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Abstract

This paper presents the innovative Taylor wavelet collocation method (TWCM) for
the stiff systems arising in chemical reactions. In this technique, first, we generated
the functional matrix of integration (FMI) for the Taylor wavelets. Using this FMI,
the Taylor wavelet collocation method is proposed to obtain the numerical approxi-
mation of stiff systems in the form of a system of ordinary differential equations
(SODE:s). This method converts the SODEs into a set of algebraic equations, which
can be solved by the Newton—Raphson method. To demonstrate the simplicity and
effectiveness of the presented approach, numerical results are obtained. Graphs
and tables illustrate the created strategy’s effectiveness and consistency. Illustra-
tive examples are examined to demonstrate the performance and effectiveness of
the developed approximation technique, and a comparison is made with the cur-
rent results. Results reveal that the newly selected strategy is superior to previous
approaches regarding precision and effectiveness in the literature. Most semi-analyt-
ical and numerical methods work based on controlling parameters, but this technique
is free from controlling parameters. Also, it is easy to implement and consumes less
time to handle the system. The suggested wavelet-based numerical method is com-
putationally appealing, successful, trustworthy, and resilient. All computations have
been made using the Mathematica 11.3 software. The convergence of this strategy is
explained using theorems.
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1 Introduction

Stiff systems of ordinary differential equations are a significant special case of the
systems taken up in Initial Value Problems. There is no universally accepted defini-
tion of stiffness. Some attempts to understand stiffness examine the behaviour of
fixed step size solutions of linear ordinary differential equations systems with con-
stant coefficients [1]. Nonlinear ordinary stiff differential equations are generated by
various physical systems, including nuclear reactors, laser oscillators, and others,
and their magnitude of eigenvalues can fluctuate significantly. Additionally, the solu-
tions to some differential equations can vary on different time scales, distinguishing
them from other equations. These differential equations are often referred to as stiff.
It is common for stiff problems to occur in fields like chemical kinetics, climatol-
ogy, fluid dynamics, ionospheric physics, biochemistry, control theory, electron-
ics, etc., when the equilibrium solution slowly changes while the transients rapidly
decrease. Stability and accuracy are the two major issues associated with stiff sys-
tems. In some circumstances, the traditional single-step approaches are ineffective
because a small step size can result in adequate round-off error to create instability.
Despite equations may take longer time to compute. The essence of the difficulty is
that when solving non-stiff problems, a step size small enough to provide the desired
accuracy is small enough that the stability of the numerical method is qualitatively
the same as that of the differential equations. For a stiff problem, step sizes that
would provide an accurate solution with an explicit Runge—Kutta method must be
reduced significantly to keep the computation stable. An equally important practi-
cal matter is that strategies with superior stability properties cannot be evaluated by
simple iteration for non-stiff problems because the step size must be very small for
the iteration to converge. In practice, stiffness of an initial value problem is depends
on the stability of the problem, the length of the interval of integration, the stability
of the numerical method, and how the method is implemented. Often the best way to
proceed is to try one of the solvers intended for non-stiff systems. If it is unsatisfac-
tory, the problem may be stiff [1].
Consider the general form of the system of stiff ODEs:

¥ (&) = F(y(&),2(6), &) }

7€) = GH(©). 2(6). &) -1

where y and z are dependent variables, and & is an independent variable with pri-
mary constraints: y(0) = @ andz(0) = f, wherea,f € R. A significant amount of
research has been done on Stiff systems arising in the chemical field, including a
solution to the stiff system of IVPs that converge quickly provided by Carrol [2].
Hojjati et al. insisted adaptive method called EBDF for the numerical solution of
stiff systems [3], Cash JR implemented an extended backward differentiation for-
mula for the stiff problems [4], Hosseini proposed matrix-free MEBDF method for
the solution of stiff systems of ODEs [5], Hsiao insisted Haar wavelet approach to
stiff linear systems [6], Bujurke NM proposed the numerical solution of stiff sys-
tems using single term Haar wavelet series [7]. In [8], Darvishi MT et al. illustrated
the variational iteration method for the linear and nonlinear stiff problems. Badar
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G et al. implemented a semi-implicit mid-point rule for stiff systems [9], and Pro-
thero A proposed the stability and accuracy of the one-step method for solving stiff
systems [10]. But neither the computation effort nor the stability requirement has
been significantly reduced by these methods. Here, we imposed the wavelet-based
numerical method called the Taylor wavelet collocation scheme to overcome issues
like the stability and accuracy of the systems.

Wavelets are built on Joseph Fourier’s fundamental theory of superpositioning,
which states that a collection of self-similar functions can express a complex func-
tion. With the help of wavelets, which are mathematical processes, data may be
divided into different frequency components, and each component can then be ana-
lyzed with a resolution that matches its scale. Wavelet theory has recently attracted
much interest because of its numerous valuable applications in system analysis,
numerical analysis, and optimal control. A wavelet is an oscillation resembling a
wave with an amplitude that begins at zero, increases or decreases, and then repeats
one or more times. Wavelets have several characteristics that support their applica-
tion in numerically solving differential equations. The orthogonal, compactly sup-
ported wavelet basis precisely approximates an increasingly higher-order polyno-
mial. This wavelet-based representation of differential operations can be precise and
stable even in areas with significant gradients or oscillations. Numerous dynamical
system problems have extensively used approximate solutions using an orthogonal
family of functions. Using truncated orthogonal functions to approximate the vari-
ous signals in the equation, one can approximate the underlying differential equation
using orthogonal functions. The functional integration matrix can then be used to
eliminate the integral operations. Although the Taylor series and Fibonacci poly-
nomials are not built on orthogonal functions, they have the operational integration
matrix. Orthogonal wavelet basis also has the advantage of multi-resolution analy-
sis over conventional techniques. For some of the common mathematical problems,
various wavelet collocation techniques have been used, such as the Chebyshev wave-
let collocation method [11], collocation method based on Bernoulli and Gegenbauer
wavelets [12], Hermite wavelet collocation method [13, 14], Laguerre wavelet col-
location method [15]. Several wavelet collocation techniques are typically employed
to solve fractional differential equations, which include Haar wavelets [16], Chely-
shkov wavelets [17], Fibonacci wavelets [18], Cubic B Spline [19], Chebyshev
wavelets [20], Genocchi wavelets [21], Bernoulli wavelets [22-24], Legendre wave-
let tau method [25], Hermite wavelets [26, 27], Legendre wavelets and Gegenbaur
wavelets [28].

