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Abstract
Within the two-channel distorted wave second-order perturbative theoretical formal-
ism, we study capture of both electrons from helium-like targets by heavy nuclei as
projectiles at intermediate and high impact energies. The emphasis is on the four-body
single-double scattering (SDS-4B) method and the three-body continuum distorted
wave impact parameter method (CDW-3B-IPM). The SDS-4B method deals with the
full quantum-mechanical correlative dynamics of all the four interactively partici-
pating particles (two electrons, two nuclei). The CDW-3B-IPM is a semi-classical
three-body independent particle model (one electron, two nuclei), using a combinato-
rial calculus to describe double capture by a product of two uncorrelated probabilities,
integrated over impact parameters. Both theories share a common feature in having
altogether two electronic full Coulomb continuum wave functions. One such function
is centered on the projectile nucleus in the entrance channel, whereas the other is cen-
tered on the target nucleus in the exit channel. These two methods satisfy the correct
initial and final Coulomb boundary conditions in the asymptotic region of scattering,
at infinitely large inter-particle separations. Yet, it is presently demonstrated that most
of the available experimental data on total cross sections for the double capture from
helium by alpha particles distinctly favor the SDS-4Bmethod. This is especially true at
intermediate energies. Such energies are critically important in versatile applications
under the general umbrella of ion transport in matter, including thermonuclear fusion
(plasma physics) and ion therapy (medicine).
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1 Introduction

In the present study, we consider second-order two-center perturbative theories for
double electron capture by heavy nuclei from helium-like target at intermediate and
high impact energies E . The use is made of both the correlated and uncorrelated
collisional dynamics. The correlated formalism is fully quantum-mechanical with all
the four actively participating particles (two electrons, two nuclei). The uncorrelated
formalism is a semi-classical independent-particle modeling with three constituents
(one electron and two nuclei). This three-body description connects to the actual four-
body problem by providing the probability for double capture as the product of two
independent single electron probabilities for each impact parameter. Herein, transfer
of one electron at a time occurs with no reference whatsoever to what happens to the
other electron. In such an independent particle framework, the electronic motion is
quantized, while the nuclear motion develops along the classical straight-line impact-
parameter dependent trajectories.

These two formalisms satisfy the correct boundary conditions in both the entrance
and exit channels of their respective three-body or four-body problems. The theoretical
basis of the necessity to take into account the correct boundary conditions for two-
electron charge-exchange is well-known [1–8]. Earlier [9–11], the importance of these
conditions has conclusively been established for one-electron capture. The reason is
in the consistency of the theory for Coulomb collisions involving ions as projectiles
and atoms or ions or molecules as targets [7, 8].

For single and double charge exchange, the most frequently utilized perturbative
quantum-mechanical theories, in their three-body (3B) and four-body (4B) versions,
are the boundary-corrected first Born (CB1), continuum distorted wave (CDW),
boundary-corrected continuum intermediate state (BCIS), Born distortedwave (BDW)
and continuum-distorted wave—eikonal initial state (CDW-EIS) methods [12–18].
The CB1 method is of the first-order because it describes only one-step single colli-
sions of electrons with nuclei. The CDW, BCIS, BDW and CDW-EIS methods belong
to second-order theories on account of including the additional collisions in the inter-
mediate channels, the Thomas-like double-scatterings of the same electron on two
nuclei. This two-stepmechanism is in both channels (symmetric) of the CDWmethod,
whereas it is in only one channel (asymmetric) of the BCIS, BDW and CDW-EIS
methods.

In principle, vastly different choices of distorted waves can be made leading to
some symmetric and asymmetric methods. The former methods for double charge
exchange use the same type of treatments of motions of both unbound electrons in
the field of the projectile and target nuclei in the entrance and exit channels. However,
whichever choice is made for distorted waves, they must obey the exact asymptotic
behaviors in the scattering region of large inter-particle separations. Moreover, such
behaviors ought to be concordant with the short-range perturbation potentials that
cause the transitions. Symmetric, two-channel methods can be applied with no need
to distinguish between homo-nuclear and hetero-nuclear collisions. On the other hand,
when employing asymmetric, one-channel methods, care should be exercised to select
the physically appropriate variants (post or prior) depending on the values of the ratio
of the projectile and target nuclear charges.
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Regarding total cross sections Q for one-electron capture at impact energies E ≥
80 (keV/amu)max{∣∣εT

i

∣
∣ ,

∣
∣
∣εP

f

∣
∣
∣}, the CB1-3B/4B, CDW-3B/4B, BCIS-3B/4B, BDW-

3B/4B and CDW-EIS-3B/4B methods show very good agreement with measurements
for multiply charged nuclei impacting on hydrogen-like, helium-like and multi-
electron atomic andmolecular targets (e.g.H,He,Li,C,N,O,Ne,Ar,Kr,H2,N2,O2,

CO,CO2,CH4,C2H4,C2H6,H2O, ...) [7, 8]. Here, εT
i and εP

f are the initial and final
orbital energies (in atomic units) of an active electron in the Coulomb fields of the
nuclear charges of the target (T) and projectile (P), respectively.

Moreover, at the same energies, these methods for single charge exchange are
in reasonable mutual agreement for Q. Despite being the simplest theory, the CB1-
3B/4B method on Q is nevertheless very useful for one-electron transfer since it
accurately reproduces the experimental data at intermediate and high E . At such
energies, the CDW-3B/4B, BCIS-3B/4B, BDW-3B/4B andCDW-EIS-3B/4Bmethods
for one-electron capture are also successful in predicting the reliable values of Q.

In contradistinction, for two-electron capture, the CB1-4B, CDW-4B, BCIS-4B,
BDW-4B and CDW-EIS-4B methods exhibit uneven performances [3, 19–24]. Thus,
for helium targets, the CDW-4B method is successful for impinging protons [19], but
not for incident alpha particles [23]. Further, for double capture in theα−He collisions,
the CB1-4B and CDW-EIS-4B methods fail completely since, at some E within their
expected validity domains, they overestimate and underestimate the measured Q by
three and four orders of magnitude, respectively [24]. On the other hand, the results for
Q from the BCIS-4B and BDW-4B methods [3] lie in a relatively close proximity of
the experimental data for two-electron capture by alpha particles from helium targets.
It is then clear that two-electron capture processes are markedly sensitive to different
choices of distorted waves and distorting potentials.

This runs contrary to a mild sensitivity of single charge exchange to very different
selections of distorted waves and distorting potentials. One of the reasons for this
occurrence is in the need for a much more pronounced locality condition for two
electrons in double than in single electron capture from helium-like targets by nuclei.
In double charge exchange at large E , the quickly passing projectiles spend very
short time near the target and, therefore, two electrons should be in nearly the same
place at about the same time to be simultaneously captured. This constraint becomes
exacerbated in the methods that employ the identical mechanism for capture of both
electrons. As stated, the one-step single collisions of each electron are included in the
CB1-4B method when setting up the initial as well as the final total scattering wave
functions. Such a constraint makes the CB1-4B method break down at high energies.

By comparison, the BCIS-4B, BDW-4B and CDW-EIS-4B methods for two elec-
tron transfer utilize single scatterings in one channel and double scattering in the other
channel. In these methods, both electrons undergo the same collisions, either single or
double scattering in the entrance or exit channels. In other words, the BCIS-4B, BDW-
4B and CDW-EIS-4B methods do not mix single scatterings for one electron with
double scatterings for the other electron. However, this type of mixing (or hybridiza-
tion) of the two mechanisms symmetrically in each channel (entrance, exit) is made in
the quantum-mechanical second-order perturbative four-body single-double scatter-
ing (SDS-4B) method with the correct initial and final boundary conditions [4, 5]. The
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SDS-4Bmethod for the He2+ +He → He+He2+ collisions compares very well with
measurements on Q, while outperforming the CB1-4B, CDW-4B and CDW-EIS-4B
methods. It is also superior to the BCIS-4B and BDW-4B methods below 700 keV for
double capture by alpha particles from helium targets.

