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Abstract

This article presents an efficient implicit spline-based numerical technique to solve
the time-fractional generalized coupled Burgers’ equation. The time-fractional
derivative is considered in the Caputo sense. The time discretization of the fractional
derivative is discussed using the quadrature formula. The quasilinearization process
is used to linearize this non-linear problem. In this work, the formulation of the
numerical scheme is broadly discussed using cubic B-spline functions. The stability
of the proposed method is proved theoretically through Von-Neumann analysis. The
reliability and efficiency are demonstrated by numerical experiments that validate
theoretical results via tables and plots.

Keywords Generalized time-fractional coupled Burgers’ equation - Caputo
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1 Introduction

In recent times, fractional partial differential equations (FPDEs) have played a
vital role in the study of various complex processes, they have wide applications
in applied sciences and engineering [1-4]. The FPDEs can model natural
phenomena better than integer order partial differential equations because fractional
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derivatives have the non-local property, also termed memory. It is challenging to
find the analytical solutions to FPDEs; therefore, researchers have paid attention
to developing numerical methods that can evaluate the approximate solutions.
Moreover, numerical schemes help to analyze the behavior of PDEs used in various
models. Numerous methods have been developed to solve FPDEs, such as the
adomian decomposition method [5], radial basis functions (RBFs) approximation
method [6], finite difference method [7, 8], variational iteration method [9].

The non-linear models are widely studied to deal with natural phenomena.
The first non-linear model that explains the theory of turbulence and shock waves
was introduced by Burger [10] in 1948. Benton and Platzman [11] estimated the
analytical solution of the Burgers’ equation. Since one can obtain the analytical
solution to this equation only under certain restricted conditions, several numerical
techniques were developed to evaluate this problem’s solution. Some of the
numerical methods are the compact finite difference method [12], variational
method [13], weighted average differential quadrature method [14], local radial
basis function method [15], Haar wavelet method [16], etc. Fractional differential
equations enhance comprehension of the investigated process. Due to its applications
in the approximation theory of flow through a shock wave flowing in a viscous fluid
and the Burgers’ model of turbulence, finding the approximate analytical solution of
the time-fractional Burgers’ equation (TFBE) is crucial. Several numerical methods
have been studied to solve TFBE, such as finite difference method [17], parametric
spline function method [18], finite element method [19], and so on.

The problem of coupled Burgers’ equation examining the model of polydispersive
sedimentation was first demonstrated by Esipov [20]. This model discusses the
evolution of two types of particles’ scaled volume concentrations. Many numerical
methods have been developed to solve coupled linear/non-linear problems, such
as meshfree interpolation method [21], homotopy analysis method [22], cubic
B-spline method [23], compact operator method [24], and haar wavelet method
[25]. For the study of memory and hereditary properties, fractional system of
coupled system of Burgers’ equation is considered. Chen and An [26] presented
the adomian decomposition method to obtain the numerical solution of coupled
Burgers’ equation with space and time fractional derivatives. Later, Liu and Hou
[27] discussed the generalized differential transform method, which constructs an
analytical solution of space and time fractional coupled Burgers’ equation. Recently,
Mittal and Balyan [28] developed the Chebyshev pseudospectral method to solve
this equation. Readers may also refer to the articles that include other numerical
methods such as meshfree spectral method [29], Laplace homotopy perturbation
method [30], Jacobi spectral collocation method [31].

B-splines are a collection of unique spline functions that can build piece-wise
polynomials by determining the proper linear combination. The computational
advantage of these functions derives from the fact that every B-spline basis function
of order m is nonzero over a maximum of m adjacent intervals and zero otherwise.
B-spline basis functions are superior to other basis functions due to their smoothness
and capacity to manage local phenomena. Numerous physical models have already
been solved using cubic B-spline functions as the basis functions. Burgers’ equation
was solved by Mittal and Jain [32] using a modified cubic B-spline collocation
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approach. In this work, we develop an implicit scheme using cubic B-spline
functions for time fractional coupled generalized viscous Burgers’ equation. At the
initial stage, the problem is discretized using the form of quasilinearization applied
on generalized non-linear terms «”u, and vv,. Then the spline functions are used
on the linearized form of the problem to obtain the complete numerical scheme of
coupled equations.

This article is organized as follows. In Sect. 2, the discretization process
is demonstrated by dividing it into three subsections that explain briefly the
discretization of time-fractional derivative, the methodology, and the problem
discretization. Further, in Sect. 3, the formulation of the numerical scheme is
discussed. In Sect. 4, the stability of the proposed numerical scheme is proved
by following the method of Von-Neumann stability analysis. The numerical test
examples are presented in Sect. 5, and the tables and plots verify our theoretical
results. At last, the conclusions and some references are given.

1.1 Relevance of the work

This work presents an implicit scheme based on the spline technique for fractional
coupled Burger equations. In our problem, we have linearized the generalized non-
linear terms using linearization technique called quasilinearization that are not
explored for this coupled problem. Moreover, we have shown the numerical results
that presented the correct orders of convergence in both time and space directions
that are not displayed or demonstrated in all published work regarding this problem
discussed in the literature.