The current work’s objective is to create a Taylor wavelets collocation method
that is fast and simple. A recent addition to the wavelet families is the Taylor wave-
lets formed by Taylor polynomials. It guarantees the required accuracy for rela-
tively small grid points to solve stiff systems. It is challenging to find the necessary
approximations using a new numerical design.

The significance of the proposed method (TWCM) is as follows:

e The number of terms of the Taylor polynomials 7, (x) is less than the number of
the terms of the other polynomials, say Bernoulli polynomials B,,(x), Fibonacci
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polynomials F,,(x), and Legendre polynomials L,,(x). It helps to reduce the CPU
time.

e Error components in the FMI representing Taylor polynomials are less than that
of other polynomials.

e Taylor polynomials have less coefficient of individual terms than corresponding
ones in other polynomials . Computational errors can be reduced using this prop-
erty.

e Taylor wavelets are superior wavelets not based on orthogonal polynomials, but
we can express the Taylor polynomials in approximating orthogonal polynomials.

e The Taylor wavelet method is suitable for solutions with sharp edge/ jump dis-
continuities.

e Fractional differential equations, delay differential equations, and stiff systems
can be solved using this method directly without using any control parameters.

e The Taylor wavelet method can solve the higher-order system of ordinary differ-
ential equations by slightly modifying the method.

e This method can be extended to PDEs and other mathematical models with dif-
ferent physical conditions.

e [t is used to obtain the solution of the differential equation in the universal
domain by taking the suitable transformation.

Wavelet approaches for resolving differential and integral equations have recently
received greater attention. Researchers start using this package to solve mathemati-
cal problems such as Bratu- type equations [29], fractional delay differential equa-
tions [30], systems of nonlinear fractional differential equations with application to
human respiratory syncytial virus infection [31], Benjamin-Bona-Mohany PDEs
[32], Burger’s equation [33], Biological models [34], linear and nonlinear Lane-
Emden equations [35], Chemistry problems [36], reaction—diffusion problems in
science and engineering [37, 38], Fisher’s equations [39], and nonlinear Parabolic
equations [40]. Here, the Taylor wavelet collocation technique was successfully
applied to the system, and significant approximation was obtained in the system’s
solution. To our knowledge, no one solved these stiff systems by Taylor wavelets
which motivates us to study this by the developed strategy. The absolute error with
the Exact solution and ND Solver solution for numerous values of M and k are com-
puted to validate the efficacy and precision of the developed strategy.

This article’s structure is as follows: Sect. 2, named "Preliminaries" provides the
definitions of wavelets. FMI of Taylor wavelets carried out in Sect. 3. The method of
solution and application of the newly developed strategy is described in Sect. 4 and
Sect. 5, respectively. Finally, Sect. 6 provides the conclusion of the article.

2 Preliminaries of Taylor wavelets and some theorems
2.1 Taylor wavelets

On the interval [0, 1], the Taylor wavelets are defined as [29],
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el k—1 n—1 n
S =4 2 Tn(@Emnt ). o se< gy
’ 0, Otherwise

where

T, (&) =V2m+1¢m,

where T,,(§) is the normal Taylor polynomial of degree-m, translation parameter
n=1,2,....,25 and, k represents the level of resolution k = 1,2, ... and respec-

tively. The quantity /2m + 1 is a normalization factor. Taylor wavelets are com-
pactly supported wavelets formed by Taylor polynomials over the interval [0,1].

Theorem 1. Let H be a Hilbert space and W be a closed subspace of H such that
dim W < oo and {w,,w,, ...,w, } is any basis for W. Let g be an arbitrary element in
H and g, be the unique best approximation to g out of W. Then. [29]

1
g = goll, = G, Where G, = <w> * and Z is introduced [29] as follows:

Z(g.Wy Wy, W)
<g8> <gw > .. <gw,>
<WLE> < WLW > o < W, W, >
Z(g, wy, Wy, W) = 1 e 1> %n
<KW, 8> < Wy Wwp > o < W, W, >
Theorem 2: Let L*[0, 1] be the Hilbert space generated by the Taylor wavelet basis.

Let (&) be the continuous bounded function in L*[0, 11 Then the Taylor wavelet expan-
sion of n(&) converges with it.

Proof: Letn : [0,1] - R be a continuous function and |7(£¢)| < u, where u be any
real number. Then Taylor wavelet dilation of y(&) can be expressed as,

GEDVEPHETICC)
a, = = (), 3,,,(£)) Denotes inner product.

== [ () S, (O)E,

Since §,, ,,, are the orthogonal basis.

