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Abstract
The Tutte polynomial is a classical polynomial graph invariant that provides important
information about the structure of a graph. In this study, we focus on the Tutte polyno-
mials for typical silicate molecular networks and benzenoid systems, and derive exact
formulas for the considered polycyclic chemical graphs.We also determine the explicit
closed-form analytic expressions for the number of spanning trees, connected span-
ning subgraphs, spanning forests, and acyclic orientations of these chemical polycyclic
graphs. Our approach employs a combinatorial decomposition technique, which is a
general method that can be easily extended to other 2-connected chemical polycyclic
networks. This research contributes to a better understanding of the topological prop-
erties of chemical structures and has potential applications in chemistry and materials
science.

Keywords Tutte polynomial · Benzenoid system · Silicate network · Spanning tree

1 Introduction

Various problems inmathematical chemistry, statistical physics, information sciences,
engineering and discrete mathematics can be treated and solved in a rather efficient
manner by making use of polynomials. Particularly, graph polynomial has been sub-
stantiated to be a powerful tool in the study and analysis of chemical structures
represented by graphs in the field of chemical graph theory [1–10]. One of the most
useful polynomial invariants in graph theory is the Tutte polynomial. The famous
chromatic polynomial, flow polynomial and reliability polynomial can all be deemed
as its specializations. The particular evaluations of the Tutte polynomial give several
important invariant parameters, such as the number of spanning trees, the number of
connected spanning subgraphs, the number of spanning forests, the number of acyclic
orientations, and so on. The Tutte polynomial also has a close connection with the
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Abelian sandpile model and the q-state Potts model in statistical mechanics [11].
Additionally, it can be specialized to the Jones polynomial of an alternating knot or
link and the weight enumerator of a linear code over GF(q). The zeros and coef-
ficients of the Tutte polynomial have also been a valuable source for investigating
various problems in discrete mathematics and related areas. Thus, if the Tutte poly-
nomial of a given network can be obtained, then the advantage is that many relevant
graph invariant information can be determined uniformly. Although it is significant
to determine the Tutte polynomial of a network completely, obtaining the Tutte poly-
nomial for graphs is generally an outstanding challenge. According to the best of our
knowledge and literature, there are only a few well-structured networks whose Tutte
polynomials are completely determined. As an important graph structure information
carrier, the Tutte polynomials for some individual network models with important
application background have also been studied in the past few years [12–16].

As natural graph representations of benzenoid hydrocarbons, hexagonal (ben-
zenoid) systems are of great importance in organic theoretical chemistry [17]. They
are defined as finite 2-connected bipartite plane graphs, in which all interior regions
are mutually congruent hexagons. Each vertex of a hexagonal system is shared by at
most three hexagons. If a vertex belongs to three hexagons in a hexagonal system,
then the vertex is called an internal vertex of the corresponding hexagonal system. A
hexagonal system is called catacondensed if it does not have internal vertices. Other-
wise, it is called pericondensed. Nowadays, there are many research papers devoted
to exploring the chemical and mathematical properties of hexagonal systems. In [18,
19], the authors studied the Kekulé number, Fries number, and Clar number for hexag-
onal systems. The extremal problems of vertex-degree-based topological indices for
hexagonal systems are considered in [20]. Lou et al. [21] gave explicit expressions of
the characteristic polynomial of a special hexagonal system, and they determined the
spectral radius and the multiplicity of eigenvalues ±1 of the hexagonal system. Very
recently, Ita et al. [22] presented a newmethod for computing theMerrifield–Simmons
index based on some basic graphs. By using transfer matrices, Oz [23] presented a
method to compute the number of k-matchings of arbitrary catacondensed hexago-
nal systems. For more details on the mathematical chemistry properties of hexagonal
systems, we refer to References [10, 24–29].

Silicates, which make up approximately 90% of the earths crust, are regarded as the
largest and most important class of common rock-forming minerals. These minerals
are obtained by fusing metal oxides or metal carbonates with sand and are classified
based on the structure of their silicate groups. The tetrahedron SiO4 is the fundamental
unit of silicates, and various silicate molecular networks have been constructed using
different arrangements of these tetrahedra. These molecular networks have attracted
the attention of scholars worldwide, who have studied their properties extensively. For
example, Hayat and Imran [30] investigated the topological indices of certain silicate
networks, while Akbari et al. [31, 32] studied the degree-based and distance-based
topological indices of silicate networks using vertex cut techniques. Shoaid et al. [33]
used electrical network techniques to determine the resistance distance between two
arbitrary vertices of linear silicate chains and cyclic silicate networks, as well as the
Kirchhoff index of these networks. Recently, Li et al. [34] determined the number
of matchings in linear and cyclic silicate molecular graphs. Despite this progress,
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the silicate molecular network remains a high-profile molecular structure with many
valuable characteristic properties yet to be explored.

Due to thewidespread application of the Tutte polynomial, researchers have studied
the Tutte polynomial for several chemical polycyclic graphs. For instance, the Tutte
polynomials for certain planar polycyclic graphs [35], catacondensed benzenoid sys-
tems [12] and phenylene systems with a given number of branching hexagons [36],
and pyrene chains and triphenylene chains [37] have been obtained in recent years.
However, the Tutte polynomials for silicate networks and some pericondensed ben-
zenoid systems have received a lot of attention lately but remain unstudied. In this
paper, we are motivated by the computation results in [33, 34, 38] and continue this
topic by computing the Tutte polynomials of some classes of typical silicate molecular
networks and pericondensed hexagonal systems. We also show that many structure
invariants of such chemical graphs can be expressed as closed-form formulas. The
results presented in this paper will be conducive to further understanding the physico-
chemical properties of silicate molecular networks and hexagonal systems.

2 Preliminaries

Throughout this paperwe consider only undirected and connected graphs, andmultiple
edges and loops are allowable. Let G be a graph consisting of a finite set V (G) of
vertices and a finite set E(G) of edges. All terms used but not defined in this paper
can be found in [11, 39].

For an undirected graph G = (V (G), E(G)), the Tutte polynomial can be defined
as the following recurrence relation [11]

T (G; x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if E(G) = ∅,

xT (G/e; x, y) if e is a cut edge,

yT (G − e; x, y) if e is a loop,

T (G − e; x, y) + T (G/e; x, y) otherwise,

(1)

where G − e and G/e are graphs obtained from G by deleting and contracting the
edge e, respectively.

If G is obtained from a graph H by adding b cut edges and � loops, then it is clear
from (1) that

T (G; x, y) = xb y�T (H ; x, y). (2)

In terms of the essential characteristic of the Tutte polynomial, some splitting for-
mulas have been established.

Proposition 2.1 Let G · H be the graph obtained from the union of two other graphs
G and H such that they have only a common vertex. Then

T (G · H ; x, y) = T (G; x, y)T (H ; x, y). (3)
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Proposition 2.2 [40] Let G : H be the graph obtained from G and H such that the
intersection of V (G) and V (H) has two elements {u,v} and E(G)∩ E(H) = ∅. Then

T (G : H ; x, y) = (x − 1)TG/{u,v}TH/{u,v} + (y − 1)TGTH − TGTH/{u,v} − TG/{u,v}TH
xy − x − y

,

(4)

where G/{u, v} denotes the graph obtained from G by identifying the vertices u and
v and not need to delete any edges.

It is known that the Tutte polynomial carries rich information about the graphical
structure. The following Proposition 2.3 lists partial interesting results.

Proposition 2.3 [11] Let G be a connected graph. Then (i) T (G; 1, 1) is equal to
the number of spanning trees NST (G); (ii) T (G; 1, 2) is equal to the number of
connected spanning subgraphs NSCS(G); (iii) T (G; 2, 1) is equal to the number of
spanning forests NSF (G); (iv)T (G; 2, 0) is equal to the number of acyclic orientations
NAO(G).

Let NST (G) be the number of spanning trees of graph G. The asymptotic growth
constant of the number of spanning trees κ(G), also called spanning tree entropy, is
an important measure parameter for some topological property of a graph G, which
is defined as

κ(G) = lim|V (G)|→∞
ln NST (G)

|V (G)| . (5)

3 The Tutte polynomials of silicate networks

In this section, we consider the Tutte polynomials of three classes typical silicate
molecular graphs, including the linear silicate chain LSn , the cylinder silicate molec-
ular graph CSn and the double silicate molecular chain DSn , the configurations of
LSn , CSn and DSn are shown respectively in Figs. 1, 2, and 3 for small n. The basic
chemical unit of silicate is a tetrahedron(SiO4) in which the corner vertices represents
the oxygen nodes and the central vertex represents the silicon node. These tetrahedra
combine in a variety of ways to formmolecular networks of silicates. One can observe
that the SiO4 can be represented by the completed graph K4 in the language of graph
theory (see Fig. 1), then it is easy to obtain that

T (K4; x, y) = 3x2 + x3 + x(2 + 4y) + y
(
2 + 3y + y2

)

by using the basic formula (1), and we set α = α(x, y) = T (K4; x, y) in the ensuing
discussion.