1.2 Problem statement

The time-fractional coupled generalized Burgers’ equation is given by

D' =u,, + xulu, — 0,(uwv), +f(x,0), (x,1) € Q, X Q,, (1.1a)

Dy =v, + kv, — 0,(uv), + g(x, 1), (x,1) € Q. X Q,, (1.1b)
with the inital conditions
u(x,0) = ¢;(x), v(x,0) = ¢,(x), x € ﬁx, (1.1¢)
and the boundary conditions
u(a, 1) =y (0, v(a,1) = yo(0), u(b,1) = (D), v(b.1) = (). 1 € Q. (1.1d)

where Q. = (a,b), Q, = (0,7), a;, a, lie between 0 and 1; k, p, ¢, 0, are positive

integers; flx, 1), g(x, 1), (%), P,(x), w,(®), v, (1), @,(t), and @,(¢) are sufficiently
smooth functions.
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2 Discretization

The domain is discretized using a uniform mesh that divides the whole domain into
equal subintervals to analyze the considered problem. The space domain €, is discre-
tized as {x, =a+nh|n=0,1,...,N, h = ]%} and the time domain with uniform

partition is defined as {t,, =mz|m=0,1,..., M, 7 = A14}’ where N and M are the
number of knots in the space and time directions, respectively.

2.1 Fractional derivative discretization

The fractional derivative is discretized using a quadrature formula that is given as [6, 8]

p 1 " Qu(x,, 5) -
D,'u(x,,t,) = i—a) ” t, —s) “ds
—a) Jo

m T m m—1
1 /" ur —ul ~
= — E —— +0(1) | (mt — 5)"%ds
I'(l—a)) & Jo-1). l T ]

m

_ 1 1 m __ . m—1
= TG—ayrm k;(u,, w, )

[(m—k+ D' = (m—k)'"] 4+ R"(ay).

So, we obtain the following discretized expression

DI =0, Y d @ —u" ) + R @), Q2.1
k=1
where Oy = ﬁ, dl‘:’ = k% — (k- 1)", and the error term R”(a,) is given
—ap)Th n
by
m 1 S —a —a —a
R@) = 5505 Dl —k+ 1= = (m = k)'"]0*™)
T k=1
1 1-a; 2—a
[ 0] 1
ra—ay™ o
< CO(x),

where C is a constant.
Likewise, we obtain the following expression for another fractional derivative used
in the considered problem,

m
DIV =0, Y dPE =Ry 4 R (ay), 2.2)
k=1

where R(a,) < CO(7), for some constant C.
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2.2 Methodology

Recently, the spline function has been widely used to solve many mathematical
problems in applied sciences. The solution that is determined approximately
is expressed as the linear combination of cubic B-spline basis functions. The
approximations U(x, ) and V(x, 1) to the exact solution u(x, #) and v(x, ) at any time
tis given by

N+1 N+1
U,xn= Y 0,B,x), V&= ) AB,), (2.3)
n=—1 n=-—1

where ©, and A, are time-dependent functions that are evaluated by utilizing the
boundary conditions and the collocation form of the fractional differential equations.
The cubic B-spline basis functions at nodal points are defined as:

(x— xn_2)3, X E [x,_5,%,_1),
x - x,l_z)3 —4(x — xn_1)3, X € [x,_1,x,),
Bn(x) = (xn+2 - X)3 - 4'('Xn+l - x)3’ X € [xn’xn+1)’ 24
('xn+2 - X)S, X € ['xn+l’xn+2)’
0, otherwise,
where B_,, B, ..., By, By, form a basis over the region a < x < b. The values of

B, (x) and its derivatives are evaluated using these basis functions and are presented
in Table 1.

2.3 Problem discretization

The discretized form of the problem is given by
DU = () + k(W) = 0 (@), )+ £
DV = (v )" + k(P vl = 0y () )" + g7,
that gives the following expression

oo Y, AW — ) — ()" — k()"
! ; k (2.5a)

“1, yn—1 —1g, ym—1
=—o (uy ()T VT (), )+

6o, Y APV =y — (0 ) — k(P
: Z{ k (2.5b)

-1 -1 -1 -1
= _OZ(M? (vx):l + VZL (ux)zl ) + g:’:s

with the conditions u® = (x,), V) =d,(x,). u) =w,@,). Vi =y,
uﬁ = ¢,(t,), and vj'(} = @,(t,), where n=0,1,...,N and m=1,2,...,M. The
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Table1 B, (x) and its derivatives

at nodal points K2 X1 Xu Xyl X2
B, (x) 0 1 4 1 0
B;l (%) 0 3/h 0 -3/h 0
B (x) 0 6/n? —12/1? 6/h2 0

approximate values of u(x, f), v(x, ), and their derivatives up to the second order are
calculated using the approximate functions (2.3) and the cubic B-spline functions
(2.4) that are given as

3 3

U"=0" +40"+0O" , (U)"'=-20" +=0" ,
h h
i 6 12 6 (2.6a)
W )n = ﬁgn—l @ + h2®n+l’
m m m m '\m 3 m 3 m
VAT AT AT (V= —2AT 4 2AT
h h
'\m 6 m 12 m 6 m (26b)
(V )n :ﬁAn—l th + EAVHI'

3 Demonstration of the numerical scheme

This section presents the full discretization of the problem under consideration in
terms of splines. The nonlinear terms present in the equations, such as u”u,, Vv, and
(uv), deal with the linearization techniques discussed in [25, 29, 33]. After that, for the
formulation of the numerical scheme, we substitute approximations for # and v and
their derivatives using Equation (2.6a) and (2.6b) in (2.5a) and (2.5b), respectively. The
Equations (2.5a) and (2.5b) can be rewritten as
o ] = ) = P
— kG P )y = —kpQey Y ()™

m—1
3.1a
+o0, d"’lu +o0, Z(dm1 — k+1)u;”_k ( )