= [ M@ET, (257 = n+ 1)dé where I = [;% , 2%)

Since T,,(§) = v/2m + 1&™, we obtain.

an,m = f,’?(f) V 21’}1 + 1(2k_1§ —-n+ l)mdé WheI‘GI = [;k;—} N zk_n—l)
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Then substitute 2~1& — n 4+ 1 = y then we get,

2% ! y+n—1Y\ . dy
an,mz n — y A1
0

Vamr1) o'\

a

25 Y ly+n—1\
nm = n o )Yy
V2m+1J o 2

By generalized mean value theorem,
—k+1

2 n— 1
Gy = jﬁn(é; ,1>ny dy for some 6 € (0, 1)

Since y" is a bounded continuous function. Put f y'dy=nh

6+n—1
‘”( 21 )‘h

k1
272

V2m+1

n,m | -

|a

Since # remains bounded.
kel

om| = ;ﬁyh‘ where yu = '7(5‘;/271)

Therefore, an _o%u.m 18 absolutely convergent. Hence the Taylor wavelet series
expansion #(&¢) converges uniformly to it.

Remarks: Error estimation for continuous bounded function #(£) by using the
above theorem 2.

n(§) is the exact solution and 7,,,(¢) is the Taylor Wavelet approximation.

Where, 7(&) = 3,2, ¥ o@um Sn,m(f) and ,,,(¢) = Zi_z G Spn(©):

n(é)—napp(§>=ZZIZ:zoan,msm@)—Z Z S = 2 D Sn(©)
Now, |E,|I* = 11(2) = 1y, ON* = (1(E) = 1y (&) 1(E) = 1, (£))

= IIE, I —/Zn WD @S ()

Hence, |a

—k+1
272

But from the above theorem, we have, |an’m| <

h
2m+1 H ‘

1
IS I 2—k+l
2 2712 Q2
= |IE,IP < / DI VN e LT E
0

Theorem 3 [41]: Let the Taylor wavelet sequence {ﬂim(f)}]il which are continu-
ous functions defined in L*(R) in & on [a, b] converges to the function S(&) in L*(R)
uniformly in & on [a, b]. Then S(&) is continuous in L>(R) in & on [a, b).
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Theorem 4 [41]: Let the Taylor wavelet sequence {/1’; m(.}f)};:i1 converges itself in
L,(R) uniformly in & on[a, b]. Then there is a function S(§) is continuous in L,(R) in
Eonla,bland klim i’;‘m(f) = A&Vt € [a, b].

Theorem 2 [23]: Let I C R be a finite interval with length m(I). Furthermore, (&) is
an integrable function defined on I and ZZSI 212: a;; $,;(&) be a good Taylor wave-
let approximation of f on 1 with  for some €>0,

V(g) Y Zf: a;S; J(g)| <eVxel Then —em()+ [, ¥ a;S(E)dE <
JF©dE <emD)+ [} X ¥ a;;S;;(6)dé.

This theorem says that when an integral of a complicated function is impossible, it
can be evaluated by approximately the f(&) by wavelet functions in a given interval.

3 Functional matrix of integration (FMI)

Atk = 1and M = 6, the Taylor wavelet basis is obtained as below:

$106) =1
$1.1(8) = V3¢
$12(8) = V53¢
$156) = V7&

S1.4(6) = 3¢*
$15) = V11£
$16(6) = V13¢°

$15(8) = V15¢

Integrating the above first six basis regarding & limit from O to &, and the Taylor
wavelet bases are then stated as a linear combination as;

¢
[ s =[0 5 0000 |50
0
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I3
/sl,l@d: - [0 0 Y00 0] $5()
0

5

¢
/Sl,z(f)df = [0 00 77 0 ()] S6(&)
0
4
[sis@dz=[0000 % o] 560
0
¢
3
[ sis6ae=[00000 =5
0

&
/sl,saf)d: =[000000]Sx&
0

¢ _
{ S() dg = Bxs 36(S) + S6(S) (3.1)

where,

S6(8) = [S10(8): $1.1(8), $12(6),$15(8), $1.4(8), 15T

. )
0% 0 0O 0 O ~ 0 _
é
00 50 0 O 0
2
3 _ 0
B = 00 O 37 0 0 , 6(6) = 0
00 0 0¥ o \/70
3 —_
00 0 0 0 5_\/ﬁ i 6]3 Sl,ﬁ(f)_
00 O 0O 0 O

The generalized functional matrix of integration of n-wavelet basis at k = 1 is
defined as:
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£
/S(é)df = By, S6) + $,(9),

where, .
0\% 0 0 0 0 0
V3
00 - = \(/)_ 0 0 0
5
00 0 5 0 - 0 0
B,={00 0 0¥ 0 0 and
. . . D 0 0
V2(n=2)+1
0o 0 0 00 (n-1)V2(=2)+3
V2(n=1)+1
0 0 0 0 ny/2(n—1)+3
| 0 0 0 0 0o |
) 0 .
0
0
) 0
S, (&) = 0
0
_nmsln(é)

Integrating the basis stated above again, we attain the following;

¢ ¢

[ [ sie=[00 5z 000] 5,
0 0

& ¢
[ [ suede=[000 5= 00] s
0 0

¢ ¢
[ [ sudc=[0000 L o] s
0 0

& ¢
// $14(E)dE = [0 0000 \/_] $5(8)
00
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& ¢
//EM@M¢:WOOOOOH4®

0 0

& ¢
//@uﬁma=w00000154®
0 0

Hence,
& ¢
//@@M5=%w%@nﬂga (3.2)
00
_ 1 .
00 W (]) 0 o0 0
00 O ol 0 o0 0
000 0 ¥5 o | X
where B, = 36 ,94(8) = . 0
T
00 0 0 O \{0‘—‘ 10y13 S1.6(6)
000 0 0 0 i
00 0 0 0 O L h®
The Taylor wavelet basis is examined at k = 2 and M = 6 as follows:
$10(8) = V2