Specifically, in the SDS-4B method for double charge exchange, each channel
contains one electronic full Coulombwave function for one electron, which undergoes
double scatterings on both nuclei (the two-step Thomas mechanism). The other target
electron is transferred to the projectile through single scatterings on one nucleus in each
channel (the Massey velocity-matching mechanism, i.e the kinematic capture). Thus,
in the final state of the system, both electrons become bound to the projectile, albeit
by two different pathways (single and double scatterings). As a result, the SDS-4B
method takes into account the critically important electron translation factors (ETFs)
for two electrons. Furthermore, this method can include the static electron–electron
correlations in the initial and/or final bound-state by means of e.g. the configuration-
interaction (CI) wave functions.

The semi-classical impact parameter method (IPM) of two electron transfer can
be implemented in any theory, including the three-body continuum distorted wave
(CDW-3B) method with the ensuing acronym CDW-3B-IPM. Here, the three-body
impact parameter dependent transition probabilities are obtained independently for
electrons e1 and e2. This means that the probability of capture of e.g. electron e1 in a
helium-like target is obtained with no regard to electron e2.

These individual probabilities, being associated with two completely independent
uncorrelated events, are multiplied and the ensuing compound probability for capture
of both electrons is integrated over all impact parameters to arrive at total cross sections
Q [11]. By design, regarding the distortion effects, the CDW-3B-IPM also has two full
Coulomb waves, one in each channel centered on different nuclei. Therefore, it is of
interest to compare the CDW-3B-IPM and SDS-4B method, as we shall presently do
for double charge exchange in the He2++He → He+He2+ collisions at intermediate
and high energies.

Comparisons for this case as well as for other encounters are necessary in order to
establish a practical theory, which could fill in the lacunae in the existing total cross
section databases for double charge exchange in ion-atom collisions. Such databases
aremuch in demand as the input quantities toMonte Carlo simulations of energy losses
of ions during their passage through matter. These transport phenomena are pivotal,
especially to ion plasma in thermonuclear fusion (a powerful new energy source) and
to ion therapy (treatment of patients with deep-seated tumors) [7, 8, 25]. For example,
reliable total cross sections for double charge exchange in theHe2+ − Li collisions can
provide adequate information about the alpha particle distributions and confinement
in hot tokamak plasmas from nuclear fusion reactors [26–29].

Atomic units will be used throughout unless noted otherwise.
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2 Theory

2.1 General link of the undistorted and distorted wave theories

Within the four-body quantum-mechanical spin-independent non-relativistic formal-
ism, double electron capture by a nucleus P from a helium-like target having a nucleus
T is schematized via:

ZP + (ZT; e1, e2)i −→ (ZP; e1, e2) f + ZT. (1)

Here, the parentheses symbolize the bound states of electrons e1 and e2, characterized
by the standard set {i, f } of quantum numbers. The two nuclei in process (1) are heavy
and their charges and masses are ZP,T and MP,T � 1, respectively.

Let the particles e1, e2, P and T be labeled by 1, 2, 3 and 4, respectively. The
position vector of the k th particle with respect to the center O of an arbitrary Galilean
reference frame XOYZ is denoted by rk (k = 1 − 4). Vectors xk and sk are the
position vectors of ek relative to ZT and ZP, respectively (k = 1, 2). Moreover, R is
the relative vector of ZP with respect to ZT. Also, r12 is the relative vector of e1 with
respect to e2. Further, r i and r f are the relative vectors of P and T with respect to the
centers-of-masses of the atomic systems (ZT; e1, e2)i and (ZP; e1, e2) f , respectively.
The reduced masses of the entire systems in the entrance and exit channels of process
(1) are μi = MP(MT + 2)/M and μ f = MT(MP + 2)/M, where M = MP + MT + 2.

The relationships among these vectors can be written in the following forms:

x1 = r1 − r4, x2 = r2 − r4, s1 = r1 − r3, s2 = r2 − r3
R = x1 − s1 = x2 − s2, r12 = r1 − r2, x12 = x1 − x2, s12 = s1 − s2

r12 = x12 = s12

⎫

⎬

⎭
, (2)

r i = r3 − r1 + r2 + MTr4
MT + 2

, r f = r4 − r1 + r2 + MPr3
MP + 2

r i = −b′r f − a′

μi
(s1 + s2), r f = −a′r i − b′

μ f
(x1 + x2)

a′ = MP

MP + 2
, b′ = MT

MT + 2

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (3)

Internuclear vector R is resolved into its two components, R = ρ + v Ẑ. The two-
dimensional vector ρ = (ρ, φρ) is in the scattering (XOY) plane and Ẑ is the unit
vector of the Z-axis in the XOYZ reference system. Incident vector vi ≡ v is hereafter
set along the Z-axis, implying ρ · v = 0. Here, ρ is not an impact parameter vector
because, in this Section, only the fully quantum-mechanical theory is used for all the
four particles (two electrons and two nuclei).

The initial and final wave vectors ki, f = μi, f vi, f are collinear with velocities vi, f
of the incident and scattered projectiles, respectively. For heavy nuclei MP,T � 1,
forward scattering prevails so that v f ≈ vi ≡ v. Vector ki is the momentum vector of
P with respect to (ZT; e1, e2)i , whereas k f is the momentum vector of (ZP; e1, e2) f
relative to T.
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The kinetic energy operators Ki and K f describe the relative motions of the heavy
scattering aggregates ZP+(ZT; e1, e2)i and (ZP; e1, e2) f +ZT in the entrance and exit
channels, respectively. The corresponding purely electronic kinetic energy operators
are H0T and H0P. The total kinetic energy operator H0 for the whole system can
be written as the following equivalent expressions in terms of the three sets of the
independent variables {r1, r2, r3, r4}, {x1, x2, r i } or {s1, s2, r f }:

H0 = Ki + H0T, Ki = − 1

2μi
∇2
ri , H0T = − 1

2b
∇2
x1 − 1

2b
∇2
x2

H0 = K f + H0P, K f = − 1

2μ f
∇2
r f , H0P = − 1

2a
∇2
s1 − 1

2a
∇2
s2

a = MP

MP + 1
, b = MT

MT + 1

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (4)

Herein, the limits 1/MT,P 	 1 are exploited to neglect the mass-polarization potential
operators −(1/MT)∇x1 · ∇x2 in H0T and −(1/MP)∇s1 · ∇s2 in H0P. Thus, the total
interactive Hamiltonian H can also be cast into the two forms connected with the
initial/final Hamiltonians Hi, f :

H = H0 + V = Hi + Vi = H f + V f

Hi = H0 + VT = Ki + hi , hi = H0T + VT

H f = H0 + VP = K f + h f , h f = H0P + VP

⎫

⎬

⎭
, (5)

where V is the complete interaction and hi, f are the purely electronic Hamiltonians.
Further, Vi, f are the initial/final perturbation interactions, whereas VT and VP are the
potentials in the bound systems (ZT; e1, e2)i and (ZP; e1, e2) f , respectively:

V = VPT + V12 + (VP1 + VP2) + (VT1 + VT2)

VPT = ZPZT

R
, V12 = 1

r12
VP = VP1 + VP2 + V12, VT = VT1 + VT2 + V12

VPk = − ZP

sk
, VTk = − ZT

xk
(k = 1, 2)

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (6)

Asymptotically, i.e. at large inter-particle distances (R → ∞), the perturbations Vi, f
are of long range:

Vi ≈ V∞
i (R → ∞), V∞

i = ZP(ZT − 2)

R

V f ≈ V∞
f (R → ∞), V∞

f = ZT(ZP − 2)

R

⎫

⎪⎬

⎪⎭

. (7)