3.1 The Tutte polynomial of linear silicate chain LSn

We first give the Tutte polynomial of linear silicate chain LSn .
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Fig. 1 Tetrahedron (SiO4) and the linear silicate molecular chain LS11

Theorem 3.1 The Tutte polynomial of LSn is given by

T (LSn; x, y) = (
3x2 + x3 + x(2 + 4y) + y

(
2 + 3y + y2

))n
.

Proof Note that LSn = LSn−1 · K4 and LS1 ∼= K4, then one can get that
T (LSn, x, y) = T (LSn−1; x, y)T (K4; x, y) by Proposition 2.1. Moreover, we have
that T (LSn; x, y) = T (LSn−1; x, y)T (K4; x, y) = T (LSn−2; x, y)T (K4; x, y)2 =
· · · = T (LS1; x, y)T (K4; x, y)n−1 = T (K4; x, y)n = αn = (3x2 + x3 + x(2 +
4y) + y(2 + 3y + y2))n . ��

FromTheorem3.1 andProposition 2.3, the number of spanning trees (spanning con-
nected subgraphs, spanning forests, acyclic orientations) of the linear silicatemolecule
graph LSn can be determined directly.

Corollary 3.2 For n ≥ 1, (i) the number of spanning trees of LSn is NST (LSn) = 16n;
(ii) the number of spanning connected subgraphs of LSn is NSCS(G) = 38n; (iii) the
number of spanning forests of LSn is NSF (LSn) = 38n; (iv) the number of acyclic
orientations of LSn is NAO(LSn) = 24n.

From the structural features of LSn , it is easy to get that the linear silicate chain
LSn consists of |V (LSn)| = 3n+1 number of vertices and number of |E(LSn)| = 4n
edges. Then by (5), the spanning tree entropy of the linear silicate molecular networks
can be given by

κ(LSn) = lim|V (LSn)|→∞
ln(NST (LSn))

|V (LSn)| = lim
n→∞

ln(16n)

3n + 1
= lim

n→∞
n ln 16

3n + 1

= ln 16

3
≈ 0.924196. (6)

3.2 The Tutte polynomial of cylinder silicate molecular graph CSn

In this subsection, we give the expression of the Tutte polynomial for cylinder silicate
molecular graph CSn . The cylinder silicate molecular graphs CS5, CS6, CS7 and CS8
are illustrated in Fig. 2.

Theorem 3.3 For n ≥ 2, the Tutte polynomial of CSn is T (CSn; x, y) = φn−2[(y −
1)α2 + (x − 1)β2 − 2αβ](xy − x − y)−1 + ψα2(φn−2 − αn−2)(φ − α)−1, where
α = α(x, y) = 3x2 + x3 + x(2 + 4y) + y(2 + 3y + y2), β = β(x, y) = y(x +
y + y2 + y3 + (x + y)2), φ = φ(x, y) = 2 + 3x + x2 + 4y + 2xy + 3y2 + y3 and
ψ = ψ(x, y) = 2 + 3x + x2 + 2y.

123



Journal of Mathematical Chemistry

Fig. 2 The cylinder silicate molecular graphs CS5, CS6, CS7 and CS8

Proof Note that the graphs CSn and CSn−1 can be constructed respectively by the
way of that CSn = LSn−1 : K4 and LSn−1/{u, v} = CSn−1, where u and v are
respectively the vertices with degree 3 of the two terminal SiO4 in LSn−1. Firstly,
from the deletion-contraction formula (1), it is not difficult to get that

T (K4/{u, v}) = y
(
x + y + y2 + y3 + (x + y)2

)
,

and, for the sake of convenience, we put β = β(x, y) = T (K4/{u, v}) in the ensuing
discussion. Then one can obtain the following relation by using Proposition 2.2.

T (CSn; x, y) = (x − 1)β − α

xy − x − y
T (CSn−1; x, y) + αn−1[(y − 1)α − β]

xy − x − y
.

Settingφ = φ(x, y) = [(x−1)β−α](xy−x−y)−1 = 2+3x+x2+4y+2xy+3y2+y3

and ψ = ψ(x, y) = (
(y − 1)α − β

)
(xy − x − y)−1 = 2+ 3x + x2 + 2y. Thus, from

above we have that

T (CSn; x, y) = φ · T (CSn−1; x, y) + αn−1 · ψ

= φ2 · T (CSn−2; x, y) + φ · αn−2 · ψ + αn−1 · ψ

= φ3 · T (CSn−3; x, y) + φ2 · αn−3 · ψ + φ · αn−2 · ψ + αn−1 · ψ

= · · ·

= φn−2 · T (CS2; x, y) + ψ

n−1∑

i=2

αiφn−1−i

= φn−2 · T (CS2; x, y) + ψα2(φn−2 − αn−2)(φ − α)−1.

Moreover, by the use of (4) we can get T (CS2; x, y) = T (K4 : K4; x, y) = (
(y −

1)α2 + (x − 1)β2 − 2αβ
)
(xy − x − y)−1 = 4x + 12x2 + 13x3 + 6x4 + x5 + 4y +

20xy+25x2y+10x3y+ x4y+12y2 +28xy2 +16x2y2 +4x3y2 +16y3 +22xy3 +
10x2y3 + 15y4 + 14xy4 + 2x2y4 + 11y5 + 4xy5 + 5y6 + y7. Therefore, the proof
is completed. ��

The precise expansion expressions of the Tutte polynomials for the networks CS3,
CS4, CS5, CS6, CS7 and CS8 are listed in Appendix.
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Fig. 3 The double silicate molecular chains DS0, DS1, DS2 and DS3

Since it is easy to get that α(1, 1) = φ(1, 1) = 16, β(1, 1) = ψ(1, 1) = 8,
α(1, 2) = φ(1, 2) = 38, β(1, 2) = 48, ψ(1, 2) = 10, α(2, 1) = 38, φ(2, 1) = 24
and β(2, 1) = ψ(2, 1) = 14, then by Theorem 3.3 and Proposition 2.3 we can get the
number of spanning trees (spanning connected subgraphs, spanning forests, acyclic
orientations) of the cylinder silicate graph CSn .

Corollary 3.4 For n ≥ 2, (i) the number of spanning trees of CSn is NST (CSn) =
8n ·16n−1; (ii) the number of spanning connected subgraphs of CSn is NSCS(CSn) =
(10n + 38) · 38n−1; (iii) the number of acyclic orientations of CSn is NAO(CSn) =
12n(2n − 2); (iv) the number of spanning forests of CSn is NSF (CSn) = 38n − 24n.

In addition, it is easy to see that |V (CSn)| = 3n and |E(CSn)| = 6n. Then by (5)
we have

κ(CSn) = lim|V (CSn)|→∞
ln(NST (CSn))

|V (CSn)| = lim
n→∞

ln
(
8n · 16n−1

)

3n

= lim
n→∞

ln
(
16n−1

) + ln
(
8n

)

3n

= lim
n→∞

(n − 1) ln 16

3n

= 2 ln 4

3
≈ 0.924196. (7)

Remark The Eqs. (6) and (7) imply that the linear silicate chain LSn and cyclic
silicate molecular graphCSn have the same spanning tree entropy. Similar phenomena
also occur in the matching entropy of LSn and CSn [34].

3.3 The Tutte polynomial of double silicate molecular chain DSn

Now, we consider the Tutte polynomial of double silicate molecular chain DSn . The
configurations of double silicate molecular chains DSn for small n are shown in Figs.
3 and 4. In order to get the Tutte polynomial of DSn , we need some auxiliary graphs.
Let ASn be the graph which is obtained from DSn by identifying the two rightmost
vertices, that is ASn = DSn/{u, v}, where u and v are the two rightmost vertices of
DSn . The graph AS5 and other two auxiliary graphs F and Q are illustrated in Fig. 5.
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Fig. 4 Showing that DS5 = DS4 : LS4, and the graphs LS4 and CS4

Fig. 5 Showing that AS5 = DS4 : F , and the graphs F and Q

Lemma 3.5 For n ≥ 1, we have

T (DSn; x, y) = f1(x, y) · T (ASn−1; x, y) + f2(x, y) · T (DSn−1; x, y), (8)

where f1(x, y) = (
2+x2+4y+3y2+y3+x

(
3+2y

))4
and f2(x, y) = 13x10+x11+

x9(75+16y)+x8
(
255+168y+12y2+4y3

)+x7
(
575+768y+216y2+40y3

)+8(1+
y)6

(
2+4y+6y2+4y3+ y4

)+ x6
(
923+2032y+1284y2+316y3+48y4

)+4x(1+
y)3

(
28+108y+204y2+224y3+132y4+36y5+3y6

)+x5
(
1109+3504y+3852y2+

1756y3 +414y4 +36y5 +6y6
)+ x4

(
1025+4200y+6840y2 +5336y3 +2058y4 +

444y5+42y6
)+2x2(1+y)2

(
180+696y+1248y2+1196y3+563y4+120y5+14y6+

2y7
) + x3

(
720+ 3584y + 7740y2 + 9004y3 + 5802y4 + 2028y5 + 402y6 + 48y7

)
.