1 1 1 1
— o1y )T VT ) )+ S

Uazdll)l2 m (vxx)nm _ K.p(vnm—])p—l(vx)zq—lvnm
kOp Yy = —rcp(v'"*)"(v)()z’—l

. (3.1b)
+0,d2 + 0, 2(d2 v

-1 1 1 -1
—0(u, T (VT T W)y ) + g
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After putting the spline approximations to Equations (3.1a) and (3.1b), we obtain
the following difference equations in terms of @ and A”', where the left-hand side
of the equations involve terms at the m-th time level

(@, +407 + 0 )+ (07, —0% ) — (O, —207+ 06, )
=ry(©)7 - (9’::11)

+rs(Ar = A + o, d ©° , +40°+0", ) (3.22)

n+1

m—1
+0,, D —dt (O + 40 o),
k=1
sl(A;”_1 + 4An’” + AZLI) + sz(AZT_1 - A;”H) - s3(A;"_1 - ZAn’” + AZ’_H)
= sy(A - ATD

+550) = O + 0, dR(A) | +4A) + A) ) (3.2b)

n—1 n+1

m—1
+0,, D (d —dE A+ 4ATF 4 AT,
k=1

where
a m—1yp—1 m—1 SK(UZ__])p
rp=o0,d' —kpU;" Y (U)y~, r, = n
6 3Kp(U"1"_1)p 301V,r,"_1
r3 = —, r4 = + ’
h2 h h
301U;n_1 ay m—1\p—1 m—1
=T 0T o, d;" = kp(V Y (VO™
3x(Vm=ly 6
=T S =
3kp(Vly 30,Un! 30,V
Sy = 7 + h >, 85 = h :

3.1 Initial vector

The approximate solutions are obtained using the recurrence relation by solving the
numerical scheme (3.2) at every time step. An initial vector is obtained from the
initial and boundary conditions to estimate the approximations using splines.

Using the initial condition u(x,,0) = ¢(x,), n=0,1,...,N, and the spline
approximations, we obtain (N + 1) equations involving (N + 3) unknowns. The
two unknowns acquired by putting n =0 and n = N that is ®_; and ®,,, can be
computed from u, (x,0) = ¢} (xy) and u, (xy,0) = ¢ (xy), respectively. Thus, the
(N + 1) equations with (N + 1) unknowns that can be solved using the Thomas
algorithm are obtained.
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Table 2 Errors in the L, and L norms and orders of convergence of u(x, ) in the spatial direction for
Example 5.1, for distinct p and («, @,) values

P Norms (ay, ) Number of nodal points
N=4 N=8 N=16 N=32
M=16 M=64 M=256 M=1024
1 L, (0.1,0.4) 1.2347¢ — 02 3.8536¢ — 03 1.0190e — 03 2.5838¢ — 04
1.6757 1.9163 1.9831
0.2,0.5) 1.2015¢ — 02 3.7671e — 03 9.9767¢ — 04 2.5315¢ — 04
1.6704 1.9175 1.9799
(0.3,0.6) 1.1595¢ — 02 3.6619¢ — 03 9.7254¢ — 04 2.4709¢ — 04
1.6642 1.9113 1.9779
L, (0.1,0.4) 1.6708¢ — 02 5.2239¢ — 03 1.4035¢ — 03 3.5585¢ — 04
1.6777 1.8986 1.9755
(0.2,0.5) 1.6242¢ — 02 5.1086¢ — 03 1.3738¢ — 03 3.4855¢ — 04
1.6646 1.8991 1.9729
(0.3, 0.6) 1.5653¢ — 02 4.9697¢ — 03 1.3388¢ — 03 3.4011e — 04
1.6594 1.8910 1.9786
2 L, (0.1,0.4) 1.1508¢ — 02 3.7723¢ — 03 1.0109¢ — 03 2.5722¢ — 04
1.6090 1.9002 1.9745
0.2,0.5) 1.1205¢ — 02 3.6902¢ — 03 9.9039¢ — 04 2.5215¢ — 04
1.6018 1.8981 1.9740
(0.3,0.6) 1.0819¢ — 02 3.5903¢ — 03 9.6620¢ — 04 2.4630e — 04
1.5890 1.8939 1.9734
L, (0.1,0.4) 1.5685¢ — 02 5.1326¢ — 03 1.3811e — 03 3.5216e — 04
1.6137 1.8943 1.9710
(0.2,0.5) 1.5260e — 02 5.0167¢ — 03 1.3530e — 03 3.4507¢ — 04
1.6078 1.8947 1.9683
(0.3, 0.6) 1.4719¢ — 02 4.8757¢ — 03 1.3199¢ — 03 3.3688¢ — 04
1.5909 1.8863 1.9697

Likewise, the initial vector for v can be evaluated using the initial condition
v(x,,0) = ¢,(x,), n=0,1,...,N.