Therefore, except for the special cases ZT,P = 2, the interactions Vi, f are respectively
reduced to the non-zero Coulombic potential V∞

i, f in the asymptotic scattering region
(R → ∞).
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The unperturbed initial/final states �i, f are the solutions of their channel Hamil-
tonians Hi, f :

(Hi − Ei )�i = 0, Ei = k2i
2μi

+ εT
i

(H f − E f )� f = 0, E f = k2f
2μ f

+ εP
f

Ei = E f = E

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (8)

In the total energies Ei, f of the entire system, k2i, f /(2μi, f ) and ε
T,P
i, f are the kinetic

energies of the heavy scattering aggregates and the electronic binding energies in the
entrance/exit channels, respectively. The eigen-energies ε

T,P
i, f and the corresponding

eigen-functions ϕi, f are the solutions of their eigen-value problems:

(hi − εT
i )ϕi (x1, x2) = 0, (h f − εP

f )ϕ f (s1, s2) = 0. (9)

Using these eigen-problems, the solutions of the equations from (8) for �i, f read as:

�i = ϕi (x1, x2)eiki ·r i , � f = ϕ f (s1, s2)e−ik f ·r f , (10)

where e±iki, f ·r i, f are the plane waves for the free relative motions of heavy scattering
aggregates. Note that the minus sign in the exponent e−ik f ·r f is due to the mentioned
definition of k f as the momentum vector of (ZP; e1, e2) f relative to T rather than the
other way around.

In calculations for heavy particle collisions, it is convenient to exploit the following
amply justified approximations:

R ≈ r i , R ≈ −r f (MP,T � 1). (11)

This can be utilized in the potentialVPT, Vi, f , V∞
i, f and theirCoulombcontinuumwave

functions (or the associated asymptotes) for the relative motions of heavy particles,
e.g:

V∞
i ≈ ZP(ZT − 2)

ri
, V∞

f ≈ ZT(ZP − 2)

r f
(MP,T � 1). (12)

However, for the rearrangement processes of type (1), it is not allowed to apply (11)
to the initial/final unperturbed states �i, f nor to their product:

�i�
�
f = ϕiϕ

�
f e

iki ·r i+ik f ·r f . (13)

The reason is that the usage of the approximations (11) in (13) for �i, f or �i�
�
f

would obliterate the ETFs whose importance grows with augmenting impact energy.
For the two electrons in double charge exchange, the ETFs are −iv · (x1 + x2).
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The channel states �i, f persist to be unperturbed only if the short-range potentials
remain in the asymptotic region of scattering. However, for ZT,P �= 2 in process
(1), the long-range Coulomb potentials V∞

i, f persist at R → ∞. In other words, the
scattering particles are not asymptotically free because they move in the Coulomb
fields V∞

i, f . Such motions cannot be described by the plane waves e±iki, f ·r i, f since
V∞
i, f (R) generate Coulomb distortions even at R → ∞. Thus, for ZT,P �= 2 in process

(1), the relative motions of the heavy scattering aggregates should be described by the
full Coulomb wave functions for V∞

i, f (R). At large distances, the leading term of the
asymptotic behavior of any given Coulomb continuum wave function is represented
by the Coulomb logarithmic phase factor (the eikonal phase).

To accommodate for these special features of Coulomb scattering, the unperturbed
channel states�i, f should be “dressed” through the appropriate modifications of their
phases. Thepresence of the long-rangeCoulombpotentials at R → ∞, dictates that the
phase adjustments of the unperturbed channel states are to be made via multiplications
of �i, f by the Coulomb asymptotic states E±

i, f for V
∞
i, f from (7) or (12):

E = e±iνi, f ln(ki, f ri, f −ki, f ·r i, f ) ≈ e±iνi, f ln(ki, f R∓ki, f ·R )

νi = ZP(ZT − 2)

v
, ν f = ZT(ZP − 2)

v

⎫

⎬

⎭
. (14)

The Coulomb-dressed channel states �±
i, f can now be introduced by means of the

products:

�±
i, f = �i, f E±

i, f

�±
i, f = �i, f e

±iνi, f ln(ki, f ri, f −ki, f ·r i, f )

�±
i, f = ϕi, f e

±iki, f ·r i, f ±iνi, f ln(ki, f ri, f −ki, f ·r i, f )

⎫

⎪⎬

⎪⎭

. (15)

For consistency, it is not permitted to modify the scattering wave functions without
the appropriate alterations of the associated perturbation potentials. The unperturbed
channel states �i, f must correspond to the channel perturbations Vi, f . Therefore, if
�i, f are changed to �±

i, f , the associated perturbation potentials Vi, f must be altered
accordingly. In order to make the sought phase corrections to �i, f , the Coulomb
potentials V∞

i, f should be subtracted from Vi, f to yield the modified interactions Ṽi, f
of short range at R → ∞:

Ṽi ≡ Vi − V∞
i = 2ZP

R
− ZP

s1
− ZP

s2

Ṽ f ≡ V f − V∞
f = 2ZT

R
− ZT

x1
− ZT

x2

⎫

⎪⎪⎬

⎪⎪⎭

. (16)

Hence, it is �±
i, f and Ṽi, f that should be coupled together in the Coulomb-modified

entrance/exit channels. Working with the modified channel states �±
i, f [11] is for-

mally equivalent to dealing with the Coulomb-distorted Møller wave operators [9]. In
practice, the former is more manageable than the latter.
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The quantum-mechanical dynamics of the four-body problem in process (1) is
described by the complete Schrödinger equation for the full wave function 
. This
latter wave function has the variants 
+

i and 
−
f with the outgoing and incoming

boundary conditions for the initial and final states, consistent with �+
i and �−

f at
R → ∞, in the entrance and exit channels, respectively:

(H − E)
 = 0, (H − Ei, f )

±
i, f = 0


±
i, f ≈ �±

i, f (R → ∞)

}

. (17)

This means that the complete Schrödinger equations for the initial/final total scattering
states should be solved with the physical boundary conditions requiring that 
±

i, f

coincide asymptotically with the Coulomb-dressed channel states �±
i, f .

If the perturbation potentials Vi, f were of short range, the exact prior/post transition
amplitudes T∓

i f would be defined as:

T−
i f = 〈
−

f |Vi | �i 〉, T+
i f = 〈� f

∣
∣
∣V †

f

∣
∣
∣ 


+
i 〉. (18)

This definition should be modified when Vi, f are of long range because of their non-
vanishing Coulombic tails V∞

i, f �= 0 at R → ∞. In such cases, �i, f from (10) do
not possess the correct asymptotic forms. As stated, the proper modifications consist
of replacing �i, f by �±

i, f and by simultaneously subtracting V∞
i, f from Vi, f . Such a

twofold change maps T∓
i f from (18) to:

T−
i f = 〈
−

f

∣
∣Ṽi

∣
∣�+

i 〉, T+
i f = 〈�−

f

∣
∣
∣Ṽ †

f

∣
∣
∣


+
i 〉, (19)

where Ṽi, f are from (16). For determination of the initial/final total scattering states

±

i, f for process (1), the distorted wave theory offers a flexible framework. This can be
used to obtain the transition amplitudes containing the total scattering wave functions
of the correct asymptotic behaviors consistent with the corresponding perturbation
potentials. To proceed within this formalism, the distorted waves χ±

i, f , with the same

exact asymptotic behaviors as for 
±
i, f at R → ∞, are defined by the following

equations:

(

Hi, f + Wi, f − E
)

χ±
i, f = 0

χ±
i, f ≈ �±

i, f (R → ∞)

}

. (20)

Here, Wi, f are some distorting potentials of the type Wi, f = wi, f + W d
i, f , with

short-range and long-range interactions wi, f and W d
i, f , respectively.