Proof The same as before, we use G : H to denote the graph obtained from G
and H such that they have only two common vertices. By analyzing the structural
characteristics of the double silicate molecular graph, we can find that DSn can be
constructed by the way of that DSn = DSn−1 : LS4 and assume that V (DSn−1) ∩
V (LS4) = {u, v}. Then one can see that LS4/{u, v} = CS4 and DSn−1/{u, v} =
ASn−1. Thus, from Proposition 2.2 and some simplifications, the desired result can be
obtained. ��
Lemma 3.6 For n ≥ 1, we have

T (ASn; x, y) = g1(x, y) · T (ASn−1; x, y) + g2(x, y) · T (DSn−1; x, y), (9)

where g1(x, y) = (
2+x2+4y+3y2+y3+x

(
3+2y

))2(8+2x3+24y+33y2+31y3+
23y4+13y5+5y6+y7+x2

(
10+8y+3y2+y3

)+2x
(
8+14y+12y2+8y3+4y4+y5

))
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and g2(x, y) = x10 + x9(13+ y) + x8
(
75+ 25y + 4y2

) + x7
(
255+ 199y + 58y2 +

12y3 + 2y4
)+ x6

(
574+ 811y+ 412y2 + 150y3 + 30y4 + 4y5

)+ x5
(
912+ 2004y+

1663y2+851y3+293y4+63y5+5y6+y7
)+x4

(
1058+3252y+4047y2+2899y3+

1464y4 +477y5 +100y6 +11y7
)+ (1+ y)3

(
32+128y+260y2 +336y3 +308y4 +

216y5+113y6+38y7+6y8
)+x(1+ y)2

(
192+752y+1424y2+1664y3+1362y4+

840y5 + 363y6 + 89y7 + 8y8
) + x3

(
896 + 3572y + 6139y2 + 6109y3 + 4138y4 +

2028y5+650y6+128y7+16y8
)+ x2

(
528+2600y+5777y2+7663y3+6885y4+

4528y5 + 2183y6 + 700y7 + 132y8 + 16y9 + 2y10
)
.

Proof One can see that the graph ASn can be constructed by the way of that
ASn = DSn−1 : F and assume that V (DSn−1) ∩ V (F) = {u, v}. Then we
can find that DSn−1/{u, v} = ASn−1, F/{u, v} = Q, LS4/{u, v} = CS4 and
DSn−1/{u, v} = ASn−1. For the Tutte polynomials of the small graphs F and Q,
one can get T (F; x, y) = (3x2 + x3 + x(2 + 4y) + y(2 + 3y + y2))2(x5 + x4(6 +
y) + x3(13+ 10y + 4y2) + y(1+ y)2(4 + 4y + 4y2 + 3y3 + y4) + x2(12 + 25y +
16y2 + 10y3 + 2y4) + 2x(2+ 10y + 14y2 + 11y3 + 7y4 + 2y5)) and T (Q; x, y) =
x10+x9(13+y)+x8(75+25y+4y2)+x7(253+201y+58y2+12y3+2y4)+x6(552+
817y+425y2+152y3+31y4+4y5)+x5(810+1950y+1725y2+907y3+319y4+
73y5+7y6+ y7)+x4(800+2886y+4015y2+3123y3+1687y4+613y5+158y6+
25y7 + y8) + x3(512+ 2648y + 5433y2 + 6189y3 + 4738y4 + 2666y5 + 1080y6 +
328y7 + 74y8 + 8y9) + y(1+ y)3(32+ 128y + 244y2 + 304y3 + 288y4 + 216y5 +
129y6+63y7+25y8+7y9+y10)+x(1+y)2(32+320y+932y2+1440y3+1500y4+
1194y5 + 737y6 + 355y7 + 138y8 + 40y9 + 6y10) + x2(192 + 1424y + 4152y2 +
6725y3+7177y4+5630y5+3390y6+1566y7+567y8+160y9+29y10+2y11) by
applying formula (1) directly. Thus, from Proposition 2.2 and some simplifications,
the desired result can be obtained. ��
Lemma 3.7 For n ≥ 1, we have

T (DSn+1; x, y) = �(x, y)T (DSn; x, y) + 	(x, y)T (DSn−1; x, y), (10)

where �(x, y) = 13x10 + x11 + x9(75 + 16y) + x8(255 + 168y + 12y2 + 4y3) +
x7(577 + 768y + 216y2 + 40y3) + x6(945 + 2048y + 1287y2 + 317y3 + 48y4) +
x5(1211+ 3660y + 3946y2 + 1794y3 + 426y4 + 38y5 + 6y6)+ x4(1283+ 4824y +
7496y2 + 5768y3 + 2267y4 + 517y5 + 57y6 + y7) + 2x3(552+ 2446y + 4877y2 +
5469y3+3568y4+1362y5+334y6+57y7+4y8)+2x(1+y)2(136+568y+1166y2+
1510y3+1297y4+744y5+299y6+94y7+23y8+3y9)+(1+y)3(48+208y+452y2+
640y3 + 636y4 + 452y5 + 237y6 + 98y7 + 33y8 + 8y9 + y10) + x2(696+ 3624y +
8777y2 + 12851y3 + 12189y4 + 7565y5 + 3108y6 + 908y7 + 209y8 + 33y9 + 2y10)
and 	(x, y) = −(x5 + 2x4(3+ y)+ x3(13+ 14y+ 3y2 + y3)+ y(1+ y)2(4+ 6y+
4y2 + y3) + 2x2(6+ 15y + 10y2 + 2y3) + x(4+ 22y + 35y2 + 23y3 + 6y4))2(x8 +
x7(11+3y+3y2+ y3)+x6(51+35y+27y2+21y3+8y4+2y5)+x5(129+165y+
125y2+123y3+79y4+27y5+5y6+y7)+y(1+y)3(16+32y+32y2+32y3+32y4+
23y5 + 10y6 + 2y7) + x4(192+ 405y + 377y2 + 363y3 + 326y4 + 177y5 + 52y6 +
7y7)+x(1+y)2(16+112y+176y2+168y3+172y4+156y5+93y6+31y7+4y8)+
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2x3(84+276y+358y2 +344y3 +345y4 +273y5 +137y6 +41y7 +6y8)+ x2(80+
408y + 776y2 + 876y3 + 871y4 + 820y5 + 585y6 + 278y7 + 84y8 + 16y9 + 2y10)).

Proof From (8), we have

T (ASn−1; x, y) = 1

f1(x, y)
T (DSn) − f2(x, y)

f1(x, y)
T (DSn−1; x, y) (11)

and

T (ASn; x, y) = 1

f1(x, y)
T (DSn+1) − f2(x, y)

f1(x, y)
T (DSn; x, y). (12)

If we plug (11) and (12) back into (9), then

T (DSn+1; x, y) = (g1(x, y) + f2(x, y))T (DSn; x, y)
+ ( f1(x, y)g2(x, y) − g1(x, y) f2(x, y))T (DSn−1; x, y)

= �(x, y)T (DSn; x, y) + 	(x, y)T (DSn−1; x, y),

where �(x, y) = g1(x, y) + f2(x, y) and 	(x, y) = f1(x, y)g2(x, y) −
g1(x, y) f2(x, y). Hence, the desired result follows. ��

Noting that the initial conditions T (DS0; x, y) = T (K4 · K4; x, y) = (3x2 + x3 +
x(2+4y)+ y(2+3y+ y2))2, T (DS1; x, y) = T (CS6; x, y) = (2+ x2+4y+3y2+
y3+x(3+2y))4(x5+x4(6+y)+x3(13+10y+4y2)+y(1+y)2(4+4y+4y2+3y3+
y4)+x2(12+25y+16y2+10y3+2y4)+2x(2+10y+14y2+11y3+7y4+2y5))+
(3x2 + x3 + x(2+ 4y) + y(2+ 3y + y2))2(13x10 + x11 + x9(75+ 16y) + x8(255+
168y + 12y2 + 4y3)+ x7(575+ 768y + 216y2 + 40y3)+ 8(1+ y)6(2+ 4y + 6y2 +
4y3 + y4) + x6(923+ 2032y + 1284y2 + 316y3 + 48y4) + 4x(1+ y)3(28+ 108y +
204y2 + 224y3 + 132y4 + 36y5 + 3y6) + x5(1109 + 3504y + 3852y2 + 1756y3 +
414y4 + 36y5 + 6y6) + x4(1025+ 4200y + 6840y2 + 5336y3 + 2058y4 + 444y5 +
42y6) + 2x2(1 + y)2(180 + 696y + 1248y2 + 1196y3 + 563y4 + 120y5 + 14y6 +
2y7) + x3(720+ 3584y + 7740y2 + 9004y3 + 5802y4 + 2028y5 + 402y6 + 48y7))
and combining the characteristic equation of (10), one can derive the closed-form
expression of the Tutte polynomial of DSn .

