuric acid  (H2SO4). As well, 
chemical reactions are significant for the ecosystem and our daily life [1]. For this 
purpose, the analysis of complex reactions is a difficult task in reaction kinetics 
[2].

Chemical kinetics’ “problem of reduced description” refers to the difficulty of 
synthesizing intricate chemical reaction networks into a smaller number of reac-
tions and species that sufficiently represent the fundamental actions of the system. 
The study of chemical kinetics includes the factors that affect chemical reaction 
rates and the rates at which chemical reaction occur [3]. In the many real-world 
contexts, including combustion, atmosphere, the networks of chemical reactions 
in biology and chemistry can be exceedingly expansive and complex having a 
wide variety of reactions and involved species. Simulating the intricate system, 
nevertheless, can be time and money consuming in terms of computing.

Reduced description methods seek to address these issues by creating simpli-
fied models that nevertheless contain the key characteristics of the system. Typi-
cally, these simplified models entail grouping together complexity, a method for 
reducing description is the Quasi Steady-State Approximation [4, 5]. This strat-
egy presumes that some species reach a steady state, and their concentrations 
fluctuate more slowly than those of other species during the reaction process.

The method of partial equilibrium is an alternative strategy that works under 
the premise that certain reactions reach equilibrium significantly more quickly 
than others if these processes equilibrate quickly [6]. The involved species con-
centrations can be calculated separately. Validating and improving these simpli-
fied models by for experimental findings to be reliable and applicable, compari-
sons with more in depth simulations are essential.

The problem of reduced description in chemical kinetics is generally a con-
siderable, but it was successfully decreased by developing models, researchers 
may learn about intricate systems and develop the more manageable simulations 
for use in practical applications. Complexity is extended with the extended num-
ber of steps or several species (ions, atoms, molecules). Many methods and tech-
niques have been developed to minimize the complexity of complex reactions 
[7]. The complexity of reaction mechanism can be reduced without effecting the 
originality of mechanism by applying different MRTs while considering the reac-
tion’s fast and slow phases [8, 9]. A necessary work of MRTs is to investigate the 
approximate solution curves in phase space, solution trajectories for reduced spe-
cies approaches to their equilibrium point by completing their transitional periods 
with different initials [10–12]. From a mathematical point of view, such a type of 
invariant region is called slow invariant manifold in lower dimension [13].
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Two most essential methods to analysis the complex reactions with higher 
dimensions are ILDM and SQEM [14, 15]. The decomposed structure simplifies 
the model so that the desired properties of the solution can be achieved with-
out affecting the complete reaction mechanism. Macroscopic and microscopic 
analysis of complex chemical systems is deduced from chemical kinetics and 
physically used variables during the time scales [16]. Different types of reaction 
mechanisms change their behavior concerning their composition and nature. So, 
their theoretical and experimental inquisitions have a vital role in comprehending 
chemical mechanisms. It is essential to explore how the emission of gases from 
industry and other vehicles creates ecological problems in the form of acid rain.

The main objective of this study is the comparison of solution behavior and 
Slow Invariant Manifold (SIMs) among the chemical species to decode the com-
plexity for the formulation of sulfuric acid in the multi-step chemical reaction. 
Also, the comparison of invariant solutions obtained through different MRTs to 
investigate the best available technique.

2  Theoretical background

2.1  Kinetic pattern constructions and MRTs

For the mechanisms of complex chemical reaction with m elementary reaction 
steps in any closed system, the reaction rate � can be found and investigated using 
forward �+ and backward rates �− of reactions of elementary steps, respectively.

where

Here Ai is represents the chemical components and �ji &�ji are reaction coef-
ficients, k+

s
 and k−

s
 are the forward and backward rate constants, respectively. Now, 

for the jth step stoichiometric vector is given for every vji = �ji − �ji step. The rate 
function of any complex reaction for the jth reaction step is shown in Eq. (3) in 
which backward reaction rate is subtracted from the forward reaction rates.

Here si are the concentrations of participating species Ai , where s is represent-
ing concentrations vector and k(T) are reaction rate constants depending on tem-
perature. The stoichiometric vectors �j =

[
�j1, ..., �jk

]
 and reaction rate function is:
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For a microscopic solution, reduction of the system is necessary when the 
degree of freedom is more than three because the solutions are only visualized in 
two or three dimensions. The law of mass conservation is:

In Eq. (5), M,s and C represents the molecular matrix, column vector of con-
centrations, and matrix of constants, respectively. For the key components 
Nkc = Nc − rank(M) , where Nkc and Nc are the number of key components and 
the number of components, respectively [12]. Applying equilibrated parameters 
in Eq. (5) transforms the remaining components into key components. Eventually, 
the system of Eq. (4) can be written in reduced form with “d” number of decreas-
ing species as:

Lyapunov function G is used in phase space to stabilize the equilibrium point. 
The equilibrium point lies on approximate curve adding shift vector we will 
move towards the next point. The dependency of SQEM condition G → min is as 
follows:

Dimensions of SQEM are defined as d < k − rank(M) participating k species in 
the reaction mechanism. A scalar product is defined as:

where Ωk are showing the slowest eigenvectors of Jacobian J at the equilibrium 
point?