Thus, the original problems in (17), having the solutions 
±
i, f without the distorted

wave formalism, are represented by the model problems in (20) whose solutions χ±
i, f

are in the distortedwave representation.However, it is necessary to connect the original
and model problems. To that end, the Schrödinger operator E − H from (17) should
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appear also in (20). Inserting Hi, f = H − Vi, f into (20), the ensuing equations
(H − E)χ±

i, f = (Vi, f − Wi, f )χ
±
i, f are combined with (17) to have:

(H − E)χ±
i, f = Ui, f χ

±
i, f

(H − E)
±
i, f = 0

}

, (21)

Ui, f = Vi, f − Wi, f . (22)

Similarly to the exact Schrödinger equations, the distortedwave equations now contain
the operator H − E but, additionally, they have the extra terms Ui, f χ

±
i, f . As they

stand, the wave functions χ±
i, f and 
±

i, f remain decoupled. They can be coupled by
subtracting the second from the first equations in (21) so that:

(H − E)χ±
i, f − (H − E)
±

i, f = Ui, f χ
±
i, f , (23)

or equivalently

(E − H)(
±
i, f − χ±

i, f ) = Ui, f χ
±
i, f . (24)

If the inverse of the operator E − H were non-singular, we could multiply (24) from
left by (E − H)−1 to deduce the difference 
±

i, f − χ±
i, f . However, (E − H)−1 has

singularities at the eigen-values of H . Nevertheless, these singularities, as the real-
valued eigen-energies (H is a Hermitean operator), can be avoided by adding the
purely imaginary terms ±iε to E − H in (24), where ε is an infinitesimally small
positive number, which tends to zero through positive numbers:

(E − H ± iε)(
±
i, f − χ±

i, f ) = Ui, f χ
±
i, f , (25)

provided that

iε(
±
i, f − χ±

i, f ) = 0 at ε → 0+. (26)

Thus, the inverses (E−H±iε)−1 of E−H±iε are non-singular for ε > 0.Therefore,
it is now allowed to multiply (25) from left by (E − H ± iε)−1. Subsequently, the
usage of the relations (E − H ± iε)−1(E − H ± iε) = 1 yields:


±
i, f =

(

1 + 1

E − H ± iε
Ui, f

)

χ±
i, f , ε → 0+. (27)

These equations can be written more compactly when the operators 1/(E − H ± iε)
are denoted by G±:


±
i, f = (

1 + G±Ui, f
)

χ±
i, f , (28)

G±(E) = 1

E − H ± iε
, ε → 0+. (29)
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Operators G±(E) represent the resolvents, recognized as the standard full Green’s
operators. In the customary theory of scattering, the Green operators G±(E) are first
defined as the two equivalent resolvents of E − H and subsequently related to 
±

i, f .

Alternatively, to arrive at (28), the expressions for G±(E) in (29) are derived in the
just outlined steps. This came out naturally from connecting the exact Schrödinger
Eq. (17) for 
±

i, f to the distorted wave Eq. (20) for χ±
i, f .

In the distorted wave formalism, the exact transition amplitudes with the prior and
post interactions are given by:

T−
i f = 〈
−

f |Ui | χ+
i 〉, T+

i f = 〈χ−
f

∣
∣
∣U †

f

∣
∣
∣


+
i 〉. (30)

It is very important to draw attention to a parallel structure of (19) and (30). These
two transition amplitudes share the same exact wave functions 
±

i, f . Therein, the

scattering states �±
i, f and χ±

i, f are both associated with the same channel potentials
Vi, f fromwhich, however, two different interaction pairs V∞

i, f andWi, f are subtracted.
This secures the emphasized crucial consistency between the scattering states and the
corresponding perturbation potentials that produce the transitions.

If the terms G±Ui, f are neglected in (28), the lowest-order approximations to
±
i, f

in the distorted wave formalism would emerge as:


±
i, f ≈ χ±

i, f . (31)

In such a case, the lowest-order transition amplitudes (also denoted by T∓
i f ) are:

T−
i f = 〈χ−

f |Ui | χ+
i 〉, T+

i f = 〈χ−
f

∣
∣
∣U †

f

∣
∣
∣χ

+
i 〉. (32)

From here, various theories can be formulated for different sets of the distorted wave
functions and distorting potentials. One of such theories is the SDS-4B method [4, 5].

2.2 Four-body single-double scatteringmethod: SDS-4B

2.2.1 Description of the entrance channel

In the entrance channel, we look for the initial distorted wave χ+
i as a factorized

function:

χ+
i = ϕi (x1, x2)ζ

+
i , (33)

where ζ+
i is to be found. This product should reflect the influence of the field from the

external perturbation (caused by the presence of the projectile) to the initial channel
state �i from (10). To proceed, the long-range perturbation interaction potential Vi
from (5) is partitioned as:
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Vi = ZPZT

R
− ZP

s1
− ZP

s2
=

[
ZP(ZT − 1)

R
− ZP

s1

]

+
(
ZP

R
− ZP

s2

)

. (34)

This subdivision of Vi is made to group ZP(ZT − 1)/R − ZP/s1 with H0 and ZP/R −
ZP/s2 with Ui . At R → ∞, the potential ZP/R − ZP/s2 is of short range since it
decreases as 1/Rn (n > 1). In the same limit R → ∞, the interaction ZP(ZT−1)/R−
ZP/s1 is of long range since it behaves like ZP(ZT − 2)/R ≈ ZP(ZT − 2)/ri ≡ V∞

i
on account of (7) and (12).

By inserting (33) into Eq. (20) for χ+
i and using the eigen-value problem (9) for

ϕi , it follows:

ϕi

[

�Ei − H0 − ZP(ZT − 1)

R
+ ZP

s1

]

ζ+
i

+
[

Ui − ZP

(
1

R
− 1

s2

)]

χ+
i + 1

b

2
∑

k=1

∇xkϕi · ∇xk ζ
+
i = 0, (35)

where �Ei = E − εT
i = k2i /(2μi ). In (35), the potential Ui is now chosen according

to:

Uiχ
+
i = ZP

(
1

R
− 1

s2

)

χ+
i − 1

b

2
∑

k=1

∇xkϕi · ∇xk ζ
+
i . (36)

This selection of Ui reduces the inhomogeneous Eq. (35) for ζ+
i to its homogeneous

counterpart:

[

H0 + ZP(ZT − 1)

R
− ZP

s1
− �Ei

]

ζ+
i = 0. (37)

In (37), the independent variables can be separated in the heavy-particle mass limit.
Then, with the help of the approximations from (11), the exact solution of (37) is
obtained as:

ζ+
i = μ

−iνP
i N+(ν̃i ) e

iki ·r iD+
i (s1)1F1(−i ν̃i , 1, iki r f + iki · r f ), (38)

D+
i (s1) = N+(νP)1F1(iνP, 1, ivs1 + iv · s1), (39)

N+(ν̃i ) = �(1 + i ν̃i )e
−πν̃i /2, ν̃i = ZP(ZT − 1)

v
, (40)

N+(νP) = �(1 − iνP)e
πνP/2, νP = ZP

v
. (41)

Here, � is the complex Euler gamma function and 1F1 is the Gauss confluent hyper-
geometric function (the Kummer hypergeometric function). By design, the expression
(38) for ζ+

i does not depend of the coordinates of electron e2. This leads to the relation
∇x2ζ

+
i = 0, which annuls the term k = 2 from the sum over k on the rhs of Eq. (36),

123



618 Journal of Mathematical Chemistry (2024) 62:606–633

so that:

Uiχ
+
i = ZP

(
1

R
− 1

s2

)

χ+
i − 1

b
∇x1ϕi · ∇x1ζ

+
i . (42)

Substitution of ζ+
i from (38) into (33) gives the distorted wave χ+

i :

χ+
i = μ

−iνP
i N+(ν̃i )N

+(νP)e
iki ·r i ϕi (x1, x2)

× 1F1(−i ν̃i , 1, iki r f + iki · r f )1F1(iνP, 1, ivs1 + iv · s1). (43)

In the mass limit, this solution satisfies the correct asymptotic behavior χ+
i ≈

�+
i (R → ∞) prescribed by (20) for χ+

i . This can be readily verified by using
the standard asymptotic forms of the two confluent hypergeometric functions from
(43). Such a key feature follows from the mentioned long-range asymptote V∞

i of the
perturbation potential ZP(ZT − 1)/R − ZP/s1 from Eq. (37) for ζ+

i . The performed
analysis completes the description the entrance channel in the SDS-4Bmethod through
specifying the perturbation potential operator Ui and the initial distorted wave χ+

i in
(42) and (43), respectively.