Theorem 3.8 The Tutte polynomial of DSn is given by

T (DSn; x, y) = 2λ−μ
(
�−√

�
)

�+�
√

�

(
�+√

�
2

)n+1 + 2λ−μ
(
�+√

�
)

�−�
√

�

(
�−√

�
2

)n+1
,

where μ = μ(x, y) = T (DS0; x, y), λ = λ(x, y) = T (DS1; x, y), � = �(x, y)
and � = �(x, y) = �(x, y)2 + 4	(x, y).

If we take x ∈ {1, 2} and y ∈ {0, 1, 2}, then it is easy to obtain that

• �(1, 1) = 196608, 	(1, 1) = −1073741824, μ(1, 1) = 256, λ(1, 1) =
50331648 and �(1, 1) = 34359738368.
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• �(1, 2) = 5377456, 	(1, 2) = −1210396426368, μ(1, 2) = 1444, λ(1, 2) =
7765046464 and �(1, 2) = 24075447326464.

• �(2, 0) = 324864, 	(2, 0) = −1146617856, μ(2, 0) = 576, λ(2, 0) =
185131008 and �(2, 0) = 100950147072.

• �(2, 1) = 2001040, 	(2, 1) = −100601100288, μ(2, 1) = 1444, λ(2, 1) =
2819833408 and �(2, 1) = 3601756680448.

Thus, from Proposition 2.3 and Theorem 3.8 we have

Corollary 3.9

(i) The number of spanning trees of DSn is

NST (DSn) =
(
98304+65536

√
2
)n+1

512
√
2

−
(
98304−65536

√
2
)n+1

512
√
2

.

(ii) The number of spanning connected subgraphs of DSn is

NSCS(DSn) =
(
54872

(√
1999+49

))n+1

76
√
1999

−
(
54872

(√
1999−49

))n+1

76
√
1999

.

(iii) The number of acyclic orientations of DSn is

NAO(DSn) = 15552
(√

2113+46
)(

3456
(√

2113+47
))n+1

8771328
√
2113+94044716119

− 15552
(√

2113−46
)(

3456
(√

2113−47
))n+1

8771328
√
2113−94044716119

.

(iv) The number of spanning forests of DSn is

NSF (DSn) =
(
361

√
14069362033+42971329

)(
8
(√

14069362033+125065
))n+1

500260
√
14069362033+376178864476

−
(
361

√
14069362033−42971329

)(
8
(√

14069362033−125065
))n+1

500260
√
14069362033−376178864476

.

It is easy to check that the number of vertices and the number of edges of DSn are
|V (DSn)| = 11n + 7 and |E(DSn)| = 24n + 12, respectively. Then by (5) we have

κ(DSn) = lim|V (DSn)|→∞
ln(NST (DSn))

|V (DSn)|

= lim
n→∞

ln

((
98304+65536

√
2
)n+1

512
√
2

−
(
98304−65536

√
2
)n+1

512
√
2

)

11n + 7

= lim
n→∞

ln

((
98304+65536

√
2
)n+1

512
√
2

)

+ ln

(

1 −
(
98304−65536

√
2

98304+65536
√
2

)n+1
)

11n + 7
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Fig. 6 The benzenoid system Rn

= lim
n→∞

(n + 1) ln
(
98304 + 65536

√
2
)

11n + 7

= ln
(
98304 + 65536

√
2
)

11
≈ 1.10545.

4 The Tutte polynomials of three classes of benzenoid systems

In this section, we consider the Tutte polynomials of three classes of pericondensed
benzenoid systems which are respectively illustrated in Figs. 6, 8 and 10. Some previ-
ous computation results for these pericondensed benzenoid systems can be found in
[8, 38, 41].

4.1 The Tutte polynomial of benzenoid system Rn

In this subsection, we devote to get the Tutte polynomial of benzenoid system Rn . Let
ARn be the graph obtained from Rn by identifying the two rightmost vertices. The
graphs AR1, AR2 and AR4 are shown in Fig. 7.

Lemma 4.1 The Tutte polynomial of Rn can be expressed by

T (Rn; x, y) = h1(x, y)T (ARn−1; x, y) + h2(x, y)T (Rn−1; x, y), (13)

where h1(x, y) = 6x8+3x9+ x10+2x6(6+ y)+ x7(9+ y)+4x4(3+2y)+ x5(13+
5y) + y(2 + 3y + y2) + 2x2(3 + 4y + y2) + x3(9 + 9y + 2y2) + x(2 + 7y + 3y2)
and h2(x, y) = (1+ x)(2 + 8x5 + 6x6 + 4x7 + 2x8 + x9 + 3y + y2 + 2x(2 + y) +
2x3(4 + y) + 2x4(4 + y) + x2(6 + 4y)).

Proof Wefind that the benzenoid system Rn can be established by theway of that Rn =
Rn−1 : J and assume the two common vertices of the graphs Rn−1 and J are u and v,
where the graph J is shown in Figure 7. Then it is not difficult to see that J/{u, v} = K
and Rn−1/{u, v} = ARn−1, the graph K is also shown in Figure 7. Furthermore, one
canget that T (J ; x, y) = x2(x+x2+x3+x4+x5+x6+x7+x8+x9+y+(x+x2+x3+
x4+ y)2) and T (K ; x, y) = 6x8+3x9+x10+2x6(6+ y)+x7(9+ y)+4x4(3+2y)+
x5(13+5y)+ y(2+3y+ y2)+2x2(3+4y+ y2)+x3(9+9y+2y2)+x(2+7y+3y2).
Thus, by the use of Proposition 2.2 we have

T (Rn; x, y) = (x − 1)T (K ; x, y) − T (J ; x, y)
xy − x − y

T (ARn−1; x, y)
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Fig. 7 Showing that Rn = Rn−1 : J and ARn = Rn−1 : W , and the graphs J , K , W and Z

+ (y − 1)T (J ; x, y) − T (K ; x, y)
xy − x − y

T (Rn−1; x, y)
= h1(x, y)T (ARn−1; x, y) + h2(x, y)T (Rn−1; x, y),

where h1(x, y) = (x−1)T (K ;x,y)−T (J ;x,y)
xy−x−y = 6x8 + 3x9 + x10 + 2x6(6+ y) + x7(9+

y)+4x4(3+2y)+ x5(13+5y)+ y(2+3y+ y2)+2x2(3+4y+ y2)+ x3(9+9y+
2y2) + x(2+ 7y + 3y2) and h2(x, y) = (y−1)T (J ;x,y)−T (K ;x,y)

xy−x−y = (1+ x)(2+ 8x5 +
6x6+4x7+2x8+ x9+3y+ y2+2x(2+ y)+2x3(4+ y)+2x4(4+ y)+ x2(6+4y)).

��

Lemma 4.2 The Tutte polynomial of ARn can be expressed by

T (ARn; x, y) = s1(x, y)T (ARn−1; x, y) + s2(x, y)T (Rn−1; x, y), (14)

where s1(x, y) = x6 + x5(2 + y) + (1 + y)2(2 + y) + x4(3 + 2y) + x3(4 + 3y) +
2x2(3+ 3y + y2)+ x(5+ 7y + 2y2) and s2(x, y) = x9 + 3x7(2+ y)+ (1+ y)2(2+
y) + 4x3(2+ y)2 + x8(3+ y) + 2x6(5+ 3y) + 2x5(7+ 5y) + 2x4(8+ 7y + y2) +
x2(13 + 17y + 6y2) + x(7 + 12y + 6y2 + y3).