$1.1(6) = 2+/6¢
Sp@=4vio2 | 1
$15(8) = 814 2
$1.4(6) = 48+/2¢*
$15(6) = 32v/228° |

$20(8) = V2
$1(6) = Vo6(-1+29)
_ 2
L0 =yioa-27 (1
$23(8) = V14(=1 +2&) 2
$24(8) = 3V/2(1 - 2¢)*
$25(8) = V22(=1 +2¢)°
3
/S@Mé=mun&x®+su@> (3.3)
0
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where

$23(8). $24(). 2591

Bioxin =

S =

The generalized first integration of n-wavelet basis at k = 2 is defined as:
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S o o O

11

13
12

£/
13

12

1

3
0 ¥
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
0
0
0
0
S16(8)
0
0
0
0
0
$6(©)

0

<| o
S

=) SO O O O o

oS o o O

0 0
0 0
0 0
ﬁ

0
0 3

1011

0 0
0 0
0 0
0 0
0 0
0 0
0 0

0

oo o o o o
&)
>

=)

S o o O

0

(=) |—‘OOOO

S © o O

0

&loooo )
<|o
pw

o oy o
wo o

~

S o o O

0

=)

SO O o o O

S O O o

0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O

1011

(e}

$12(8) = [810(£): 81.1(8), 812(8): 81 3(6): $1.4(): 81,5(8)> $2,0(8): $2,1(£): $2.2(8),

and
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3
[ 8660 = B850 + 8,0
0
where
BZnXZn
[o L 0o o0 o 0 0 00 0 0 0 0 0 0 |
23
3
0 0 @ 0 0 0 0 00 0 0 0 0 0 0
5
0 0 @ 0 - 0 0 00 0 0 0 0 0 0
00 0 0 2—‘7 0 0 00 0 0 0 0 0 0
0 0 00 0 0 0 0 0 0
2(n=2)+1
oooooo—m_vl)m 0 00 0 0 0 0 0 0
V2(n=1)+1
©0 0 0 00 0 00 0 0 00 0 0
00 0 0 0 0 0 0 00 0 0 0 0 0 0
1
00 0 0 0 0 0 0 057 0 0 0 0 0
3
00 0 0 0 0 0 0 0 0 \/T; 0 0 0 0
5
00 0 0 0 0 0 0 0 0 @ 0 .. 0 0
00 0 0 0 0 0 000002—‘f.. 0 0
. V2n=2)+1
0 0 0 0 0 0 0 0 (2n—1)y/2(n=2)+3 0
2(n—1)+1
00 0 0 00 0 oooooooob—m
Lo o o 0 0 0 0 06 00 O 0 0 0 0 0o |
_ 0 _
0
0
0
0
V2n—1
S oy | v a®
0
0
0
0
V2n—1
| 20 2+152,,,(§) |
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Similarly, the second integration can be written as:

& ¢
/ / SE)déde =B, ,S15(8) + kS|, (&) (3.4)

0 0

where 812(6) = [810(9): 81,16 $12(£), 813(8): 81.4(8). 81,58, $2,0(£) 82,1 (),
$22(8),$23(8), $24(8), S5 51"

l — -
oog\/g (1) 0 0 000 0O 0 0 0
000 0 ¥5 0000 0 0 0 0

144 0
7
yit 1
00 0 0 o0 XLo0o o0 0 0 0 WES”"(‘S)
000 O O 0 000 O O O Nis
¥ _{e0 0 0 0 0000 0 0 0 |o . s 8,,©
27190 0 0 0 0 00— 0 0 o0 128577 0
8v/5
L 0
000 0O O 0 00 O 8\E\of 0 .
5
000 0 0 0 000 0 ¥ 0 0
7
- 1
0 08—(;' mSz,s(i)
0 0 0 JI
Vi
00 0 0 O 0 00O O O O L s %200 ]

Similarly, we can generate matrices for our convenience.

4 Taylor wavelet collocation method

In this part, the TWCM is used to solve a stiff system numerically as a SCODE
(1.1).

Consider the subsequent nonlinear stiff system involving two equations of the
state:

V(€)= F(y(§),2(8), &) A1)
(&) = G((§),2(8),¢) @.
With the primary constraints given by y(0) = a, z(0) = S.
Assume that,
Y'(€) =ATS©)
(&) = B'S() } (42)

T —
Where,A = [al’o, "‘al,/M—l’ Cl2,0, az’M_l, azkfl,o, .Clzkfl’M_l],

T _
B - [bl,O’ cee bl,M—l’ b2,0’ bZ,M—l’ bZk’l,O’ bZk’],M—l]’
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1.0 Exact solution 1
*--- Taylor wavelet solution |
0.8 Haar wavelet solution |
0.6
<
ST
0.4 .. 1
~.
0.2+ T 1
0.0- . ]
0.0 0.2 0.4 0.6 0.8 1.0

H

Fig. 1 Visual interpretation of the result Y, (&) of example 1

~——— Exact solution
*-- Taylor wavelet solution

Haar wavelet solution

0.8

Ya(§)

0.6

0.4

H

Fig.2 Visual interpretation of the result Y, (&) of example 1

S = [S(E)1.05 81 -1 9(6)2.05 - 3(E)2 pr—1> $(ED-1 5 - (E) i1 py1]
Integrating the Eq. (4.2) regarding ’&” from *0’ to ’£.” We get.
¢