2.2.2 Description of the exit channel

Similarly to the preceding briefing, the distorted wave χ−
f in the exit channel is also

factorized in an analogous way:

χ−
f = ϕ f (s1, s2)ζ

−
f . (44)

The task is then to determine the unknown function ζ−
f . To start, the perturbation

potential V f is reshuffled first as:

V f = ZPZT

R
− ZT

x1
− ZT

x2
=

[
ZT(ZP − 1)

R
− ZT

x1

]

+
(
ZT

R
− ZT

x2

)

. (45)

With such a splitting of V f , the potential ZT(ZP − 1)/R − ZT/x1 is associated with
H0 and ZT/R− ZT/x2 withU f .At R → ∞, the interaction ZT/R− ZT/x2 is of short
range, whereas the potential ZT(ZP − 1)/R − ZT/x1 becomes Coulombic, after using
(7) and (12), i.e. ZT(ZP − 2)/R ≈ ZT(ZP − 2)/r f ≡ V∞

f .

By substituting (44) into (20) for χ−
f and employing the eigen-value problem (9)

for ϕ f , we have:

ϕ f

[

�E f − H0 − ZT(ZP − 1)

R
+ ZT

x1

]

ζ−
f

+
[

U f − ZT

(
1

R
− 1

x2

)]

χ−
f + 1

a

2
∑

k=1

∇skϕ f · ∇sk ζ
−
f = 0, (46)
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where �E f = E − εP
f = k2f /(2μ f ). Here, the potential U f is selected as:

U f χ
−
f = ZT

(
1

R
− 1

x2

)

χ−
f − 1

a

2
∑

k=1

∇skϕ f · ∇sk ζ
−
f . (47)

This transforms the inhomogeneous Eq. (46) to its homogeneous companion:

[

H0 + ZT(ZP − 1)

R
− ZT

x1
− �E f

]

ζ−
f = 0. (48)

Exploiting again the mass limit for heavy particles, the approximation R ≈ −r f

from (11) can be employed to make Eq. (48) separable. Due to this circumstance, the
solution of Eq. (48) for ζ−

f is obtained by a standard procedure [4] as:

ζ−
f = μ

iνT
f N−(ν̃ f )e

−ik f ·r f D−
f (x1)1F1(i ν̃ f , 1,−ik f ri − ik f · r i ), (49)

D−
f (x1) = N−(νT)1F1(−iνT, 1,−ivx1 − iv · x1), (50)

N−(ν̃ f ) = �(1 − i ν̃ f )e
−πν̃ f /2, ν̃ f = ZT(ZP − 1)

v
, (51)

N−(νT) = �(1 + iνT)e
πνT/2, νT = ZT

v
. (52)

By construction, the function (49) is independent of the coordinates of electron e2, so
that ∇s2ζ

−
f = 0. This makes the term k = 2 in the sum over k on the rhs of Eq. (47)

disappear and the expression for U f is reduced to:

U f χ
−
f = ZT

(
1

R
− 1

x2

)

χ−
f − 1

a
∇s1ϕ f · ∇s1ζ

−
f . (53)

Insertion of ζ−
f from (49) into (44) specifies the distorted wave χ−

f as:

χ−
f = μ

iνT
f N−(ν̃ f )N

−(νT)e
−ik f ·r f ϕ f (s1, s2)

× 1F1(i ν̃ f , 1,−ik f ri − ik f · r i )1F1(−iνT, 1,−ivx1 − iv · x1). (54)

This function possesses the proper asymptotic behavior stated in (20) for χ−
f . To

check it in the mass limit, it suffices to use the asymptotic forms of the confluent
hypergeometric functions from (54). In fact, already the partitioning of V f in (45)
gives a hint that at R → ∞ the long-range Coulomb tail ZT(ZP − 2)/R = V∞

f of

potential ZT(ZP−1)/R−ZT/x1 will produce the asymptotically correct ζ−
f . This latter

function then provides the distorted wave χ−
f with the requested behavior χ−

f ≈ �−
f

at R → ∞.
By completing this description of the exit channel, we can conclude that the pairs

of the dynamic quantities {χ+
i ,Ui } and {χ−

f ,U f } in the SDS-4B method are fully
specified in accordancewith the correct initial andfinal boundary conditions. If desired,

123



620 Journal of Mathematical Chemistry (2024) 62:606–633

Ui, f can be extracted as the operator perturbation potentials fromUi, f χ
±
i, f in (42) and

(53). However, this is unnecessary since it is the quantitiesUi, f χ
±
i, f that appear in the

transition amplitudes T∓
i f in (30).

In setting up the pairs {χ±
i, f ,Ui, f }, the pertinent bound-state eigen-value problems

in (9) are used. In practice, however, the existing approximations to the wave functions
ϕi, f do not satisfy exactly their respective eigen-equations from (9) for any helium-
like atomic systems. Therefore, in principle, the terms (hi, f −ε

T,P
i, f )ϕi, f �= 0 should be

kept in the equations forχ±
i, f , respectively. This wouldmodifyUi, f χ

±
i, f by subtracting

the non-zero terms −ζ±
i, f (hi, f − ε

T,P
i, f )ϕi, f from the right hand sides of Eqs. (36) and

(47), respectively.
However, the explicit contributions of these additional terms have been found to be

completely insignificant in computations on total cross sections Q within the CB1-4B
method for double charge exchange in the He2+ − He collisions [21]. It is reason-
able to suppose that this conclusion could also be valid for the SDS-4B method.
Under this assumption, we opted not to include the supplementary perturbative terms
−ζ±

i, f (hi, f − ε
T,P
i, f )ϕi, f in Ui, f χ

±
i, f , respectively.

2.2.3 Transition amplitudes

Having determined {χ±
i, f ,Ui, f }, we can now return to (32) for prior T−

i f and post T
+
i f

transition amplitudes. To point to the SDS-4B method, these amplitudes are denoted
by T (SDS−4B)∓

i f and we can write their symmetrized forms as:

T (SDS−4B)−
i f (η ) =

∫∫∫

dr idx1dx2P12χ
−�
f

×
[

ZP

(
1

R
− 1

s2

)

χ+
i − 1

b
∇x1ϕi · ∇s1ζ

+
i

]

, (55)

T (SDS−4B)+
i f (η ) =

∫∫∫

dr f ds1ds2P12χ
+
i

×
[

ZT

(
1

R
− 1

x2

)

χ−�
f − 1

a
∇s1ϕ

�
f · ∇x1ζ

−�
f

]

, (56)

P12 = 1 + P12√
2

. (57)

Here, the mass constants a and b, multiplying the gradient operators, are formally
kept, but they can be set to unity in the heavy particle mass unit. This would be
consistent given that the same mass limit 1/MP,T 	 1 was also used in deriving the
main quantities {χ±

i, f ,Ui, f } in the SDS-4B method.
In (57), quantity P12 is the permutation operator, which exchanges the role of

electrons e1,2. Without the symmetrization operator P12, the unsymmetrized transi-
tion amplitudes from (55) and (56) describe electrons e1 and e2 as undergoing the
single- and double-scatterings, respectively. The factor P12 symmetrizes these tran-
sition amplitudes to account for the fact that the same probability is obtained when
electrons e1 and e2 undergo the double- and single-scatterings, respectively.
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In the matrix elements (55) and (56) within the usual eikonal setting, the product
of the two Kummer functions for the relative motion of heavy nuclei can be simplified
in the usual way [4]:

N+(ν̃i )N−�(ν̃ f )1F1(−i ν̃i , 1, iki r f + iki · r f ) 1F1(−i ν̃ f , 1, ik f ri + k f · r i )
= ei ν̃i lnμ(vR−v·R)ei ν̃ f lnμ(vR+v·R)

= (μvρ)2i ν̃i (vR + v · R)−iξ = (μvρ)2i ν̃ f (vR − v · R)iξ , (58)

ξ = ZT − ZP

v
, μ = MPMT

MP + MT

, (59)

where (μvR + μv · R)(μvR − μv · R) = (μvρ)2 due to R = ρ + v Ẑ and ρ · v = 0.