4 Stability analysis

In this section, the stability of the proposed scheme is demonstrated through the
Von-Neumann stability analysis method. The non-linear terms u«’u,, Vv, and
(uv), are linearized by assuming UZH and V:,"_l as local constants U and V. To
begin the analysis of the stability of the scheme, let the error term be defined as
e =0"— (:)Z“, n=0,1,....,N, m=0,1,...,M, where ®" and (:jnm are the growth
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Table 3 Errors in the L, and L norms and orders of convergence of v(x, f) in the spatial direction for
Example 5.1, for distinct p and («, @,) values

P Norms (ay, ) Number of nodal points
N=4 N=8 N=16 N=32
M=16 M=64 M=256 M=1024
1 L, (0.1,0.4) 1.1122¢ — 02 3.5568¢ — 03 9.4873¢ — 04 2.4148¢ — 04
1.6406 1.9074 1.9774
0.2,0.5) 1.0435¢ — 02 3.3954¢ — 03 9.1251e — 04 2.3322¢ — 04
1.6130 1.8968 1.9703
(0.3,0.6) 9.5212¢ — 03 3.1789¢ — 03 8.6463¢ — 04 2.2261e — 04
1.5819 1.8783 1.9557
L, (0.1,0.4) 1.5030e — 02 4.8157¢ — 03 1.3050e — 03 3.3213¢ — 04
1.6379 1.8795 1.9803
(0.2,0.5) 1.4087¢ — 02 4.5989¢ — 03 1.2546¢ — 03 3.2061e — 04
1.6160 1.8797 1.9613
(0.3, 0.6) 1.2833¢ — 02 4.3080e — 03 1.1882¢ — 03 3.0587¢ — 04
1.5704 1.8567 1.9594
2 L, (0.1,0.4) 1.0371e — 02 3.4854¢ — 03 9.4192¢ — 04 2.4055¢ — 04
1.5753 1.8894 1.9667
0.2,0.5) 9.7258e — 03 3.3298¢ — 03 9.0669¢ — 04 2.3250e — 04
1.5469 1.8763 1.9608
(0.3,0.6) 8.8556¢ — 03 3.1195¢ — 03 8.5984¢ — 04 2.2212¢ — 04
1.5058 1.8591 1.9538
L, (0.1,0.4) 1.4121e — 02 4.7359¢ — 03 1.2853¢ — 03 3.2889¢ — 04
1.5727 1.8775 1.9712
(0.2,0.5) 1.3232¢ — 02 4.5201e — 03 1.2369¢ — 03 3.1767¢ — 04
1.5461 1.8660 1.9632
(0.3, 0.6) 1.2037¢ — 02 4.2298¢ — 03 1.1727¢ — 03 3.0326¢ — 04
1.5043 1.8541 1.9491

factor and its approximation in Fourier mode, respectively. Using (3.2a), the error
equation is written as

0 0, .0
GLET  + GEl + el =Gy +4ed + €, )

n+1
+ gk(e;’:k + 4en”’_k + 62”;1"),

4.1

0<n<N,0<m<M, where ¢, =r|+ry—r3, ¢ =4r +2r;3, G3=r —r, —r3,
C4 = 0, dy, and ¢, = 0, Tiol @ —dt ). Now, the grid function is defined as

m _h b _
") = € X, = 5 <x;x,,+2,hn— 1,2,...,N—1,
0, a§x$a+30rb—33x§b.

Taking Q. = (a, b) = (0, L), the Fourier series expansion is given as
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Table 4 Errors in the L, and L, norms and orders of convergence in the temporal direction for Example
5.1, for p = 1 with different ordered pairs (a,, a,)

(ay, @) Norms  Number of nodal points
N=32 N=64 N=128 N=256 N=512
M=20 M=40 M=80 M=160 M=320
0.5,0.8) Ly 9.5114¢—03 54473¢—03 2.9230e—03 1.5177¢—03  7.7478¢ — 04
0.8032 0.9003 0.9419 0.9718
L (u) 1.3120e — 02 7.5063e¢ — 03  4.0255¢ — 03  2.0894¢ — 03  1.0664¢ — 03
0.8027 0.8980 0.9473 0.9659
L,(v) 6.4723¢ — 03  3.9184¢—03 2.1768¢ —03 1.1598¢ — 03  6.0458¢ — 04
0.7229 0.8465 0.9102 0.9391
L,(v) 8.9288¢ — 03  5.3926e—03 2.9931e—03 1.5938¢—03  8.3054e — 04
0.7284 0.8501 09111 0.9361
0.5,0.5) Ly 9.5898¢ —03  5.4918¢—03 2.9459¢—03 1.5290¢—03  7.8017¢ — 04
0.8047 0.8961 0.9472 0.9720
L, (w) 1.3210e — 02 7.5616¢ —03  4.0542¢ —03  2.1036e —03  1.0732¢ — 03
0.8041 0.9005 0.9475 0.9728
L,(v) 9.5898¢ — 03 5.4918¢—03 2.9459¢ —03 1.5290¢ —03  7.8017¢ — 04
0.8047 0.8961 0.9472 0.9720
L,(v) 1.3210e — 02 7.5616e — 03  4.0542¢ — 03  2.1036e¢ — 03  1.0732¢ — 03
0.8041 0.9005 0.9475 0.9728
0.8,0.5) L,(u) 6.4723¢ — 03  3.9184¢—03 2.1768¢ —03 1.1598¢ —03  6.0458¢ — 04
0.7229 0.8465 0.9102 0.9391
L)  8.9288¢—03 53926e—03 2993le—03 1.5938¢—03 8.3054¢ — 04
0.7284 0.8501 09111 0.9361
L,(v) 9.5114e — 03  5.4473¢—03 2.9230e—03 1.5177¢—03  7.7478¢ — 04
0.8032 0.9003 0.9419 0.9718
L,(v) 1.3120e — 02 7.5063¢ — 03  4.0255¢—03  2.0894e —03  1.0664¢ — 03
0.8027 0.8980 0.9473 0.9659
[so] i
€@ =Y 8,()' ., m=0.1,...M,

where

j==

1 /- -
5,() =~ / @) do),
L 0

are the Fourier coefficients.
Now, using the norm and Parseval’s equality, we obtain
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Table5 Errors in the L, and L, norms and orders of convergence in the temporal direction for Example
5.1, for p = 2 with different ordered pairs (a;, a,)