Proof One can find that the graph ARn can be constructed by the way of that ARn =
Rn−1 : W , where the graphW is illustrated in Figure 7. If we set V (Rn−1)∩V (W ) =
{u, v}, then it can be seen that Rn−1/{u, v} = ARn−1 and W/{u, v} = Z , the graph
Z is also illustrated in Figure 7. By using the formula (1), it can be computed that
T (W ; x, y) = x2((1+ y)(x + x2 + x3 + y)2 + (1+ x + y)(x + x2 + x3 + x4 + x5 +
x6 + x7 + y)) and T (Z; x, y) = x9 + 3x7(2+ y) + y(1+ y)2(2+ y) + x8(3+ y) +
x6(9 + 7y) + x5(12 + 11y + y2) + x4(13 + 15y + 4y2) + x3(12 + 17y + 7y2) +
x2(7 + 17y + 10y2 + 2y3) + x(2 + 10y + 11y2 + 3y3). Moreover, by Proposition
2.2 we have

T (ARn; x, y) =T (Rn−1 : W ; x, y)
= (x − 1)T (Z; x, y) − T (W ; x, y)

xy − x − y
T (ARn−1; x, y)
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+ (y − 1)T (W ; x, y) − T (Z; x, y)
xy − x − y

T (Rn−1; x, y)
=s1(x, y)T (ARn−1; x, y) + s2(x, y)T (Rn−1; x, y),

where s1(x, y) = (x−1)T (Z;x,y)−T (W ;x,y)
xy−x−y = x6 + x5(2 + y) + (1 + y)2(2 + y) +

x4(3 + 2y) + x3(4 + 3y) + 2x2(3 + 3y + y2) + x(5 + 7y + 2y2) and s2(x, y) =
(y−1)T (W ;x,y)−T (Z;x,y)

xy−x−y = x9 +3x7(2+ y)+ (1+ y)2(2+ y)+4x3(2+ y)2 + x8(3+
y) + 2x6(5+ 3y) + 2x5(7+ 5y) + 2x4(8+ 7y + y2) + x2(13+ 17y + 6y2) + x(7+
12y + 6y2 + y3). ��
Lemma 4.3 For n ≥ 1, we have

T (Rn+1; x, y) = �1(x, y)T (Rn; x, y) + 	1(x, y)T (Rn−1; x, y), (15)

where �1(x, y) = 15x6 + 10x7 + 6x8 + 3x9 + x10 + 9x3(2 + y) + (1 + y)(2 +
y)2 + 3x5(6 + y) + x4(19 + 6y) + 2x2(8 + 6y + y2) + x(11 + 12y + 3y2) and
	1(x, y) = −(1 + x)(2 + 8x5 + 6x6 + 4x7 + 2x8 + x9 + 3y + y2 + 2x(2 + y) +
2x3(4+ y)+2x4(4+ y)+x2(6+4y))(x6+x5(2+ y)+(1+ y)2(2+ y)+x4(3+2y)+
x3(4+3y)+2x2(3+3y+y2)+x(5+7y+2y2))+(6x8+3x9+x10+2x6(6+y)+x7(9+
y)+4x4(3+2y)+x5(13+5y)+y(2+3y+y2)+2x2(3+4y+y2)+x3(9+9y+2y2)+
x(2+7y+3y2))(x9+3x7(2+y)+(1+y)2(2+y)+4x3(2+y)2+x8(3+y)+2x6(5+
3y)+2x5(7+5y)+2x4(8+7y+ y2)+x2(13+17y+6y2)+x(7+12y+6y2+ y3)).

Proof From (13), we have

T (ARn−1; x, y) = 1

h1(x, y)
T (Rn) − h2(x, y)

h1(x, y)
T (Rn−1; x, y) (16)

and

T (ARn; x, y) = 1

h1(x, y)
T (Rn+1) − h2(x, y)

h1(x, y)
T (Rn; x, y). (17)

If we plug (16) and (17) back into (14), we obtain

T (Rn+1; x, y) = (s1(x, y) + h2(x, y))T (Rn; x, y) + (h1(x, y)s2(x, y)

− s1(x, y)h2(x, y))T (Rn−1; x, y)
= �1(x, y)T (Rn; x, y) + 	1(x, y)T (Rn−1; x, y),

where �1(x, y) = s1(x, y) + h2(x, y) and 	1(x, y) = h1(x, y)s2(x, y) −
s1(x, y)h2(x, y). Hence, the desired result follows. ��

It is straightforward to get the initial conditions that T (R1; x, y) = x + x2 + x3 +
x4 + x5 + x6 + x7 + x8 + x9 + y + (x + x2 + x3 + x4 + y)2 and T (R2; x, y) =
(1+ x)(x+ x2+ x3+ x4+ x5+ x6+ x7+ x8+ x9+ y+ (x+ x2+ x3+ x4+ y)2)(2+
8x5 + 6x6 + 4x7 + 2x8 + x9 + 3y + y2 + 2x(2 + y) + 2x3(4 + y) + 2x4(4 + y) +
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x2(6+ 4y)) + ((1+ y)(x + x2 + x3 + y)2 + (1+ x + y)(x + x2 + x3 + x4 + x5 +
x6 + x7 + y))(6x8 + 3x9 + x10 + 2x6(6+ y) + x7(9+ y) + 4x4(3+ 2y) + x5(13+
5y) + y(2+ 3y + y2) + 2x2(3+ 4y + y2) + x3(9+ 9y + 2y2) + x(2+ 7y + 3y2)),
then together with the characteristic equation of (15) we obtain the exact expression
of the Tutte polynomial of benzenoid system Rn .

Theorem 4.4 The Tutte polynomial of Rn is given by

T (Rn; x, y) = 2λ1−μ1

(
�1−√

�1

)

�1+�1
√

�1

(
�1+√

�1
2

)n

+ 2λ1−μ1

(
�1+√

�1

)

�1−�1
√

�1

(
�1−√

�1
2

)n

,

where μ1 = μ1(x, y) = T (R1; x, y), λ1 = λ1(x, y) = T (R2; x, y), �1 = �1(x, y)
and �1 = �1(x, y) = �1(x, y)2 + 4	1(x, y).

Moreover, it can easily be calculated that

• �1(1, 1) = 182, 	1(1, 1) = 17640, μ1(1, 1) = 35, λ1(1, 1) = 11466 and
�1(1, 1) = 103684.

• �1(1, 2) = 269, 	1(1, 2) = 56262, μ1(1, 2) = 47, λ1(1, 2) = 30181 and
�1(1, 2) = 297409.

• �1(2, 0) = 7450, 	1(2, 0) = 22367448, μ1(2, 0) = 1922, λ1(2, 0) = 20291524
and �1(2, 0) = 144972292.

• �1(2, 1) = 7814, 	1(2, 1) = 37822512, μ1(2, 1) = 1984, λ1(2, 1) = 25635588
and �1(2, 1) = 212348644.

Then by Theorem 4.4 and Proposition 2.3 we can get the number of spanning trees
(spanning connected subgraphs, spanning forests, acyclic orientations) of the ben-
zenoid system Rn .

Corollary 4.5

(i) The number of spanning trees of Rn is NST (Rn) = 71×252n
414 + 27×(−70)n

230 .
(ii) The number of spanning connected subgraphs of Rn is

NSCS(Rn) =
(

2923
18754 + 13593

18754

√
7

42487

)(
269+√

297409
2

)n

+
(

2923
18754 − 13593

18754

√
7

42487

)(
269−√

297409
2

)n
.

(iii) The number of acyclic orientations of Rn is

NAO(Rn) =
(
373289

√
36243073+1296388166

)(
3725+√

36243073
)n

2795931
√
36243073

+
(
373289

√
36243073−1296388166

)(
3725−√

36243073
)n

2795931
√
36243073

.

(iv) The number of spanning forests of Rn is
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Fig. 8 The benzenoid system Mn

Fig. 9 Showing that Mn = Mn−1 : J and AMn = Mn−1 : W , and the graphs M0, AM0, J , K , W and Z

NSF (Rn) =
(
51697

√
53087161+180876269

)(
3907+√

53087161
)n

385944
√
53087161

+
(
51697

√
53087161−180876269

)(
3907−√

53087161
)n

385944
√
53087161

.

It is easy to check that the number of vertices and the number of edges of Rn are
|V (Rn)| = 10n and |E(Rn)| = 13n − 2, respectively. Then by (5)

κ(Rn) = lim|V (Rn)|→∞
ln(NST (Rn))

|V (Rn)| = lim
n→∞

ln
( 71×252n

414 + 27×(−70)n

230

)

10n

= lim
n→∞

ln
( 71×252n+1

414

) + ln
(
1 + 243

355 (
−70
252 )n+1

)

10n

= lim
n→∞

(n + 1) ln 252

10n
= ln 252

10
.

4.2 The Tutte polynomial of benzenoid systemMn

Now, we consider the Tutte polynomial of benzenoid system Mn . The configuration
of Mn is shown in Fig. 8. We let M0 = P3, the path with 3 vertices (see Fig. 9), for
convenience. The graph AMn is obtained from Mn by identifying the rightmost two
vertices.
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Lemma 4.6 The Tutte polynomial of Mn can be expressed by

T (Mn; x, y) = h1(x, y)T (AMn−1; x, y) + h2(x, y)T (Mn−1; x, y), (18)

where h1(x, y) = 6x8+3x9+ x10+2x6(6+ y)+ x7(9+ y)+4x4(3+2y)+ x5(13+
5y) + y(2 + 3y + y2) + 2x2(3 + 4y + y2) + x3(9 + 9y + 2y2) + x(2 + 7y + 3y2)
and h2(x, y) = (1+ x)(2 + 8x5 + 6x6 + 4x7 + 2x8 + x9 + 3y + y2 + 2x(2 + y) +
2x3(4 + y) + 2x4(4 + y) + x2(6 + 4y)).