2.2.4 Cross sections

Of course, the constant phases of unit amplitudes (μv)2i ν̃ f ,i from (58) disappear from
differential and total cross sections (d/d�)Q(SDS−4B)∓

i f and Q(SDS−4B)∓
i f , respectively.

However, the phases ρ2i ν̃ f ,i from (58) need to be kept in (d/d�)Q(SDS−4B)∓
i f , but not

in Q(SDS−4B)∓
i f to which they give no contribution. Therefore, Q(SDS−4B)∓

i f can be

written using T (SDS−4B)∓
i f without the phases (μvρ)2i ν̃ f ,i :

Q(SDS−4B)∓
i f (a20) =

∫

dη

∣
∣
∣
∣
∣

T (SDS−4B)∓
i f (η )

2πv

∣
∣
∣
∣
∣

2

, (60)

T (SDS−4B)−
i f (η ) = N (v)

∫∫∫

dx1dx2dR (vR − v · R)iξDK−
i f , (61)

T (SDS−4B)+
i f (η ) = N (v)

∫∫∫

ds1ds2dR (vR + v · R)−iξDK+
i f , (62)

K−
i f = P12ϕ

�
f (s1, s2) 1F1(iνT, 1, ivx1 + iv · x1)

[

ZP

(
1

R
− 1

s2

)

ϕi (x1, x2)

−1

b
∇x1ϕi (x1, x2) · ∇s1

]

1F1(iνP, 1, ivs1 + iv · s1), (63)

K+
i f = P12ϕi (x1, x2) 1F1(iνP, 1, ivs1 + iv · s1)

[

ZT

(
1

R
− 1

x2

)

ϕ�
f (s1, s2)

−1

a
∇s1ϕ

�
f (s1, s2) · ∇x1

]

1F1(iνT, 1, ivx1 + iv · x1), (64)

D ≡ eiki ·r i+ik f ·r f = eiα·(s1+s2)+iβ·(x1+x2)

= e2iβ·R−iv·(s1+s2) = e−2iα·R−iv·(x1+x2)

}

, (65)

α = η − v+v̂

2
, β = −η + v−v̂

2
, α + β = −v

v+ = v + �ε

v
, v− = v − �ε

v
, �ε = εP

f − εT
i

⎫

⎪⎪⎬

⎪⎪⎭

, (66)
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N (v) = N (νT)N
�(νP). (67)

In the above expressions, the quantity η is the transversemomentum transfer vector,
lying in the XOY plane and thus being orthogonal to the incident velocity v which is,
as stated, in the Z-direction of the XOYZ system of reference (thus η · v = 0).

2.3 The independent particle method and the CDW-3B-IPM

As stated, the CDW-3B-IPM for double capture by heavy nuclei from multi-electron
targets is based on the CDW-3B method for single capture from the same atoms.
To complement our earlier general remarks from Sect. 1 on the CDW-3B-IPM for
double capture, we give here some more specific details deemed necessary for the
general reader. To that end, we first recall the main working formulae of the CDW-3B
method on Q for electron capture by heavy nuclei from hydrogen-like targets. This
pure three-body collision is symbolized as:

ZP + (ZT, e)i −→ (ZP, e) f + ZT. (68)

In the eikonal limit of large nuclear masses (MP,T � 1) and small scattering angles,
the fully quantum-mechanical version of the prior form of the total cross section Q in
the CDW-3B method for (68) reads as [30]:

Q(CDW−3B)−
i f (a20) =

∫

dη

∣
∣
∣
∣
∣

T (CDW−3B)−
i f (η )

2πv

∣
∣
∣
∣
∣

2

. (69)

The transition amplitude T (CDW−3B)−
i f (η ) depends on the transversemomentum trans-

fer η and for v̂ ‖ Ẑ it reads as:

T (CDW−3B)−
i f (η ) = −1

b
N (v)I , I = J · K , (70)

J =
∫

dx ei p·x1F1(iνT, 1, ivx + iv · x )∇xϕi (x ), (71)

K =
∫

ds eiq·sϕ�
f (s )∇s1F1(iνP, 1, ivs + iv · s ), (72)

p = −η − ṽ−v̂, q = η − ṽ+v̂, p + q = −v

ṽ− = v

2
− �ε̃

v
, ṽ+ = v

2
+ �ε̃

v
, �ε̃ = ε̃P

f − ε̃T
i

⎫

⎬

⎭
, (73)

where N (v) is given by (67) with the same Sommerfeld parameters νP and νT as in
(41) and (52). In process (68), vectors x and s connect the electron e to the target
and projectile nuclear charges ZP and ZT, respectively. For this collision, the wave
functions ϕi (x ) and ϕ f (s ), alongside the corresponding energies ε̃T

i and ε̃P
f , with the

standard triple of the quantum numbers i = {ni limi } and f = {n f l f m f }, describe
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the initial and final bound states of the hydrogen-like systems (ZT, e)i and (ZP, e) f
in the entrance and exit channel, respectively.

As it stands, the transition amplitude T (CDW−3B)−
i f from (70) is purely electronic.

For computations of Q, the phase (μvρ)2iνPT , as the only remnant of the presence of
the Coulomb internuclear potential VPT, is dropped from T (CDW−3B)−

i f . This is similar

to the neglect of the ρ−dependent phases in T (SDS−4B)−
i f from (61), when computing

Q(SDS−4B)−
i f from (60). In (μvρ)2iνPT , the reduced mass μ is from (59) and νPT =

ZPZT/v is the Sommerfeld parameter for the internuclear potential VPT = ZPZT/R.
The omitted phase (μvρ)2iνPT does not contribute to Q, but it needs to be reintroduced
for differential cross sections [11, 31].

Vectors η and ρ are the two canonical conjugate variables. As such, for the given
two functions, if one of them depends on η and the other on ρ, they can be inter-
connected by the direct and inverse two-dimensional Fourier integrals. Taking these
two functions to be the transition amplitudes T (CDW−3B)−

i f (η ) and A(CDW−3B)−
i f (ρ ), it

follows:

A(CDW−3B)−
i f (ρ ) = 1

2π

∫

dη eiη·ρT (CDW−3B)−
i f (η ), (74)

where, as before, ρ · v = 0 and η · v = 0. The total cross section Q could alternatively

be computed by integrating
∣
∣
∣A(CDW−3B)−

i f (ρ )

∣
∣
∣

2
over ρ. Advantageously, by virtue of

the Parseval relation, the result is exactly the same as that due to the corresponding
integration of T (CDW−3B)−

i f (η ) over η in Q(CDW−3B)−
i f from (69).

For any quantum numbers {ni, f li, f mi, f }, the general analytical expressions of
T (CDW−3B)−
i f (η ) from (70) for the pure three-body problem (68) as well as for multi-

electron targets in the Roothan-Hartree-Fock (RHF) formalism are available in the
literature alongside the corresponding computer codes [32–38]. In the RHF frame-
work [11], only one electron is considered as active, whereas all the other electrons
are viewed as passive (i.e. they occupy the same orbitals before and after the colli-
sion). These analytical expressions for T (CDW−3B)−

i f (η ) permit deduction of the general

expressions for A(CDW−3B)−
i f (ρ ) by means of the inverse Fourier integral [31].