(ay, @) Norms  Number of nodal points
N=32 N=64 N=128 N=256 N=512
M=20 M=40 M=80 M=160 M=320
0.5,0.8) Ly 9.0761e —03  5.3166e —03  2.8880¢ —03 1.5091e —03  7.7280e — 04
0.7713 0.8804 0.9365 0.9660
L (u) 1.2424e — 02 7.2730e — 03  3.9497¢ — 03  2.0635¢—03 1.0566¢ — 03
0.7703 0.8801 0.9392 0.9586
L,(v) 6.1116e — 03  3.8113¢ —03  2.1484¢—03 1.1529¢—-03  6.0312¢ — 04
0.6814 0.8255 0.9027 0.9314
L,(v) 8.3588¢ —03  5.2066e —03  2.9329¢—03 1.5734e—03  8.2296e¢ — 04
0.6822 0.8304 0.9001 0.9318
0.5,0.5) Ly 9.1391e — 03 5.3518¢—03  2.9060e —03 1.5179¢ —03  7.7701le — 04
0.7727 0.8785 0.9369 0.9681
L, (w) 1.2501e — 02 7.3176e — 03  3.9728¢—03 2.0748¢ —03 1.0621e — 03
0.7720 0.8827 0.9395 0.9656
L,(v) 9.1391e — 03  5.3518¢—03 2.9060e —03 1.5179¢ —03  7.7701le — 04
0.7727 0.8785 0.9369 0.9681
L,(v) 1.2501e — 02  7.3176e —03  3.9728¢ — 03  2.0748¢—03  1.0621¢ — 03
0.7720 0.8827 0.9395 0.9656
0.8,0.5) Ly(w) 6.1116e — 03  3.8113¢ —03  2.1484¢—03 1.1529¢—03  6.0312¢ — 04
0.6814 0.8255 0.9027 0.9314
L, (u) 8.3588¢ —03  5.2066e —03  2.9329¢—-03 1.5734e—03  8.2296e¢ — 04
0.6822 0.8304 0.9001 0.9318
L,(v) 9.0761e —03  5.3166e —03  2.8880¢ —03 1.5091e —03  7.7280e — 04
0.7713 0.8804 0.9365 0.9660
L,(v) 1.2424¢ — 02 7.2730e —03  3.9497¢—03 2.0635¢ —03 1.0566¢ — 03
0.7703 0.8801 0.9392 0.9586

N-1 L s8]
eI = <Z h|e;"|2> - ( /0 |e’"<x>|2dx> 1Y 5,0P @2
n=1

oo

Lete? = 6mei”h7, where L = 1, and y = 2xj/L is the wave number.

Lemma 4.1 For a;,a, €(0,1), the inequality |6,|< |6y holds true for
m=1,2,...,M.

Proof From Equation (4.1), for m = 1 we get
(gle[(n—l)hy + gzeinhy + g3ei(n+1)hy)51 - g4(ei(n—1)hy + 4e[nhy + ei(n+1)hy)50.

On simplification, which gives
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(a) Numerical approximation of u (b) Numerical approximation of v

Fig. 1 Numerical solutions at (¢, a,) = (0.5,0.5), p = 2, and N = M = 60 for Example 5.1

x10° <107
6 6
P 2
& 3
- -
e =l
- -
E £
= =
g g
2 =
E} E}
% %
= =
< <
1
. 0w
0y 02 X
(a) Absolute error in u (b) Absolute error in v

Fig.2 Absolute errors at (a;, a,) = (0.5,0.5), p =2, and N = M = 60 for Example 5.1

[((g; + g3)cos(hy) + i(—¢, + ¢3) sin(hy) + 6,)8,| = |64(2 cos(hy) + 4)d,|,
that gives

l64(2 cos(hy) + 4)|
[(¢) + ¢3) cos(hy) + i(—¢; + ¢3) sin(hy) + ¢, |

6,1 = 18-

Thus, we obtain |6, < |6ylas 7 — 0.
Now, assume that the inequality |5, | < |3y|holds forg = 2,3,...,m — 1.
Then for g = m, we have
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(a) 2D plot for the approximation of u (b) 2D plot for the approximation of v

Fig. 3 Numerical solutions at distinct time levels when (a;, a,) = (0.5,0.5), p =2, and N = M = 40 for
Example 5.1

O Numerical Solution
0.1F 1

0.09

0.08 -

0.07

Solution
Solution

0.06 -

0.05 -

0.04 I I I I I I I I I 0.04 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 I 0 01 02 03 04 05 06 07 08 09 1

X X
(a) For u(z,t) (b) For v(z,t)