¥(E) =y(0) +[ATS(&)de
0
é

2(&)=2(0) + /BT S(&)d¢

0
Using Eq. (3.1) and primary constraints y(0) = « and z(0) = f expressed in terms of
S(€) by using the linear combination of Taylor wavelets we obtain,
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Table 2 Comparison of absolute error for the solution Y, (&) with different methods

¢  AE of Taylor wavelet with  AE of Haar AE of CWCP AE of FWCM  AE of ND Solver
exact solution wavelet with (N=8)[43] M=8) with exact solu-
exact solution tion

k=1,M=10 k=2,M=10

0 0 0 0 0 0 0
0.1 7.00x1072 222%x107" 8.10%x107° - - 4.19%107°
02 308x1072 7.77x107'% 291x107° 045x 107 0.78x107° 2.06 % 107°
03 895x10™ 999x107'% 221x107° - - 6.18x107°
04 121x107"2 749%107" 1.67x107° 0.61x107%  033x107° 8.78 x 107°
0.5 644x107® 555%x107"7 1.25x1076 - - 1.02x 1078
06 1.50x 10712 943x107'% 937x 1077 0.10x 107 093 x107° 1.08 x 1078
0.7 257%x1072 277x107'% 6.87x 1077 - - 1.09 x 1078
0.8 937x1072 8.88x107'® 4.99x 1077 0.13x 107 0.11x1077 1.06 x 1078
09 574x107"" 258x107% 2501077 - - 1.00 x 1078

1.0 1.17x107°  3.16x107% 1.70x 1077 0.53%x107  0.13x107° 9.39%x107°

O =CT S + AT[BS© + (&)

— 4.3)
() =FE'SE@ + BT[BS©+5(¢)

where C and E are the known vectors. Now, substitute (4.2) and (4.3) in (4.1), we
obtain

ATS@) = F(CTS@) + AT[sKO) + 5©)|. ETS© + BT[sKO+ S©) | .¢)
BTS@=G(CTS@ + AT[sKo) + S|, ETS© + BT[SKO+ 5@ | .¢)
(4.4)
and collocate the obtained equations by the following collocation points

éizﬁ,izl,z...M.

ATS(&) = F(CT8&) +AT[BS(&) + S@)] BT (&) + B'[B3(&) +5¢)].¢)

5s8(2) = 6(C7s(5) + 4" [W8(&) + 5@ £7s ) + 8 ms(e) + sl a) [

Let f(e.6..8) =a78(8) - F(CTS@) + AT [BS(6) + 5@ ES (&) + B [BS(5) + 5¢6)] ¢ ) and
g6 & &) = BTS(8) - G(CTS(8) +AT[B8(6) + S ETS(8) + BT [BS(&) + 56 &)

If the components of one iteration £ € R are known as: £, g), s fl@, then, the

Taylor expansion of the first equations around these components is given by:
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Table 4 Comparison of absolute error for the solution Y, (&) with different methods
¢  AE of Taylor wavelet with  AE of Haar AE of CMCP AE of FWCM  AE of ND Solver

exact solution wavelet with (N=8)[43] M=8) with exact solu-

exact solution tion

k=1,M=10 k=2,M=10
0 0 0 0 0 0 0
0.1 340%x107"% 1.10x107'¢ - - - 2.18x107°
02 281x107% 222x107' 0.14x 107" 0.14%x 1071 044 x 10710 1.38x107°
03 260x107"% 222x107¢ - - - 430%107°
04 233%x107°% 1.11x107'% 0.21%x107" 021%x107'%  037x1071° 6.65%x107°
05 213x1073 222%x107'¢ - - - 8.51 %107
06 1.90x10™® 222x107' 022x107"° 022%x 1071 031x1071° 9.97x107°
0.7 175%1071% 333x1071¢ - - - 1.10x 1078
0.8 1.50x107"% 3.88x1071° 0.18x 107" 0.18x 1071  0.15x 1071 1.18 x 1078
09 1.82x107"® 388x107'¢ - - - 124 %1078
1.0 7.08x107% 1.66x107'° 0.20x 1071 020%x 1071  0.38x107° 128 x 1078

(I4+1) (l+1) (I+1) ) <0 () afl (I+1) )
(&80 ) = (g0 g+ | (e -e)
651 £0
I
(I+1) 0) (I+1) (l)
+om (87 =a) + (4 -4)
2 lew
and
ag
(I+1) L(I+1) (+1) ) <0 (l) 1 (+1) (l)
g](él 752 ""’fi >:g(§ ’5 ""’51' >+_’ (51 _51 )
9Z, |0
N 98, ( @+ (1)) + 98 (§<I+1> B 5(1))
9&, £0 : : 9, &0 ' '
Applying the Taylor expansion in the same manner for f,,f3, ... .f; and g,, 83, ..., 8

we obtained the following system of linear equations, with the unknown being the com-

ponents of the vector £/+1):

a1
(I+1) SR D)
? Eg(m)g £i(€7) % :
=] ) [+ e
(&+D si Of}:

f:(6MD) £(£9) .,

oy
05,
ofy
05,

£0 ‘e

£0 “ee

05,

£0 “ee

LY D O

9 g <51 —¢& >

s I+ _ 20

9% |gw (52 52 and
%. (l+l)‘_ 0]

9¢; E0 (51 fi >
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1.x1077
== AE of Proposed method(TWCM)
= AE of Haar wavelet method
8.x10-8 - =™ AE of CMCP
AE of FWCM
= AE of NDSolver
[
> 6.x1078 |
S
%
s
< L
<
5 gxio=s |
&
2.x1078 |-

o= = 1
0.0 0.2 0.4 0.6 0.8 1.0

4

Fig. 3 Comparison of AE of the result Y, (£) with different techniques, for example, 1