An explicit expression ofA(CDW−3B)−
i f (ρ ) for the ground-to-ground state transition

(i = 1s, f = 1s) in process (68) can be found in Ref. [31] as a compact formula with
two one-dimensional numerical quadratures. The same formula contains an appro-
priate adaptation for an effective target nuclear charge. A linear combination of this
type of the ρ−dependent transition amplitudes allows applications to single capture
by heavy nuclei from multi-electron targets in the RHF formalism, as illustrated in
Ref. [31] for differential cross sections (d/d�)Q(CDW−3B)−

i f .

For the hydrogen-like and multi-electron systems, both T (CDW−3B)−
i f (η ) and

A(CDW−3B)−
i f (ρ ) treat the motions of all the three active particles quantum-

mechanically.Therefore, these two transition amplitudes are fully quantum-mechanical
in their common origin. They involve the time-independent relation R = ρ+v Ẑ v̂ ‖ Ẑ
only geometrically. This should not be confused with the projectile classical motion
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along a time-dependent rectilinear trajectory R(t) = ρ + vt , characterized by an
impact parameter ρ and a constant velocity v. However, it is well-known that, in the
eikonal limit (1/MP,T 	 1, small scattering angles), the full quantum-mechanical and
semi-classical impact parameter formalisms are completely equivalent and they give
the same cross sections.

In the time-dependent semi-classical IPM, only the electronic degrees of freedom
are quantized, whereas the nuclear motions are described classically by the mentioned
straight lines. Thus, the discussed quantum-mechanical quantityA(CDW−3B)−

i f (ρ ) for
single capture can acquire its alternative and equivalent interpretation in the IPM as the
semi-classical impact parameter dependent transition amplitude. With such an inter-
pretation of A(CDW−3B)−

i f (ρ ), its squared absolute value gives the impact parameter
dependent transition probability for single capture.

Moreover, in the independent electron formalism, the product of these two impact
parameter dependent probabilities for two separate and uncorrelated capture events of
each electron from a helium-like or multi-electron targets by ions defines the prob-
ability for double capture. An integration of such a product of the single capture
probabilities over the impact parameters yields a total cross section Q for double
capture in the CDW-3B-IPM from the present computations, similarly to the earlier
studies [39, 40].

These probabilities are real-valued quantities and, therefore, their products in the
CDW-3B-IPM are void of any phase interference. That is why the CDW-3B-IPM for
double capture (or multiple capture) is an inherently semi-classical theory. The prime
signature of quantum mechanics is phase interference of physical quantities. Phase
interference is abundant in e.g. the fully quantum-mechanical transition amplitudes
T (SDS−4B)±
i f (η ) for double capture in the SDS-4B method.

3 Results and analysis

We will now exemplify the general case of double capture in process (1) by consid-
ering its homo-nuclear specification (ZT = ZP = 2) for the ground-to-ground state
transition:

4He2+ + 4He(1s2) −→ 4He(1s2) + 4He
2+

. (75)

Some of the measured cross sections Q(ground) versus impact energy E reported
in the literature [41, 42] are for ground-to-ground transition in the resonant collision
(75). However, the great majority of the experimental data [43–56] are for the sum of
ground-to-ground state and ground-to-excited state transitions. Here, the final excited
states are considered as non-autoionizing. In other words, the summed cross sections
Q(�) = Q(ground) + Q(excited) correspond to the process:

4He2+ + 4He(1s2) −→ 4He(�) + 4He2+. (76)

The theoretical results are only for process (75). They are due to the prior forms of
the semi-classical treatment from the CDW-3B-IPM and to the quantum-mechanical
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formalism from the SDS-4B and CDW-4B methods. Our main emphasis here is on
comparing the SDS-4Bmethod andCDW-3B-IPM in relation to the experimental data.
For completeness, however, also added is the CDW-4B method to these comparisons
as a complement to Ref. [6] on similar evaluations.

The helium ground-state wave functions ϕi, f that have frequently been used for
studies on rearrangement ion-atom collisions contain several parameters, e.g. one:
Hylleraas [57], two: Silverman et al. [58], three: Green et al. [59] or four: Löwdin
[60], etc. The parameters from Refs. [57–59] are variational, whereas those from Ref.
[60] stem from fitting a few Slater-type orbitals (STOs) to the known tabulated values
of the RHF wave functions. Also often employed for electron capture by ions from
many atoms [11] were the general analytical STOs for the RHF wave functions with
the variational parameters determined by Clementi and Roetti [61]. In Ref. [5] on
double capture in process (75), cross sections Q were computed with the one-to-four-
parameter wave functions [57–60]. For Q, the most noticeable differences among
these four functions were at high energies E .

The present choices of ϕi, f are also within this type of wave functions in the case
of helium atoms. Thus, in the CDW-3B-IPM, two selections of the initial state wave
function ϕi are made. They are associated with one and five parameters from Refs.
[57] (Hylleraas) and [61] (Clementi and Roetti), respectively. For both choices of ϕi ,
the final state wave function ϕ f is taken to be that of Hylleraas [57]. In the case of the
SDS-4B and CDW-4B methods, both ϕi and ϕ f are due to Hylleraas [57].

To illustrate, two figures are shown both dealing with total cross sections Q versus
E for double capture in the α − He collisions as in processes (75) and (76). Figure 1
for the CDW-3B-IPM alone is on the sensitivity of Q to the mentioned two choices
of ϕi considered at E = 80 − 8000 keV. The same range of E is also covered in Fig.
2, where the SDS-4B and CDW-4B methods are compared with the CDW-3B-IPM as
well as with the existing measured cross sections Q.

In Fig. 1, the full curve (D1) is for ϕi, f of Hylleraas [57]. The dashed curve (D2)
is for the RHF wave function ϕi of Clementi and Roetti [61] and for ϕ f of Hylleraas
[57]. Below about 1500 keV, the full curve overestimates the dashed curve, whereas
thereafter the converse is true. This can be understood from the arguments that run as
follows. At high impact energies, capture is more probable (with the ensuing larger
values of Q) for the greater momentum components of the initial and final bound-state
wave functions. Regarding the equivalent coordinate and momentum representations
of the given bound-state wave function, larger momenta correspond to smaller spatial
distances (the latter relate to better compactness/confinement of the pertinent atomic
orbitals).

Consequently, the more compact the bound-state wave function is in the coordinate
representation, the more probable the high-energy capture becomes. The multi-
configuration RHF wave function [61] is more compact than the single configuration
of Hylleraas [57]. Therefore, with increasing E , the larger Q should ensue with the
multi-configuration than with the single-configuration ϕi of helium. This is confirmed
in Fig. 1 at E > 1500 keV, where the dashed curve for the five-configurations [61]
lies above the full curve for one-configuration [57].

To have an indication of the relative contributions of the helium ground and excited
states in the exit channel, a few relevantmeasured cross sections Q (plotted as symbols)
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are displayed in Fig. 1. Herein, open symbols [41, 42] are the experimental data Q
for the final ground state of helium in process (75). The full symbols are for the sum
of the ground and all the excited states of helium [42] in process (76). The open and
full symbols due Schöffler et al. [42] show that all the final excited states of helium
give a relatively small contribution. This justifies comparing the theoretical results for
(75) with the experimental data for (76), as has been done earlier [5, 6] and will be
followed presently, as well.

The results for process (75) in the CDW-3B-IPM (Fig. 1) largely overestimate the
corresponding experimental data at intermediate energies, but are in good agreement
with the measured cross sections Q at higher E . Note that, regarding the juxtaposition
of the theoretical predictions andmeasurements, Fig. 1 is a preview and amore detailed
comparison is deferred to Fig. 2. Nevertheless, regarding process (75), it can be seen
in Fig. 1 that, if the measured cross sections Q of Schöffler et al. [42] are extrapolated
to lower E , they would underestimate the single datum Q at 117 keV of Zastrow et
al. [41] by about a factor of three.