Fig.4 Exact and numerical solutions when (a;,a,) = (0.5,0.8), p=2, and N =M =32 at t = 0.5 for
Example 5.1

(glei(n—l)hy + gzeinhy + g,361'(}1+1)h}/)5m — g4(ei(n—l)hy + 4einh}/ + ei(n+1)hy)50

+gk(ei(n—1)hy +4einhy +ei(n+1)hy)5 '
m—k*

Taking absolute values, which gives
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Table 6 Errors in the L, and L norms and orders of convergence of u(x, ) in the spatial direction for
Example 5.2, for distinct p and («, @,) values

P Norms (ay,a,) Number of nodal points
N=4 N=8 N=16 N=32
M=16 M=64 M=256 M=1024
3 L, 0.2,0.5) 3.2145E - 03 1.1212E - 03 3.0335E — 04 7.7352E — 05
1.5196 1.8860 1.9715
(0.3,0.6) 3.1923E - 03 1.1108E — 03 3.0049E — 04 7.6645E — 05
1.5230 1.8862 1.9711
0.4,0.7) 3.1719E - 03 1.0977E — 03 2.9675E — 04 7.5716E — 05
1.5309 1.8872 1.9706
L, (0.2,0.5) 4.8288¢ — 03 1.6969¢ — 03 4.5905¢ — 04 1.1700e — 04
1.5088 1.8862 1.9721
(0.3, 0.6) 4.8640e — 03 1.6846¢ — 03 4.5414e — 04 1.1564e — 04
1.5297 1.8912 1.9735
0.4,0.7) 4.9379¢ — 03 1.6746¢ — 03 4.4871e — 04 1.1402¢ — 04
1.5601 1.9000 1.9765
4 L, 0.2,0.5) 3.2297¢ — 03 1.1225¢ — 03 3.0337¢ — 04 7.7335¢ — 05
1.5247 1.8876 1.9719
(0.3,0.6) 3.2073e — 03 1.1120e — 03 3.0051e — 04 7.6629¢ — 05
1.5282 1.8877 1.9715
0.4,0.7) 3.1866¢ — 03 1.0989¢ — 03 2.9677e¢ — 04 7.5701e — 05
1.5360 1.8886 1.9710
L, (0.2,0.5) 4.8510e — 03 1.6991¢ — 03 4.5912¢ — 04 1.1702¢ — 04
1.5135 1.8878 1.9721
(0.3, 0.6) 4.8856e — 03 1.6867¢ — 03 4.5420e — 04 1.1562¢ — 04
1.5343 1.8928 1.9739
0.4,0.7) 4.9589¢ — 03 1.6766¢ — 03 4.4875¢ — 04 1.1400e — 04
1.5645 1.9016 1.9769
|2 cos(hy) + D)(4l00] + G|,
16,,| <

Note that dy' + Yo' (d]" -

k+1) -

20, da‘ (2cos(hy) +4)

d , we get

(61 + 63) cos(hy) + i(—¢; + ¢3) sin(hy) + 65|

As the time step 7 approaches zero, we get|§,,| < |5y

Pl < (¢ + €3)COS(hV) +i(=¢; + 3) sin(hy) + 6,

|61

Hence, the lemma is proved by utilizing the concept of mathematical induction.
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Table 7 Errors in the L, and L norms and orders of convergence of v(x, f) in the spatial direction for
Example 5.2, for distinct p and («, @,) values

P Norms (ay, @) Number of nodal points
N=4 N=8 N=16 N=32
M=16 M=64 M=256 M=1024
3 L, 0.2,0.5) 3.2305E — 03 1.1021E — 03 2.9571E — 04 7.5124E — 05
1.5515 1.8980 1.9768
(0.3,0.6) 3.2938E — 03 1.1002E — 03 2.9345F — 04 7.4340F — 05
1.5820 1.9066 1.9809
0.4,0.7) 3.4667E — 03 1.1138E — 03 2.9338E — 04 7.3849E — 05
1.6381 1.9246 1.9901
L, 0.2,0.5) 5.1749¢ — 03 1.7029¢ — 03 4.4969¢ — 04 1.1332¢ — 04
1.6035 1.9210 1.9885
(0.3,0.6) 5.4551e — 03 1.7363¢ — 03 4.5188¢ — 04 1.1291e — 04
1.6516 1.9420 2.0008
0.4,0.7) 5.9031e — 03 1.8121e — 03 4.6353¢ — 04 1.1468¢ — 04
1.7038 1.9669 2.0150
4 L, 0.2,0.5) 3.2447¢ — 03 1.1032¢ — 03 2.9572¢ — 04 7.5106e — 05
1.5564 1.8994 1.9772
(0.3,0.6) 3.3071e — 03 1.1013¢ — 03 2.9345¢ — 04 7.4322¢ — 05
1.5864 1.9080 1.9813
0.4,0.7) 3.4786¢ — 03 1.1148¢ — 03 2.9338¢ — 04 7.3831e — 05
1.6417 1.9259 1.9905
L, 0.2,0.5) 5.1950e — 03 1.7046¢ — 03 4.4968¢ — 04 1.1329¢ — 04
1.6077 1.9225 1.9889
(0.3,0.6) 5.4741e — 03 1.7377¢ — 03 4.5183¢ — 04 1.1289¢ — 04
1.6554 1.9433 2.0009
0.4,0.7) 5.9205¢ — 03 1.8131e — 03 4.6341e — 04 1.1465¢ — 04
1.7073 1.9681 2.0151

Theorem 4.1 The proposed implicit spline-based numerical scheme for time-frac-
tional coupled Burgers’ equation defined by Equation (3.2a) is unconditionally
stable.