Proof It can be seen that Mn = Mn−1 : J and assume that the common vertices of
the graphs Mn−1 and J is {u, v}. Then it is not difficult to get that J/{u, v} = K and
Mn−1/{u, v} = AMn−1, see Figure 9. Furthermore, one can get that T (J ; x, y) =
x2(x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + y + (x + x2 + x3 + x4 + y)2) and
T (K ; x, y) = 6x8 + 3x9 + x10 + 2x6(6+ y) + x7(9+ y) + 4x4(3+ 2y) + x5(13+
5y) + y(2 + 3y + y2) + 2x2(3+ 4y + y2) + x3(9+ 9y + 2y2) + x(2 + 7y + 3y2).
Thus, by the use of Proposition 2.2 we have

T (Mn; x, y) = (x − 1)T (K ; x, y) − T (J ; x, y)
xy − x − y

T (AMn−1; x, y)

+ (y − 1)T (J ; x, y) − T (K ; x, y)
xy − x − y

T (Mn−1; x, y)
= h1(x, y)T (AMn−1; x, y) + h2(x, y)T (Mn−1; x, y),

where h1(x, y) = (x−1)T (K ;x,y)−T (J ;x,y)
xy−x−y = 6x8 + 3x9 + x10 + 2x6(6+ y) + x7(9+

y)+4x4(3+2y)+ x5(13+5y)+ y(2+3y+ y2)+2x2(3+4y+ y2)+ x3(9+9y+
2y2) + x(2+ 7y + 3y2) and h2(x, y) = (y−1)T (J ;x,y)−T (K ;x,y)

xy−x−y = (1+ x)(2+ 8x5 +
6x6+4x7+2x8+ x9+3y+ y2+2x(2+ y)+2x3(4+ y)+2x4(4+ y)+ x2(6+4y)).

��
Lemma 4.7 The Tutte polynomial of AMn can be expressed by

T (AMn; x, y) = s1(x, y)T (AMn−1; x, y) + s2(x, y)T (Mn−1; x, y), (19)

where s1(x, y) = x6 + x5(2 + y) + (1 + y)2(2 + y) + x4(3 + 2y) + x3(4 + 3y) +
2x2(3+ 3y + y2)+ x(5+ 7y + 2y2) and s2(x, y) = x9 + 3x7(2+ y)+ (1+ y)2(2+
y) + 4x3(2+ y)2 + x8(3+ y) + 2x6(5+ 3y) + 2x5(7+ 5y) + 2x4(8+ 7y + y2) +
x2(13 + 17y + 6y2) + x(7 + 12y + 6y2 + y3).

Proof One can find that the graph AMn can be constructed by the way of that
AMn = Mn−1 : W . If we set V (Mn−1) ∩ V (W ) = {u, v}, then it can be seen
that Mn−1/{u, v} = AMn−1 and W/{u, v} = Z . By using the formula (1), it can be
computed that T (W ; x, y) = x2((1+ y)(x + x2 + x3 + y)2 + (1+ x + y)(x + x2 +
x3 + x4 + x5 + x6 + x7 + y)) and T (Z; x, y) = x9 + 3x7(2 + y) + y(1 + y)2(2 +
y) + x8(3+ y) + x6(9+ 7y) + x5(12+ 11y + y2) + x4(13+ 15y + 4y2) + x3(12+
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17y + 7y2) + x2(7+ 17y + 10y2 + 2y3) + x(2+ 10y + 11y2 + 3y3). Moreover, by
Proposition 2.2 we have

T (AMn; x, y) = T (Mn−1 : W ; x, y) = (x − 1)T (Z; x, y) − T (W ; x, y)
xy − x − y

T (AMn−1; x, y)

+ (y − 1)T (W ; x, y) − T (Z; x, y)
xy − x − y

T (Mn−1; x, y)
= s1(x, y)T (AMn−1; x, y) + s2(x, y)T (Mn−1; x, y),

where s1(x, y) = (x−1)T (Z;x,y)−T (W ;x,y)
xy−x−y = x6 + x5(2 + y) + (1 + y)2(2 + y) +

x4(3 + 2y) + x3(4 + 3y) + 2x2(3 + 3y + y2) + x(5 + 7y + 2y2) and s2(x, y) =
(y−1)T (W ;x,y)−T (Z;x,y)

xy−x−y = x9 +3x7(2+ y)+ (1+ y)2(2+ y)+4x3(2+ y)2 + x8(3+
y) + 2x6(5+ 3y) + 2x5(7+ 5y) + 2x4(8+ 7y + y2) + x2(13+ 17y + 6y2) + x(7+
12y + 6y2 + y3). ��
Lemma 4.8 The Tutte polynomial of Mn can be expressed by

T (Mn+1; x, y) = �1(x, y)T (Mn; x, y) + 	1(x, y)T (Mn−1; x, y). (20)

Proof An argument similar to Lemma 4.3, one can obtain the desired result (20) by
applying (18) and (19). ��

On account of the initial conditions T (M0; x, y) = x2 and T (M1; x, y) = 4x11 +
x12 + x10(9+ y) + x9(16+ 3y) + x8(23+ 7y) + y2(2+ 3y + y2) + x7(28+ 13y +
y2) + 2xy(2 + 5y + 2y2) + x6(29 + 21y + 2y2) + x5(26 + 27y + 5y2) + x4(19 +
27y + 10y2) + 2x2(2 + 8y + 6y2 + y3) + 2x3(6 + 11y + 6y2 + y3), and by using
the characteristic equation of (20) we can get the Tutte polynomial of Mn .

Theorem 4.9 The Tutte polynomial of Mn is given by

T (Mn; x, y) = 2η−x2
(
�1−√

�1

)

�1+�1
√

�1

(
�1+√

�1
2

)n+1 + 2η−x2
(
�1+√

�1

)

�1−�1
√

�1

(
�1−√

�1
2

)n+1
,

where η = η(x, y) = T (M1; x, y), �1 = �1(x, y) and �1 = �1(x, y) =
�1(x, y)2 + 4	1(x, y).

Since it is also easy to get η(1, 1) = 378, η(1, 2) = 773, η(2, 0) = 42272 and
η(2, 1) = 51954, then fromTheorem 4.9 and Proposition 2.3 we can get the number of
spanning trees (spanning connected subgraphs, spanning forests, acyclic orientations)
of the benzenoid system Mn .

Corollary 4.10

(i) The number of spanning trees of Mn is NST (Mn) = 8×252n+1

1449 + 9×(−70)n+1

1610 .
(ii) The number of spanning connected subgraphs of Mn is

123



Journal of Mathematical Chemistry

NSCS(Mn) =
(

42
9377 − 1921

9377
√
297409

)(
269+√

297409
2

)n+1

+
(

42
9377 + 1921

9377
√
297409

)(
269−√

297409
2

)n+1
.

(iii) The number of acyclic orientations of Mn is

NAO(Mn) =
(
1559

√
36243073+5376449

)(
3725+√

36243073
)n+1

5591862
√
36243073

+
(
1559

√
36243073−5376449

)(
3725−√

36243073
)n+1

5591862
√
36243073

.

(iv) The number of spanning forests of Mn is

NSF (Mn) =
(
10349

√
53087161+35211481

)(
3907+√

53087161
)n+1

37822512
√
53087161

+
(
10349

√
53087161−35211481

)(
3907−√

53087161
)n+1

37822512
√
53087161

.

It is easy to check that the number of vertices and the number of edges of Mn are
|V (Mn)| = 10n + 3 and |E(Mn)| = 13n + 2, respectively. Then by (5), we have

κ(Mn) = lim|V (Mn)|→∞
ln(NST (Mn))

|V (Mn)|

= lim
n→∞

ln
(
8×252n+1

1449 + 9×(−70)n+1

1610

)

10n + 3

= lim
n→∞

ln
(
8×252n+1

1449

)
+ ln

(
1 + 81

80

(−70
252

)n+1
)

10n + 6

= lim
n→∞

(n + 1) ln 252

10n + 3

= ln 252

10
.

By Lemma 4.7, we can easily get the following result.