In Fig. 2, the SDS-4B (A, B) and CDW-4B (C) methods as well as the CDW-3B-
IPM (D) are compared with the available experimental data [41–56]. Herein, all the
lines A-D are for ϕi, f of Hylleraas [57]). The lines A and B from the SDS-4B method
are with and without the perturbation ZP(1/R − 1/s2), respectively. It is observed
that the CDW-3B-IPM as well as the CDW-4B and SDS-4B methods predict very
different energy dependence of Q as well as the magnitudes of the computed total
cross sections.

For example, at 100 keV, the discrepancy in the magnitude of Q between the CDW-
3B-IPM (D) and the SDS-4B (A, B) or the CDW-4B (C) methods is about a factor of
20 or 30. A large overestimation of the experimental data by the CDW-3B-IPM (D)
persists up to about 600 keV. On the other hand, the SDS-4B method (A, B) is in good
agreement with the measurements above 200 keV. The difference between the lines
A and B from the SDS-4B method is noticeable, but both predictions are acceptable,
especially given that there is a considerable scatter or dispersion of the experimental
data on Q from different measurements. Perturbation ZP(1/R − 1/s2) is absent not
only from the SDS-4B method (B), but also from the CDW-3B-IPM (D).

Above about 3500 keV, the status of the theories and measurements is inconclusive.
For instance, at about 4000 keV, the measured cross sections of Schuch et al. [55] and
Afrosimov et al. [56] differ by a factor of about 20. The CDW-3B-IPM (D) and CDW-
4B (C) method are close to the data from Ref. [55]. However, the SDS-4B method
(A, B) is near the data from Ref. [56]. Overall, it follows from Fig. 2 that the SDS-
4B method exhibits favorable agreement with most experimental data and, moreover,
it is clearly superior to both the CDW-3B-IPM and CDW-4B method. A detailed
discussion on the comparison between the SDS-4B (A) and CDW-4B (C) methods as
well as between the lines A and B from the SDS-4B method can be found in Ref. [6].

4 Discussion and conclusion

This study is on second-order distorted wave perturbative theories for predictions of
total cross sections Q for two-electron capture by heavy nuclei fromhelium-like targets
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at intermediate and high impact energies E . For these collisions, this type of distorted
wave theories employs the full Coulomb wave functions for electrons to describe
their continuum intermediate states in the external fields of nuclei. Such electronic
ionization continua are associated with double scatterings of the given electron on
two nuclei as reminiscent of the Thomas classical billiard-type two-step collisional
mechanism.

The complex-valued continuum Coulomb wave functions are highly oscillatory.
Interference in the product of two or more such Coulomb waves within the transition
amplitudes can significantly influence the probabilities for double charge exchange.
The more Coulomb waves in such products, the more destructive interferences and the
lower the double capture transition probability. Therefore, this ’multiplication effect’
in distortions associated with the electronic full Coulomb waves can lead to an over-
account of intermediate ionization continua with a repercussion on the chance for
double capture.

The electronic distortion effects are included differently in various perturbative
methods. For instance, the CDW-4Bmethod is completely symmetric in regard to both
electrons in two channels. It has two full Coulomb wave functions in each channel.
These four electronic full Coulomb waves interfere strongly through their product
in the transition amplitudes and, therefore, can notably reduce the probabilities for
double charge exchange. This can further be exacerbated by the fact that the CDW-4B
method describes both electrons as being simultaneously transferred from the target
to the projectile by the identical mechanism. The chance for such an event to happen
is small due to the underlying requirement that the two electrons come to nearly the
same place at almost the same time.

On the other hand, in the SDS-4B method for double capture, there is one full
electronic Coulomb wave function per channel. Therefore, the ’multiplication effect’
of the full Coulomb waves for electrons is relatively milder. As such, the ensuing
interference reduction could enhance the probability for two-electron transfer. Yet
another reason for this expected enhancement is a less restrictive requirement for
transitions, since this method combines two different mechanisms, single scattering
(one-step) for one electron and double scattering (two-steps) for the other electron
from a helium-like target. Such two collisional pathways can occur through the more
relaxed conditions as the two electrons need not necessarily be in the same place at
the same time.

In order to capture an electron (say e1) via single scatterings (one-step), an incident
nucleus of charge ZP needs to come close to a helium-like target. However, should
the other electron (e2) be transferred to the projectile by double collisions (once on
each nucleus), there would be no prerequisite for ZP to be near the target. Being e.g.
far away from the target nuclear charge ZT, the projectile can still impart some of its
energy to electron e2, which could subsequently scatter on ZT and finally get captured
by ZP (the Thomas mechanism).

Within the semi-classical impact parameter dependent theories, the CDW-3B-IPM
for the underlying three-body ingredient of double charge exchange also has two
electronic full Coulomb wave functions (one per channel). This feature too should
increase the probability for double capture. Since both the CDW-3B-IPM and SDS-
4Bmethod have two electronic full Coulombwaves, it is intriguing to find out whether
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these two theories could yield some comparable results for Q at least at some energies
E . Of equal interest is to determine at which energies E there could be some significant
differences between the CDW-3B-IPM and SDS-4B method. The present study was
set to answer these queries and, most importantly, to assess the overall performance
of these two methods relative to the existing experimental data.

The CDW-3B-IPM computes the probability P1 for capture of e1 with no concern
whatsoever about the fate of e2. If double capture is to be investigated, the probabil-
ity P2 for transfer of e2 should also be evaluated in the same manner to obtain the
joint probability P1P2 for the two independent uncorrelated events. Hence, the CDW-
3B-IPM accounts for the participation of two electrons to double capture through a
combinatorial calculus in the spirit of an independent particle modeling.

By definition of a three-body theory, the CDW-3B-IPM, has no room to accommo-
date for the simultaneous presence of two electrons on an active, dynamical level in the
Schrödinger equations for the total scattering wave function. However, the SDS-4B
method, as a fully correlated quantum-mechanical four-body theory, considers both
electrons e1,2 as being actively present throughout the entire collision process.

The concerted participation of electrons e1,2 to the transition amplitude for double
capture is through the electron initial/final distorting potentials and distorted waves.
In particular, the distorted waves include the electronic translation factors of e1,2 that
are of utmost importance at higher energies E . Therefore, it is of interest to assess the
influence of these differences on the cross sections predicted by the SDS-4B method
and the CDW-3B-IPM.

To address such issues, we computed total cross sections Q as a function of impact
energy E at 80-8000 keV for double electron capture by alpha particles from the
ground state of helium target atoms. It is shown that indeed there are energy regions
where these two methods differ considerably (e.g. in the intermediate region below
600 keV), while elsewhere (e.g. at 600-3000 keV) they are reasonably concordant.
However, overall, at most energies E , the experimental data definitely favor the SDS-
4Bmethodwhich, in this respect too, shows a clear superiority over the CDW-3B-IPM.

More comparisons are needed between the SDS-4Bmethod and the available exper-
imental data on double capture involving a number of other scattering aggregates. If
such further tests prove favorable, it would be both interesting and useful to apply this
theory to the collisions of relevance particularly to ion therapy of patients (irradia-
tion of malignant cells from deep-seated tissue) and to hot ion plasma from nuclear
fusion reactors. Importantly, two-electron transfer induced by multiply charged ions
impacting on helium (Nq+ − He, Neq+ − He) are currently examined by means
of charge exchange spectroscopy for plasma diagnostics in the Axially Symmetric
Divertor Experiment (ASDEX) and its upgrade (ASDEXU) within the International
Thermonuclear Experimental Reactor (ITER).
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12. Dž. Belkić, Principle of Quantum Scattering Theory (Taylor & Francis, London, 2004)
13. Dž. Belkić, Quantum Theory of High-Energy Ion-Atom Collisions (Taylor & Francis, London, 2008)
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22. Dž. Belkić, Two-electron capture from helium-like atomic systems by completely stripped projectiles.
J. Phys. B 26, 497–508 (1993)
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