Proof From the Equation (4.2) and Lemma 4.1, we get the following inequality
lle™|I* < €)%, form =1,2,...,M.

Hence, the presented numerical scheme defined in (3.2a) is unconditionally stable.
O

Remark 4.1 For the Equation (3.2b), a similar process is followed to prove the
stability.
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Table 8 Errors in the L, and L, norms and orders of convergence in the temporal direction for Example
5.2, for p = 3 with different ordered pairs (o}, @,)

(ay, @) Norms  Number of nodal points
N=32 N=64 N=128 N=256 N=512
M=20 M=40 M=80 M=160 M=320
0.4,0.7)  Lyw 3.2720e — 03  1.7850e — 03  9.3219¢ — 04  4.7646¢ — 04  2.4095¢ — 04
0.8742 0.9372 0.9683 0.9836
L (u) 5.0065¢ — 03  2.7211e — 03  1.4174e - 03 7.2282¢ — 04 3.6484e¢ — 04
0.8796 0.9409 0.9715 0.9864
L,(v) 3.4262¢ — 03 1.8239¢—03 9.3740e — 04  4.7358¢ — 04  2.3741e — 04
0.9096 0.9603 0.9851 0.9962
L,(v) 5.7440e — 03  3.0011e — 03  1.5203¢—03  7.5799¢ — 04  3.7560¢ — 04
0.9366 0.9811 1.0041 1.0130
0.5,0.5)  Ly(w 3.2955¢—-03 1.7903¢ —03  9.3197¢—04 4.751le—04 2.3977¢ — 04
0.8803 0.9418 0.9720 0.9866
L (u) 5.1578¢ — 03  2.7750e — 03  1.4333¢—03  7.2627¢ —04  3.6477¢ — 04
0.8943 0.9531 0.9808 0.9935
L,(v) 3.2955¢—03 1.7903¢ —03  9.3197¢—04 4.751le—04 2.3977¢ — 04
0.8803 0.9418 0.9720 0.9866
L) 5.1578¢ — 03  2.7750e — 03 1.4333¢ - 03 7.2627¢ — 04  3.6477¢ — 04
0.8943 0.9531 0.9808 0.9935
0.7,04)  Ly(w) 3.4262¢ — 03  1.8239¢ —03  9.3740e — 04  4.7358¢ — 04  2.374le — 04
0.9096 0.9603 0.9851 0.9962
L, (u) 5.7440e — 03  3.0011e — 03  1.5203¢—03  7.5799¢ — 04  3.7560¢ — 04
0.9366 0.9811 1.0041 1.0130
L,(v) 3.2720e — 03  1.7850e — 03  9.3219¢ — 04  4.7646e — 04  2.4095¢ — 04
0.8742 0.9372 0.9683 0.9836
L,(v) 5.0065¢ — 03 2.7211e — 03 1.4174e—03  7.2282¢—04  3.6484¢ — 04
0.8796 0.9409 0.9715 0.9864

5 Numerical results

This part provides test examples to validate the theoretical conclusions and evaluate
the scheme’s accuracy. The numerical results in tables and graphs demonstrate that
the proposed method is proficient and reliable for obtaining the numerical solutions
of various time-fractional coupled nonlinear PDEs. Further, the tables show the
order of convergence in both directions. The following test examples have the exact
solutions used to estimate the errors in the L, and L norms using the formulae
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Table9 Errors in the L, and L, norms and orders of convergence in the temporal direction for Example
5.2, for p = 4 with different ordered pairs (a;, a,)

(ay, ay) Norms  Number of nodal points
N=32 N=64 N=128 N=256 N=512
M=20 M=40 M=80 M=160 M=320
0.4,0.7)  Ly(w 3.2835¢—03 1.7882¢ —03  9.3294¢ — 04  4.7659¢ — 04  2.4095¢ — 04
0.8767 0.9387 0.9690 0.9840
L (u) 5.0236e — 03  2.7264e — 03 1.4187¢—03  7.2310e — 04  3.6487¢ — 04
0.8817 0.9424 0.9723 0.9868
L,(v) 3.4359¢ — 03 1.8266¢ — 03  9.3799¢ — 04  4.7366e — 04  2.3739¢ — 04
09115 0.9615 0.9857 0.9966
L,(v) 5.7586e — 03  3.0048¢ —03 1.5210e —03  7.5800e — 04  3.7552¢ — 04
0.9384 0.9822 1.0048 1.0133
0.5,0.5) Ly(w) 3.3066e —03  1.7934¢ — 03  9.3268¢ — 04  4.7523¢—04  2.3976e — 04
0.8827 0.9432 0.9728 0.9870
L, () 5.1740e — 03  2.7798¢ — 03  1.4344e¢ - 03  7.2647¢—04 3.6477¢ — 04
0.8963 0.9545 0.9815 0.9939
L,(v) 3.3066e —03  1.7934¢ — 03  9.3268¢ — 04  4.7523¢—04  2.3976e — 04
0.8827 0.9432 0.9728 0.9870
L) 5.1740e — 03  2.7798e — 03  1.4344e — 03  7.2647¢ — 04 3.6477¢ — 04
0.8963 0.9545 0.9815 0.9939
0.7,04)  Ly(uw) 3.4359¢ — 03 1.8266¢ — 03  9.3799¢ — 04  4.7366e — 04  2.3739¢ — 04
09115 0.9615 0.9857 0.9966
L, (u) 5.7586e — 03  3.0048¢ —03 1.5210e —03  7.5800e — 04  3.7552¢ — 04
0.9384 0.9822 1.0048 1.0133
L,(v) 3.2835¢—03 1.7882¢ —03  9.3294e — 04  4.7659¢ — 04  2.4095¢ — 04
0.8767 0.9387 0.9690 0.9840
L,(v) 5.0236e —03  2.7264e —03 1.4187¢—03 7.2310e —04 3.6487¢ — 04
0.8817 0.9424 0.9723 0.9868
N
EyM = max Alh Y1203, 1,) = 205,01,