1.x1079 .
~ AE of Proposed method(TWCM)
= AE of Haar wavelet method
8.x10710 |- = AE of CMCP 4
AE of FWCM
= AE of NDSolver
€
> 6.x1071°
S
£
s
c
<
5 goxi0®
&
2.x1071°
° n
0.0 0.2 0.4 0.6 0.8 1.0

H

Fig.4 Comparison of AE of the result Y, (£) with different techniques, for example, 1

98 98, 98, (I+1) 0)
(+1) , o€ '1 06 leo T 0& |ga (‘51 —&
g1 lew 98 |ew o
( ) 81 (‘f ® ) 02, 08, 98

1+1
w(e) N TR

2, "D 0
o L N (g =)

o 05 |z T 0g

=[ g,(c) |+ %

. (:l"']) . 98; 9 i'
g,(é‘ ) gi(f(l)) %)gu) é

By setting the left-hand side to zero (which is desired value for the functions
fo.f55-.-.f; and g, g3, ..., g;) then, the system can write as:
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Table 6 Comparison of absolute error for the solution P(€) with different methods
& AE of Taylor wavelet with exact solution ~ AE of Haar wavelet with ~ AE of ND Solver
exact solution with exact solu-
k=1,M=10 k=2,M=10 tion
0 0 0 0 0
0.1 8.39 x 107! 5.92x 1071 2.54%107° 220% 1078
0.2 8.82x 107! 6.58 x 1071* 2.13x107¢ 6.62x 1078
0.3 9.81 x 107! 7.27x 10714 1.82 %107 6.08 x 107°
0.4 1.08 x 10710 8.07 x 10714 1.59 x 107° 3.36x 1078
0.5 1.19x 10710 2.16x 1071 1.43%x10°° 6.26x 1078
0.6 1.32%x1071° 458 x 1071 1.32x 107 5.24%x1078
0.7 1.46 x 10710 5.07x 1071 1.25%x 107 241x1078
0.8 1.61x1071° 5.61 x 1071 1.22x10°° 461%x1078
0.9 1.75% 10710 621 x 107" 1.23x 107 6.56 x 107°
1.0 252%x107° 8.58x 10714 1.26x 107° 3.42%x1078
%| LI _‘ (5(1+1) g(0)
9% lew  0& len 9% lew ; ( 5( i))
% % % ( §<I+1> )) 1
051: £ 0-52: &0 051': &0 fz (df(i)) (4.6)
A f; ‘ @+ (l)) :
o lewy 05 lew T 0g g0 (fl -¢ Ji (5 (l))
% | % % gD _ g0
oy lew 9& |lew T 0 g0 -
| 9% 92 ( i+ _ (1)> 81 (£7)
051: &0 662. &0 05,-: o 2 ( f(i)) “4.7)
%| % _‘ <l+1>_ (/)) i
o4 lew o0& lew T 0& |ew <§t S 8i (é (l))
Setting K = %l and J= % , where K and J are Jacobian matrices for the
06]‘ g(l) ogj 5(1)

above systems. Then, the above system can be written in matrix form as follows:

KAx =—f
JAx = —g

j

where K and J are i X i matrices, —f and —g are vectors of n components, and Ax is

an n- dimensional vector with the components <§El+l) e:(l)> ( D) _

<§§l+1) _ ‘fz@ )

(D
2 b
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Table 8 Comparison of absolute error for the solution Q(¢) with different methods

& AE of Taylor wavelet with exact solution  AE of Haar wavelet with AE of ND Solver
exact solution with exact solu-
k=1,M=10 k=2,M=10 tion

0 0 0 0 0

0.1 839 x 107! 5.92x 1071 1.61 x 1078 1.16 x 1078
0.2 8.82x 107! 6.58x 10714 1.35x107° 4.92x 1078

0.3 9.81 x 107! 7.27 x 1071 1.13%x 1076 4.07 x 1077

0.4 1.08 x 10710 8.07x 1071 1.13x 1076 8.95x 107
0.5 1.19x 10710 2.16x 1071 9.37x 1077 2.57x1078

0.6 1.32x 10710 458 x 1071 7.71x 1077 2.14x 1078
0.7 1.46 x 10710 5.07x 1071 6.28 x 107’ 3.71x107°
0.8 1.61x 10710 5.61%x 1071 5.05% 1077 2.65% 1078

0.9 1.75x 10710 6.21x 1071 3.99 x 1077 6.17x107°
1.0 252%107° 8.58x 10714 3.10x 1077 453 %1077

Combining the above two systems of equations, we obtain QAx = —p, Where
QO=K+L and p =f + g. If Q is invertible, then the above system can be solved as
follows:

Ax = _Q—lp = §(l+1) — 5(1) _K—lp

which provides the values of unknown Taylor wavelet coefficients. Substitute these
coefficient values in (4.3) yields the TWCM numerical solution for the system.

5 Numerical results and discussion

Here, we considered a few examples to demonstrate the proposed method and
outcomes are computed using the symbolic calculus programming language
Mathematica.