For further extension, every next point is used as an equilibrium point. The 
approximated solution curve can be found by solving Eq. (7). The ILDM is found 
by using the reduced system (6) where the Jacobian J∗ of reduced species is:

(4)Υ(s) =
.
s =

m∑
j=1

�jRj(s)

(5)Ms = C

(6)
∗

Υ(s
∗) =

d∑
j=1

�jRj(s
∗)

(7)

sn+1 = sn + �sn, where �sn =
∑
i

�ipi

r∑
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⟨
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⟩
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(
�j,ΔG(x)

)
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(
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s
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)
− 1

]
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(m, �i)�i = �2 , where � = 10−3

(8)⟨Ω1, s⟩ = s1 , ..., ⟨Ωk, s⟩ = sk

(9)J =
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�s
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Schur decomposition is used for the partition J∗ , which contains slow vectors 
in matrix P as:

D
∙ , T and D are the transition matrix, conjugate transposition, and upper trian-

gular matrix. To eliminate fast trajectories, the product D∙Υ∗(s∗) has set equal to 
zero.

This led to the construction of a 1-D ILDM in mathematical form.

2.2  A multi‑step mechanism

A complex reaction with three steps, including six chemical species, is discussed 
in detail to understand the formation of sulfuric acid. In which oxidation of Sul-
fur dioxide is performed and consequently sulfuric acid is formed which is an 
aqueous solution [17]. In environmental chemistry this reaction is very important, 
due to the formation of acid rain in industrial process, or the combustion of fossil 
fuels Sulfur dioxide released. This complex reaction is:

In the system (13), stoichiometries in chemical reactions are mentioned in col-
umn vectors. Here, three column vectors are given which represents the coeffi-
cients of reactants and products in a balanced chemical equation as:

The rate expressions for every basic reaction step is expressed as follows:
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(11)P = DTD
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where s1 = [S], s2 =
[
O2

]
, s3 =

[
SO2

]
, s4 =

[
SO3

]
, s5 =

[
H2O

]
, s6 =

[
H2SO4

]
.

And k+
1
, k−

1
, k+

2
, k−

2
, k+

3
, k−

3
, k+

4
and k−

4
 are the rate coefficients depending on 

temperature T for the mechanism (13). By using the law of mass action, stoichiomet-
ric matrix can be expressed as follows:

For each participating species in the chemical reaction its elemental composition 
is necessary, which gives the information about the elements present in every spe-
cies and what are their quantities [18]. Molecular matrix for system (13) is given in 
Table 1.

Arbitrarily, parameters are selected for the equilibrium point as well as for for-
ward rate constants, while the backward rate constants can be calculated by applying 
law of mass action:

System (13) has three steps with six chemical components, and the rank of the 
molecular balancing matrix is three. That’s why a system can be reduced to three 
key species s2,s4 and s6 . The constants s1 , s2 and s3 in the system are evaluated 
through the use of arbitrarily equilibrated parameters in Eq.  (15). Hereafter, the 
remaining components s2 , s4 and s6 are transformed into key components by using 
the values of constants s1 , s2 and s3 the Eq. (15). The microscopic solutions of the 
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R1(s) = k+
1
s1s2 - k

−

1
s3

R2(s) = k+
2
s2s3s3 - k

−

2
s4s4

R3(s) = k+
3
s4s5 - k

−

3
s6

(15)

⎡
⎢⎢⎢⎣

101101

022314

000022

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

s4

s5

s6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

c1

c2

c3

⎤
⎥⎥⎥⎦

s
eq

1
= .5, s

eq

2
= .1, s

eq

3
= .1, s

eq

4
= .4, s

eq

5
= .2, s

eq

6
= .1

k+
1
= 0.5, k+

2
= 1, k+

3
= 1.5

Table 1  Molecular matrix for 
system (13)

S O H

S 1 0 0
O2 0 2 0
SO2 1 2 0
SO3 1 3 0
H2O 0 1 2
H2SO4 1 4 2
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reduced key species can be found by solving the reduced system (15). These solu-
tions are instrumental to showing an invariant region within the system.

Along this region, solutions achieved by model reduction techniques SQEM 
and ILDM are graphically resented. Within this invariant region, the solutions 
through model reduction techniques, such as SQEM and ILDM, are plotted and 
analyzed to assess their validity and how well they match the system’s behavior. 
The solutions pathways for a system of reduced species are given in Fig. 1.