ENM = max
[s5)

1<m<M

where 2(x, 1) = u(x,, t,,),
Z(x,t) =U(x,,t,), V(x,,t,) are the approximate solutions to the problem (1.1). In
addition, the order of convergence is specified as

'N.M 2N, 2M
_ In(EYM /ENM)

n=1

I<ns<N-

v(x,, t,)

In2

are the exact

, g =72,00.

< max |Z(x,, ) — Z(xn,fm)|>,

solutions and
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(a) Numerical approximation of u (b) Numerical approximation of v

Fig.5 Numerical solutions at (a;, a,) = (0.3,0.7), p = 3, and N = M = 80 for Example 5.2

Absolute Error (u)

(a) Absolute error in u (b) Absolute error in v

Fig.6 Absolute errors at (a;, a,) = (0.3,0.7), p = 3, and N = M = 80 for Example 5.2

Example 5.1 Consider the problem (1.1) on €, xQ, =(0,1) X (0,1) with x =2,

=0, =1 The source terms are defined as
1 2
fo,n = % +Be X sin(e™) — Pe cos(e™) + k(12 sin(e™)P’ e cos(e™) — 0, 1%~ sin(2e™) and
—
glx,0) = % + e > sin(e™™) — e cos(e™) + k(£ sin(e ™)’ e~* cos(e™) — 0,10 sin(2e ) The
—@.

initial and boundary conditions are obtained using the exact solution.

The exact solution to the above problem is u(x, t) = v(x, ) = 13 sin(e™).

The errors in the L, and L norms are presented in Tables 2 and 3 for three dif-
ferent values of @, and @, with p = 1,2. From these tables, one can observe that
the scheme gives second order of accuracy in the space direction. In addition,
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(a) 2D plot for the approximation of u (b) 2D plot for the approximation of v

Fig.7 Numerical solutions at distinct time levels when (a;, a,) = (0.5,0.5), p =3, and N = M = 40 for
Example 5.2

0.016 T T T T T T T T 0.016 T T T T T T T T T
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0.012 0.012
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(a) For u(z,t) (b) For v(z,t)

Fig.8 Exact and numerical solutions when (a;,a,) = (0.3,0.7), p=4, and N =M =32 at t = 0.5 for
Example 5.2

Tables 4 and 5 present the numerical errors and their corresponding orders in the
time direction. Various numerical plots are also presented, such as Figs. 1 and 2
show the surface plots that represent the numerical solution and absolute error
behavior, respectively at («;, @,) = (0.5,0.5) and p = 2 with N = M = 60. Figure 3
shows the variations of numerical solutions at distinct time levels, and Fig. 4 pre-
sents the exact and numerical plots at = 0.5.
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Example 5.2 Consider the problem (1.1) on €, x €, =(0,1) X (0,1) with ¥ =2,

0, =0, =3. The source terms are defined as

feot) = 2“’;(5‘—*“)‘) +26% — k(*x(1 = 0P (1 = 2x) + o) (4x° — 622 + 2x) and
-

g(x, 1) = % +214 — k(t*x(1 = 0))P’r*(1 = 2x) + 0, (4x® — 62% + 2x). The ini-
o

tial and boundary conditions are obtained using the exact solution.

The exact solution to the above problem is u(x, 1) = v(x, ) = t*x(1 — x).

The numerical errors and order of accuracy in both directions for Example 5.2 are
shown in Tables 6, 7, 8 and 9 for distinct values of a; and @,. Moreover, the numeri-
cal solution surface plots are shown in Figs. 5, and 6 presents the surface plots of
absolute errors that are obtained by numerical computations for Example 5.2. The
graphs of numerical solutions at distinct time levels are shown in Fig. 7. The exact
and numerical solutions at ¢ = 0.5 for p = 4 are drawn together in Fig. 8.

6 Conclusion

In this work, we have investigated the time-fractional coupled generalized
Burgers’ equation through an implicit numerical scheme associated with the cubic
B-spline technique. We used the linearization technique to change the non-linear
coupled equation into a set of linear equations. The time-fractional derivative is
discretized using the Caputo derivative. Moreover, through meticulous analysis,
we have shown that our proposed numerical scheme is unconditionally stable.
The numerical examples are presented, and the computed results are delivered
through tables and graphs. The tables clearly show the correct convergence
orders for different values of @; and a,. The numerical results authenticate our
theoretical results and show that the numerical scheme for the fractional non-
linear coupled equation is proficient and accurate and can be applied to various
types of fractional coupled equations.
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