Example 1: Let us consider the nonlinear stiff system of the form: [42]

4O = 10027, (&) + 1000Y2(£)
Lo -
TE =10 - KO + Yy9)

The given initial condition are: Y;(0) = 1, Y,(0) = 1. The exact solutions to the
stiff chemical problem are Y, (&) = e™* and Y,(&) = ¢°. The Taylor wavelet collo-
cation method (TWCM) solutions, for example, 1, are shown in Figs. 1, 2, reveal-
ing that the proposed method solutions are reasonably close to the exact solution
compared to existing methods such as Chebyshev polynomials (CMCP), Fibonacci
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Exact solution

*--- Taylor wavelet solution o
=-0.05 5 ™1
Haar wavelet solution ]

-0.10

-0.15

P(§)

-0.20
-0.25" 9

-0.30

-0.35 R — . . . . . |
0.0 0.2 0.4 0.6 0.8 1.0

Fig.5 Plot of the result P(&) of example 2

Exact solution
-%--- Taylor wavelet solution

1.0 Haar wavelet solution

0.8

Q($)

0.6

0.4

Fig. 6 Plot of the result Q(¢) of example 2

wavelet collocation method (FWCM), Haar wavelet method and ND Solver.
Numerical approximations obtained by the developed technique called TWCM and
other current methods are compared with the exact solution. They are tabulated in
Tables 1, 2, 3, and 4, and absolute errors of the developed approach with the exact
solution are tabulated in Tables 1 and 3. It reveals that the errors obtained by the
proposed method are better than those obtained using other existing techniques.
TWCM solutions are calculated at diverse values of M and k. Also, by increasing
the M and k, we get further precision in the result, which can be seen in Tables 1
and 3. It shows that increasing M and k can obtain a higher-order accuracy. Fig-
ures 1, 2, 3, and 4 depict all the graphical representations of numerical simulations
and absolute error analysis. From the tables and graphs, it is clear that the TWCM
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—— AE of Haar wavelet

i —— AE of NDSolver
2.x107¢
<
o
fouy
O 15x10™
@
=
T
c
<
5 1.x107°
=
w
5.%x107
O e ———
0.0 0.2 0.4 0.6 0.8 1.0

4

Fig.7 AE comparison of the result P(&) with different techniques, for example, 2
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H

Fig. 8 Judgement of AE of the result Q(¢) with different techniques, for example, 2

method dominates all the other techniques in obtaining the numerical approximation
and yields a satisfactory result for the desired system.

Example 2: Let us consider the following nonlinear stiff chemical problem of the
form: [42]

P'(&) = 6P(&) + 0*(&)
gy — 5.2)
Q') =-0©)
with the given initial condition are: P(0) = —ﬁ, 0(0) = 1. The exact solutions
to the stiff chemical problem are P(£) = % and Q(¢) = e~¢. The TWCM solutions

are shown in Tables 5, 6, 7, and 8 and Figs. 5 and 6, revealing that the proposed
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Table 10 Comparison of absolute error for the solution Z, (¢) with different methods

& AE of Taylor wavelet with exact solution AE of haar wavelet with AE of ND Solver
exact solution with exact solu-
k=1,M=10 k=2, M=10 tion

0 0 0 0 0

0.1 9.78 x 10714 1.11x 10716 1.24x107° 233x1078

0.2 4.95x 107 2.22x 10716 6.68 x 107° 9.25x107°

0.3 143 x 1071 1.11x 10716 1.84x 1077 2.11x1078

0.4 1.58 x 1071 0 2.02x 1077 3.06x 1070

0.5 3.99x 1071 1.11 x 10716 4.95x 1077 1.01 x 1078

0.6 573x 1071 0 6.99 x 1077 6.85x 1078

0.7 6.97x 10714 1.11 x 10716 8.21x 107’ 8.07x 1078

0.8 7.49 x 1071 1.66 x 10716 8.73 x 1077 7.87 x 1078

0.9 8.69 x 10714 2.22x 10716 8.65x 1077 3.13x107°

L0 8.90 x 10714 1.66 x 10716 8.11x 107’ 9.16x 1078

method solutions are reasonably close to the exact solution compared to the current
scheme, such as the Haar wavelet collocation method and ND Solver. Numerical
approximations and absolute errors of the developed approach with the exact solu-
tion are tabulated in Tables 5, 6, 7, and 8. It is evident from Figs. 5, 6, 7 and 8 that
the approximations obtained from TWCM come closer and closer to the exact solu-
tion. The errors obtained using the proposed method are better than other existing
techniques. TWCM solutions are calculated at diverse values of M and k. Also, by
increasing the values of M and k, we get more accuracy in the solution, which can
be seen in Tables 5 and 7. It shows that increasing M and k can obtain a higher-order
accuracy. Figures 5, 6, 7, and 8 depict all the graphical representations of numerical
simulations and absolute error analysis. From the tables and graphs, it is clear that
the TWCM dominates all the other techniques in obtaining the numerical approxi-
mation and yields a satisfactory result for the desired system.

Example 3: Let us consider the following nonlinear stiff chemical problem of the
form: [42]

Z,(8) = —aZ(§) = PZy(O) + (@ + f — De™* }

ZI(&) = —PZ,(&) — aZy(&) + (@ — f— D)e~* (5.3)

The given initial condition are: Z;(0) = 1, Z,(0) = 1. The numerical and exact
solutions are compared for various values of &, and the absolute error between
the analytical and approximative solutions at different resolutions (various k and
M) is presented in Tables 9 and 11. Tables 10 and 12 provide the comparison of
absolute errors of the TWCM with other methods, such as the Haar wavelet col-
location method (HWCM) and the ND Solve method. Figures 9 and 10 provide
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Table 12 Comparison of absolute error for the solution Z, (&) with different methods

& AE of Taylor wavelet with exact solution  AE of Haar wavelet with AE of ND Solver
k= LM=10 k=2 M=10 Exact solution rlvolﬁl exact solu-