Lemma 4.11 For n ≥ 1, we have

T (AMn+1; x, y) = �1(x, y)T (AMn; x, y) + 	1(x, y)T (AMn−1; x, y). (21)

It can be straightforward to get the initial conditions T (AM0; x, y) = x + y and
T (AM1; x, y) = x11 +3x9(2+ y)+ y(1+ y)2(2+ y)+ x10(3+ y)+5x7(3+2y)+
2x8(5 + 3y) + 2x6(9 + 8y + y2) + x5(19 + 20y + 5y2) + x4(17 + 23y + 8y2) +
x3(13+ 22y + 11y2 + y3)+ x(2+ 10y + 11y2 + 3y3)+ x2(7+ 18y + 12y2 + 3y3),
then combing the the characteristic equation of (21) we can get the Tutte polynomial
of AMn .
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Fig. 10 The benzenoid system Hn

Theorem 4.12 The Tutte polynomial of AMn is given by

T (AMn; x, y) = 2ω−(x+y)
(
�1−√

�1

)

�1+�1
√

�1

(
�1+√

�1
2

)n+1 + 2ω−(x+y)
(
�1+√

�1

)

�1−�1
√

�1

(
�1−√

�1
2

)n+1
,

where ω = ω(x, y) = T (AM1; x, y), �1 = �1(x, y) and �1 = �1(x, y) =
�1(x, y)2 + 4	1(x, y).

4.3 The Tutte polynomials of benzenoid system Hn

In this subsection, we derive the Tutte polynomials of benzenoid system Hn (see
Fig. 10) by using the structural relation between Hn and Mn .

Lemma 4.13 The Tutte polynomials for Hn, Mn and AMn satisfy the following rela-
tion:

T (Hn; x, y) = T (AMn; x, y) + (1 + x + x2 + x3)T (Mn; x, y).

Proof From the structural feature of Hn , one can easily find that the benzenoid system
Hn can be constructed byMn and P5, that is Hn = Mn : P5. Ifwe setV (Mn)∩V (P5) =
{u, v}, thenMn/{u, v} = AMn and P5/{u, v} = C4. By using Proposition 2.2 we have

T (Hn; x, y) =T (Mn : P5; x, y) = (x − 1)T (C4; x, y) − T (P5; x, y)
xy − x − y

T (AMn; x, y)

+ (y − 1)T (P5; x, y) − T (C4; x, y)
xy − x − y

T (Mn; x, y)

= (x − 1)
(
y + x + x2 + x3

) − x4

xy − x − y
T (AMn; x, y)

+ (y − 1)x4 − (
y + x + x2 + x3

)

xy − x − y
T (Mn; x, y)

=T (AMn; x, y) + (
1 + x + x2 + x3

)
T (Mn; x, y).

Thus, we derive the desired result. ��
According to Theorems 4.9, 4.12 and Lemma 4.13, the Tutte polynomial of ben-

zenoid system Hn is straightforward.
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Theorem 4.14 The Tutte polynomial of Hn is given by

T (Hn; x, y) = 2θ−ϑ
(
�1−√

�1

)

�1+�1
√

�1

(
�1+√

�1
2

)n+1 + 2θ−ϑ
(
�1+√

�1

)

�1−�1
√

�1

(
�1−√

�1
2

)n+1
,

where ϑ = ϑ(x, y) = x + x2 + x3 + x4 + x5 + y and θ = θ(x, y) = 5x14 + x15 +
x13(14+ y)+ x12(30+4y)+ x11(53+11y)+ x10(79+25y+ y2)+ x9(102+47y+
3y2) + 2x8(58 + 37y + 4y2) + x7(117 + 98y + 18y2) + 4x5(20 + 28y + 11y2 +
y3) + y(2 + 7y + 7y2 + 2y3) + x6(104 + 113y + 31y2 + 2y3) + x4(52 + 92y +
52y2 + 8y3) + x(2 + 14y + 23y2 + 10y3 + y4) + x2(11 + 38y + 36y2 + 12y3 +
y4) + x3(29 + 64y + 47y2 + 12y3 + y4).

One can obtain easily that ϑ(1, 1) = 6, ϑ(1, 2) = 7, ϑ(2, 0) = 62, ϑ(2, 1) = 63,
θ(1, 1) = 1820, θ(1, 2) = 3785, θ(2, 0) = 648920 and θ(2, 1) = 802438, then from
Theorem 4.14 and Proposition 2.3 we can get the number of spanning trees (spanning
connected subgraphs, spanning forests, acyclic orientations) of the benzenoid system
Hn .

Corollary 4.15

(i) The number of spanning trees of Hn is NST (Hn) = 40×252n+1

1449 + 11×(−70)n+1

805 .
(ii) The number of spanning connected subgraphs of Hn is

NSCS(Hn) =
(

317
18754 + 46005

18754
√
297409

)(
269+√

297409
2

)n+1

+
(

317
18754 − 46005

18754
√
297409

)(
269−√

297409
2

)n+1
.

(iii) The number of acyclic orientations of Hn is

NAO(Hn) =
(
5195

√
36243073+19170341

)(
3725+√

36243073
)n+1

1242636
√
36243073

+
(
5195

√
36243073−19170341

)(
3725−√

36243073
)n+1

1242636
√
36243073

.

(iv) The number of spanning forests of Hn is

NSF (Hn) =
(
11077

√
53087161+41822813

)(
3907+√

53087161
)n+1

2701608
√
53087161

+
(
11077

√
53087161−41822813

)(
3907−√

53087161
)n+1

2701608
√
53087161

.

It is easy to check that the number of vertices and the number of edges of Hn are
|V (Hn)| = 10n + 6 and |E(Hn)| = 13n + 6, respectively. Then
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κ(Hn) = lim|V (Hn)|→∞
ln(NST (Hn))

|V (Hn)|

= lim
n→∞

ln
(
40×252n+1

1449 + 11×(−70)n+1

805

)

10n + 6

= lim
n→∞

ln
(
40×252n+1

1449

)
+ ln

(
1 + 99

200

(−70
252

)n+1
)

10n + 6

= lim
n→∞

(n + 1) ln 252

10n + 6

= ln 252

10
.

From above one can see that κ(Rn) = κ(Mn) = κ(Hn) = ln 252
10 ≈ 0.552943 which

seems foreseeable due to their similar molecular structure.

5 Conclusion

In this paper, we have utilized combinatorial decomposition techniques to derive
explicit closed-form analytic formulas for the Tutte polynomials of several impor-
tant polycyclic chemical graphs, including three classes of typical silicate molecular
graphs and three classes of pericondensed benzenoid systems.Our results have enabled
us to determine the number of spanning trees, spanning connected subgraphs, span-
ning forests, and acyclic orientations for these graphs, as well as their corresponding
spanning tree entropies. These findings provide valuable insights into the chemical and
physical properties of silicates and benzenoid systems. We anticipate that the method-
ology employed in this paper can be applied to derive Tutte polynomials for almost all
2-connected polycyclic molecular graphs. However, our approach is not applicable to
3-connected networks, so it would be interesting to explore the Tutte polynomial for
3-connected chemical polycyclic networks in future research.
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Appendix

The Tutte polynomials for silicate molecular networks CS3, CS4, CS5, CS6, CS7 and
CS8.

T (CS3; x, y) = (2 + 3x + x2 + 2y)(2x + 3x2 + x3 + 2y + 4xy + 3y2 + y3)2 +
(2+ 3x + x2 + 4y + 2xy + 3y2 + y3)(4x + 12x2 + 13x3 + 6x4 + x5 + 4y + 20xy +
25x2y+10x3y+x4y+12y2+28xy2+16x2y2+4x3y2+16y3+22xy3+10x2y3+
15y4 + 14xy4 + 2x2y4 + 11y5 + 4xy5 + 5y6 + y7);

T (CS4; x, y) = (2x + 3x2 + x3 + 2y + 4xy + 3y2 + y3)2(4 + 16x + 25x2 +
19x3 + 7x4 + x5 + 16y + 40xy + 32x2y + 8x3y + 24y2 + 30xy2 + 6x2y2 + 16y3 +
6xy3 + 2x2y3 + 4y4) + (2+ 3x + x2 + 4y + 2xy + 3y2 + y3)2(4x + 12x2 + 13x3 +
6x4 + x5 +4y+20xy+25x2y+10x3y+ x4y+12y2 +28xy2 +16x2y2 +4x3y2 +
16y3 + 22xy3 + 10x2y3 + 15y4 + 14xy4 + 2x2y4 + 11y5 + 4xy5 + 5y6 + y7);

T (CS5; x, y) = (2 + 3x + x2 + 4y + 2xy + 3y2 + y3)3(4x + 12x2 + 13x3 +
6x4 + x5 +4y+20xy+25x2y+10x3y+ x4y+12y2 +28xy2 +16x2y2 +4x3y2 +
16y3+22xy3+10x2y3+15y4+14xy4+2x2y4+11y5+4xy5+5y6+ y7)+ (2x+
3x2 + x3 + 2y + 4xy + 3y2 + y3)2(8 + 44x + 110x2 + 165x3 + 162x4 + 105x5 +
43x6 +10x7 + x8 +48y+216xy+420x2y+450x3y+276x4y+90x5y+12x6y+
132y2 + 456xy2 + 621x2y2 + 399x3y2 + 111x4y2 + 9x5y2 + 212y3 + 512xy3 +
419x2y3 + 129x3y3 + 21x4y3 + 3x5y3 + 210y4 + 309xy4 + 123x2y4 + 24x3y4 +
126y5 + 90xy5 + 18x2y5 + 42y6 + 9xy6 + 3x2y6 + 6y7);