In a dimensional manifold, a steady state is described for the key components 
over the same timescale. To elaborate this, the initials for these key components 
are set as follows: s2 at 0.0, s4 at 0.3 and s6 at 0.2. Subsequently, steady states for 
each of these key components are plotted, as illustrated in Fig. 2. Remarkably, it’s 
observed that s4 and s6 achieve their steady state with a shorter transition period 
compared to s2 . Furthermore, it’s noted that different initial conditions for the key 
components result in distinct transitional periods before reaching a steady state. 
Figure 2 visually demonstrates that all three species s2 , s4 and s6 converge toward 
their respective equilibrium points, each guided by its characteristic transitional 
period and influenced by the rate constants k+

1
= 0.5, k+

2
= 1, k+

3
= 1.5.

Fig. 1  solution pathways of 
reduced species for complex 
model (13)
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Therefore, it is observed that all species start at the same time after completing 
their transition period and attaining an equilibrium point at different time.

3  Finding and discussions

Near to the equilibrium point, our aim is to enhance the correspondence between 
SIM and initial Approximation curves. Here in this article the SQEM method 
and ILDM method are applied separately for the invariant solutions. The phase-
shifting behaviors in space R3 are achieved at the equilibrium points and com-
pared in terms of their solution trajectories shown in Fig.  3 for SQEM and in 
Fig.  4 for ILDM. For SQEM, the information on the characteristic time scales 
and their related components are generated together for the one-dimensional 
manifold. The method is used to find the initial approximated node points near 
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the equilibrium point. The initially approximated solution curve and the invari-
ant region (in which solution lies) are inspected in Fig.  3a and b respectively. 
Similarly, in Fig. 4a and b, the solution curve obtained through ILDM method, 
and their solution trajectories are presented respectively. Yet, upon convergence 
to the equilibrium point in the forward direction, it also diverges from the invari-
ant region. As anticipated, an approximated solution obtained through SQEM and 
ILDM offers a manifold near the SIM.

3.1  Comparison

Furthermore, in graphical comparison of both reduction techniques shown in 
Fig. 5a and b it’s evident that the solution curve obtained through ILDM exhib-
its less deviation when compared to the solution curve obtained through SQEM. 
This suggests that the results achieved through ILDM are more reliable and accu-
rate than those obtained through SQEM.

These comparative analyses provide valuable insights into the performance 
and reliability of different model reduction techniques, with ILDM emerging as a 
more dependable choice for our research purposes.

The comparison of both reduction techniques for the reduced species is men-
tioned in this table.

Table 2 provides the behavior of the reduced key species  O2,  SO3 and  H2SO4 
in the chemical reaction progresses. These data sets are essential for understand-
ing the dynamic behavior of the system and for evaluating the effectiveness of 
different model reduction techniques, SQEM and ILDM, in predicting the sys-
tem’s response. The data presented in the above table shows that ILDM gives a 
better approximation from SQEM when these both techniques are compared for 
different chemical species. As each point of reduced species  (O2,  SO3 and  H2SO4) 
obtained through ILDM in very close to invariant region as compared to SQEM.
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4  Conclusion

In this article, we have considered a three-step complex chemical reaction mech-
anism with five chemical species. Due to its complexity and higher dimension, it 
is impossible to get the complete solution. By applying modern model reduction 
schemes for the formation of  H2SO4 on a multi-step reaction mechanism can indeed 
lead to low dimension which computationally efficient compared to the original 
mechanism. This study is first time performed computationally.

The main achievements in this study are:

• The transition time for participating species was not discussed before this, in this 
study the transition time is measured graphically.

• The MRTs, SQEM and ILDM are employed to get the invariant solution curves.
• Sulfur dioxide  (SO2) emission with emission norms is discussed in detail
• The invariant regions and solution pathways for the formation of  H2SO4 in a 

multi-step reaction mechanism is investigated.
• Gibbs’s rule has reduced the system into lower dimensions for microscopic solu-

tions.
• It is graphically proved that slow invariant manifold obtained through ILDM is 

more accurate as compared to SQEM because the ILDM curve lies exactly in 
invariant region.

• By using this procedure, the chemists can achieve more reliable and better 
results.
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Table 2  comparison of some points (obtained through SQEM and ILDM) of reduced chemical species

S. no SQEM Points 
for specie  O2

ILDM points 
for specie  O2

SQEM points 
for specie  SO3

ILDM points 
for specie 
 SO3

SQEM points 
for specie 
 H2SO4

ILDM points for 
specie  H2SO4

1 0.0468 0.0452 0.4919 0.4671 0.1152 0.1108
2 0.0202 0.0639 0.4612 0.4447 0.1102 0.1073
3 0.0731 0.0823 0.4305 0.4223 0.1052 0.1038
4 0.1000 0.1000 0.4000 0.4000 0.1000 0.1000
5 0.1269 0.1170 0.3695 0.3777 0.0948 0.0961
6 0.1546 0.1333 0.3394 0.3554 0.0892 0.0919
7 0.1843 0.1488 0.3098 0.3333 0.0836 0.0875
8 0.2168 0.1637 0.2815 0.3114 0.0779 0.0829
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