0 0 0 0 0

0.1 1.79x 1071 222x 10716 1.90x 107 3.09x 1078
0.2 1.67x 1071 222x 10716 1.80 x 1076 2.38x 1078

0.3 1.58x 1071 1.11x 10716 1.61 %1076 3.68x 1070

0.4 1.42x 1071 0 1.37x 1078 2.10x 1078
0.5 1.23x 1078 444 x 10710 1.09x 107° 1.46 x 1078
0.6 1.02x 1078 3.33x 10716 8.07 x 1077 4.17x 1078

0.7 8.06 x 10713 499 % 10710 521x 1077 5.08x 1078
0.8 6.01 x 10713 3.88x 10716 2.52x 1077 434 %1078
0.9 3.20% 1071 277 x 10716 1.00x 1078 8.86x 107

1.0 1.57x 1071 277 x 10716 1.97 x 1077 3.29% 1078

2.0
[ Exact solution

-~ Taylor wavelet solution |

Haar wavelet solution

0.5 m——— pre

Fig.9 Plot of the solution Z, (&) of example 3

the visual representation of the obtained solution by TWCM compared with other
methods. The graphical representation of the absolute error of our suggested
approach is carried out in Fig. 11 and 12. Tables and graphs confirm that by sim-
ply raising the k and M values, our suggested approach can generate more precise
results. The findings shown in the tables and figures demonstrate the suggested
approach’s superior accuracy over the current numerical models. The tables and
graphs show that the proposed approach converges more rapidly with the exact
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1.2 T
Exact solution
*-- Taylor wavelet solution
1.0 Haar wavelet solution
0.8
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0.6
0.4
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 10 Plot of the solution Z, (&) of example 3
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Fig. 11 Comparison of AE of the solution Z, (§) with different techniques, for example 3

values than other methods, and the proposed method is a suitable and powerful
tool to solve the above type of stiff chemical problem.

Example 4: Let us consider the following nonlinear stiff nuclear reactor model: [10]

Z(&) = 0.01 — (0.01 + Z,(&) + Z,(&)) (1 + (Z,(&) + 1000)(Z, (&) + 1))

, (5.4)
Z,(&) = 0.01 = (0.01 + Z,(&) + Z,(&)) (1 + Z,(6)°)

The given initial condition are: Z;(0) = 0,Z,(0) = 0. This problem has no exact
solution. We have solved this model with the Taylor wavelet collocation method at
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2.%x107¢
[ AE of Taylor wavelet

= AE of Haar wavelet
= AE of NDSolver

1.5%x10°°

1.%x107¢ |

Error Analysis of Z,(§)

5.%x1077

0.0 0.2

4

Fig. 12 Comparison of AE of the solution Z,(¢) with different techniques, for example, 3

M=6,7 and k=1,2. Numerical approximations obtained from the TWCM and ND
solve are tabulated in Tables 13 and 14 for Z,(£) and Z,(&), respectively. Also, the
absolute error computed at different values of k and with the ND solve method (due
to the non-availability of the exact solution for the model) are tabulated in the same
tables. The numerical approximations are computed with the Haar wavelet colloca-
tion method, and the solutions are compared with the ND Solve method and the
absolute error of the Haar method is also tabulated in Tables 13 and 14. The graphi-
cal representation of the solution Z,(¢) and Z,(§) are carried out in Figs. 13 and
14. Also, a graphical representation of the absolute errors is drawn in Figs. 15 and
16. It is easy to see that the errors obtained using the proposed method are lesser
than those obtained using the Haar wavelet method. Observing all the above-listed
tables and graphs, one can conclude that the developed technique solutions are rea-
sonably close to the ND Solve solution compared to the Haar wavelet collocation
method. TWCM solutions are calculated at diverse values of M and k. Tables 13 and
14 reveal that after some stage (M) solution will remain the same; that is, the solu-
tion remains stable (never changes by increasing the values of M). The ND Solve
solution and the TWCM solution are incredibly similar. Tables and Graphs confirm
the above statement. It suggests that TWCM is a suitable method to solve the stiff
models.

6 Conclusion
In the present study, we used the Taylor wavelet collocation method (TWCM),

which is not stiffness-sensitive and is used to analyze typical nonlinear systems
originating in nonlinear dynamics with variable degrees/orders of stiffness. Here
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Fig. 13 Plot of the solution Z; (£) of example 4
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Fig. 14 Plot of the solution Z, (§) of example 4
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0.15 AE of Taylor wavelet method

—— AE of Haar wavelet method
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Error Analysis of Z,(§)
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Fig. 15 Comparison of AE of the solution Z, (£) with different techniques, for example, 4
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Fig. 16 Comparison of AE of the solution Z, (&) with different techniques, for example, 4

we have produced the Taylor wavelets’ functional matrix of integration (FMI).
The TWCM is implemented to attain the numerical approximation of the stiff
chemical problems. The proposed method provides accurate solutions for stiff
problems, whereas most numerical methods fail to give numerical solutions for
stiff chemical problems. To enchase the developed method’s stability and effi-
ciency, familiar, complicated stiff systems are considered for illustration. Numeri-
cal values and absolute error of the technique in the tables and graphs strongly
suggest that the proposed method is perfectly suitable to obtain the numerical
solution of the stiff chemical systems. Also, tables and graphs reveal that the
TWCM converges rapidly compared to other existing techniques, such as the
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Haar wavelet method (HWM), Chebyshev polynomials (CMCP), Fibonacci wave-
let collocation method (FWCM), and ND Solver in the literature. The method is
simple and takes less computational time.
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