T (CS6; x, y) = (2+3x + x2 +4y+2xy+3y2 + y3)4(4x +12x2 +13x3 +6x4 +
x5+4y+20xy+25x2y+10x3y+ x4y+12y2+28xy2+16x2y2+4x3y2+16y3+
22xy3 +10x2y3 +15y4 +14xy4 +2x2y4 +11y5 +4xy5 +5y6 + y7)+ (2x +3x2 +
x3+2y+4xy+3y2+y3)2(16+112x+360x2+720x3+1025x4+1109x5+923x6+
575x7 + 255x8 + 75x9 + 13x10 + x11 + 128y + 768xy + 2112x2y + 3584x3y +
4200x4y+ 3504x5y+ 2032x6y+ 768x7y+ 168x8y+ 16x9y+ 480y2 + 2448xy2 +
5640x2y2 + 7740x3y2 + 6840x4y2 + 3852x5y2 + 1284x6y2 + 216x7y2 + 12x8y2 +
1120y3 + 4752xy3 + 8776x2y3 + 9004x3y3 + 5336x4y3 + 1756x5y3 + 316x6y3 +
40x7y3+4x8y3+1800y4+6096xy4+8406x2y4+5802x3y4+2058x4y4+414x5y4+
48x6y4+2064y5+5232xy5+4884x2y5+2028x3y5+444x4y5+36x5y5+1688y6+
2924xy6 +1634x2y6 +402x3y6 +42x4y6 +6x5y6 +960y7 +996xy7 +300x2y7 +
48x3y7 + 360y8 + 180xy8 + 36x2y8 + 80y9 + 12xy9 + 4x2y9 + 8y10);

T (CS7; x, y) = (2+3x + x2 +4y+2xy+3y2 + y3)5(4x +12x2 +13x3 +6x4 +
x5+4y+20xy+25x2y+10x3y+ x4y+12y2+28xy2+16x2y2+4x3y2+16y3+
22xy3+10x2y3+15y4+14xy4+2x2y4+11y5+4xy5+5y6+y7)+(2x+3x2+x3+
2y+4xy+3y2+ y3)2(32+272x+1072x2+2632x3+4602x4+6253x5+6998x6+
6588x7 + 5128x8 + 3173x9 + 1491x10 + 506x11 + 116x12 + 16x13 + x14 + 320y +
2400xy+8320x2y+18000x3y+27860x4y+33390x5y+32030x6y+24330x7y+
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14060x8y + 5850x9y + 1630x10y + 270x11y + 20x12y + 1520y2 + 10000xy2 +
30360x2y2 + 57520x3y2 + 77375x4y2 + 78195x5y2 + 59485x6y2 + 32825x7y2 +
12345x8y2+2885x9y2+355x10y2+15x11y2+4560y3+26160xy3+69000x2y3+
112400x3y3+126125x4y3+100185x5y3+55015x6y3+19835x7y3+4435x8y3+
615x9y3 +65x10y3 +5x11y3 +9680y4 +47960xy4 +107900x2y4 +145570x3y4 +
127900x4y4+73450x5y4+26830x6y4+6180x7y4+930x8y4+80x9y4+15392y5+
64672xy5 + 119952x2y5 + 126592x3y5 + 80672x4y5 + 31200x5y5 + 7500x6y5 +
1080x7y5+60x8y5+18840y6+65080xy6+94530x2y6+72620x3y6+31270x4y6+
8000x5y6 +1150x6y6 +100x7y6 +10x8y6 +17880y7 +48480xy7 +51510x2y7 +
26670x3y7+7530x4y7+1170x5y7+120x6y7+13050y8+26055xy8+18615x2y8+
6150x3y8 + 1110x4y8 + 90x5y8 + 7170y9 + 9660xy9 + 4230x2y9 + 910x3y9 +
70x4y9+10x5y9+2860y10+2290xy10+590x2y10+80x3y10+780y11+300xy11+
60x2y11 + 130y12 + 15xy12 + 5x2y12 + 10y13);

T (CS8; x, y) = (2+3x + x2 +4y+2xy+3y2 + y3)6(4x +12x2 +13x3 +6x4 +
x5+4y+20xy+25x2y+10x3y+ x4y+12y2+28xy2+16x2y2+4x3y2+16y3+
22xy3 +10x2y3 +15y4 +14xy4 +2x2y4 +11y5 +4xy5 +5y6 + y7)+ (2x +3x2 +
x3 +2y+4xy+3y2 + y3)2(64+640x +2992x2 +8752x3 +18172x4 +29008x5 +
37933x6 + 42775x7 + 42778x8 + 37738x9 + 28465x10 + 17647x11 + 8659x12 +
3241x13+886x14+166x15+19x16+x17+768y+6912xy+28992x2y+76032x3y+
142032x4y + 205680x5y + 245868x6y + 251688x7y + 220848x8y + 161328x9y +
94056x10y+41856x11y+13536x12y+2976x13y+396x14y+24x15y+4416y2 +
35616xy2+133536x2y2+313296x3y2+526116x4y2+688074x5y2+737064x6y2+
654084x7y2+469464x8y2+260994x9y2+106818x10y2+30288x11y2+5448x12y2+
528x13y2 + 18x14y2 + 16192y3 + 116512xy3 + 389152x2y3 + 814672x3y3 +
1222852x4y3 + 1417738x5y3 + 1305248x6y3 + 941468x7y3 + 511688x8y3 +
199538x9y3 + 53006x10y3 + 9176x11y3 + 1056x12y3 + 96x13y3 + 6x14y3 +
42480y4+271440xy4+804120x2y4+1491600x3y4+1966575x4y4+1947015x5y4+
1453425x6y4+795285x7y4+306705x8y4+80745x9y4+14415x10y4+1755x11y4+
120x12y4+84768y5+478176xy5+1246224x2y5+2014752x3y5+2256882x4y5+
1810626x5y5+1029534x6y5+404694x7y5+108270x8y5+19470x9y5+2130x10y5+
90x11y5+133392y6+658272xy6+1485792x2y6+2032572x3y6+1845207x4y6+
1131927x5y6 +466185x6y6 +128745x7y6 +23325x8y6 +2565x9y6 +195x10y6 +
15x11y6+169056y7+718896xy7+1368696x2y7+1518276x3y7+1057056x4y7+
471300x5y7 + 136980x6y7 + 25560x7y7 + 3060x8y7 + 240x9y7 + 174252y8 +
623472xy8+963567x2y8+822057x3y8+415857x4y8+130635x5y8+25740x6y8+
3240x7y8 + 180x8y8 + 146080y9 + 424840xy9 + 506860x2y9 + 313680x3y9 +
110820x4y9 + 23760x5y9 + 3020x6y9 + 200x7y9 + 20x8y9 + 98736y10 +
222714xy10+192828x2y10+81990x3y10+19830x4y10+2610x5y10+240x6y10+
52896y11 + 86970xy11 + 50850x2y11 + 14460x3y11 + 2220x4y11 + 180x5y11 +
21880y12+24100xy12+8875x2y12+1725x3y12+105x4y12+15x5y12+6720y13+
4380xy13 + 1020x2y13 + 120x3y13 + 1440y14 + 450xy14 + 90x2y14 + 192y15 +
18xy15 + 6x2y15 + 12y16).

123



Journal of Mathematical Chemistry

References

1. K. Balasubramanian, Orthogonal polynomials through complex matrix graph theory. J. Math. Chem.
61, 144–165 (2023). https://doi.org/10.1007/s10910-022-01415-x

2. B.H. He, H.A. Witek, Enumeration of Clar covers of parallelogram chains. Discret. Appl. Math. 302,
221–233 (2021)

3. J. Ellis-Monaghan, C. Merino, in Structural Analysis of Complex Networks (Graph Polynomial and
Their Applications I: The Tutee Polynomial). ed. by M. Dehmer (Birkhauser, Boston, 2011)

4. J.V. Knop, N. Trinajstic, Chemical graph theory. II. On the graph theoretical polynomials of conjugated
structures. Int. J. Quant. Chem. 18, 503–520 (1980)

5. H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed hexagonal systems. MATCH
Commun. Math. Comput. Chem. 73, 473–490 (2015)

6. C.P. Chou, J.S. Kang, H.A. Witek, Closed-form formulas for the Zhang–Zhang polynomials of ben-
zenoid structures: prolate rectangles and their generalizations. Discret. Appl. Math. 198, 101–108
(2016). https://doi.org/10.1016/j.dam.2015.06.020
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