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Abstract
This paper discusses the analytical solution of fractional differential equations 
involving the Hilfer fractional derivative. The procedure adopted is the modified 
iterative Laplace transform method which uses simple calculation and has a higher 
convergence rate. The approach is such that for distinct values of the type of the Hil-
fer fractional derivative, the study is shifted automatically between the differential 
system with Riemann–Liouville and Liouville–Caputo fractional order derivative. 
Examples of one, two, and three-dimensional differential equations with appropri-
ate initial conditions are analyzed in detail using graphical illustrations and as well 
as through a numerical approach. The comparison plot is investigated in detail from 
multiple viewpoints.

Keywords Laplace iterative method · Mittag–Leffler function · Caputo fractional 
derivative · Riemann–Liouville fractional derivative

1 Introduction

In recent years many complex physical problems employ fractional integral as it can 
describe the cumulation of some quantity better than the regular integral. It is hard 
to deny that, in some cases, the fractional derivative is accurate and effective over 
the integer order. For example, in problems involving Newtonian fluids and viscoe-
lastic fluids in the study of emulsion plastics, signal processing, control and dynami-
cal systems, electrochemistry of corrosion, etc., the role of the fractional derivative 
is extensive.
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Research articles based on various methods of solving fractional order developed 
strongly. Solving non-linear differential equations has always fascinated research-
ers. While considering the different techniques involved in solving the differential 
equation, Adomian [1] introduced the decomposition method for solving various dif-
ferential equations, especially for the differential equation that emerged in stochastic 
problems. Numerous research articles are available in past history and recent times 
that deal with the Adomian decomposition method (ADM), including the recent 
article by Zeiden et al. [35]. Homotopy perturbation method (HPM) which is merger 
between homotopy method and perturbation method was initially given by He [12]. 
His contribution to homotopy perturbation is extensive, including his recent work 
with El-Dib [13]. Wu and Lee [30] gave another tool to study the fractional order 
system on the modified Riemann–Liouville derivative using the variational iteration 
method (VIM).

The solution of fractional order differential equations is studied by many 
researchers and has several applications in real-time problems. Iyiola and Zaman 
[17] applied fractional order to solve cancer model, Yang et al. [34] studied one-
dimensional fractional order heat equation, Shah et al. [25] analyzed time-fractional 
diffusion equation through numerical approach and so on. Other methods of solv-
ing fractional order differential equations include the finite element method by Zeng 
et al. [36], differential transform method by Secor [24] to find the analytic solu-
tion of fractional heat and wave-like equations, natural decomposition method by 
Rawashdeh [23] and Khan et al. [19]. Laplace transform is widely used for solving 
fractional differential equations. In literature, the He-Laplace method is used when 
coupled with the homotopy perturbation method. Moreover, the Laplace transform 
makes the variational iteration method much more straightforward. Many analytical 
solutions for various mathematical models of the chemical process involve Laplace 
transform technique. Few articles that describe the application of the Laplace trans-
form in chemical engineering are available in the literature, for example, the work 
of Kolev and Linden [21] to find the solution of the partial differential equation 
describing time-dependent two, three-dimensional transport phenomena. The result 
of Ahmed and Batin [2] to investigate the effects of conduction-radiation and poros-
ity of the porous medium on a laminar convective heat transfer flow utilized Laplace 
transform method to solve the boundary layer equations analytically. Using Laplace 
iteration method, Yan [33] worked on solving Fokker-Plank equation. The work 
of Srivastava and his collaborators on applications of fractional order equations in 
real-life problems [26–28] can be referred for interested readers, and more exciting 
works involving other fractional derivatives can be found in [3, 9, 16, 18, 32].

In this regard, other than the solution of the differential equation with the Liou-
ville–Caputo derivative, solutions of differential equations with other derivative 
orders are discussed in significantly fewer numbers. He’s fractional derivative and 
two-scale derivatives are some of the well-known fractional derivatives used in the 
fractal vibration model, which can eliminate the drawback of traditional theories. 
A detailed analysis of such results is available in [10, 11, 14]. In particular, the 
numerical and analytic analysis of the Hilfer fractional derivative, which is studied 
in this paper, is new in this direction. The results are helpful in learning the anal-
ogy between Liouville–Caputo and Riemann–Liouville’s order differential equation. 
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Hilfer fractional derivative was given by Hilfer [15] when he wanted a generalized 
Riemann–Liouville derivative for the glass-forming differential system. Research 
based on the Hilfer fractional order started to rise after the proof of the existence of 
solution of Cauchy problem with Hilfer fractional derivative given by Furati et al. 
[6] and by Gu and Trujillo [8].

This paper is devoted mainly to applying the modified Laplace iterative transform 
method on various dimensional fractional systems with Hilfer fractional derivative. 
The observations show different characteristic behavior when the type of Hilfer frac-
tional derivative shuttles between Liouville–Caputo and Riemann–Liouville deriva-
tive order. The paper is arranged so that Sect. 2 contains the preliminary definitions 
required for further sections. Section  3 holds the procedure that is applied in the 
differential equations. Section 4 is the application part of the derived method. This 
section deals with both graphical and numerical evaluation. The conclusion thus 
acquired is written in detail in Sect. 5.

2  Preliminaries

The corresponding Riemann–Liouville fractional derivative operators RLD�

a+ and 
RLD�

a−
 are given by [22]

and

Definition 2.1 [8] The Hilfer fractional derivative of order 0 < 𝜇 < 1 and type 
0 ≤ � ≤ 1 of function g(t) is defined by

where D ∶=
d

dt
 . The above given generalization (2.1) reduces to the classical Rie-

mann–Liouville fractional derivative for a particular case when � = 0 . And when 
� = 1 , the definition (2.1) reduces to classical Liouville–Caputo derivative. The 
Liouville–Caputo derivative is generally defined as follows:

Definition 2.2 [22] The Liouville–Caputo derivative of order 𝜇 > 0 for a function 
g ∶ [0,∞) → ℝ is defined by

(

RLI
𝜇

a+g
)

(t) =
1

Γ(𝜇) ∫
t

a

(t − s)𝜇−1g(s)ds, (t > a;ℜ(𝜇) > 0),

(

RLI𝜇
a−
g
)

(t) =
1

Γ(𝜇) ∫
a

t

(s − t)𝜇−1g(s)ds, (t < a;ℜ(𝜇) > 0),

(

RLD
�

a±

)

g(t) =
(

±
d

dt

)n
(

I
n−�
a± g

)

(t), (ℜ(�) ≥ 0;n = [ℜ(�)] + 1).

(2.1)
(

D
�,�

a± g
)

(t) =
(

I
�(1−�)

a± D
(

I
(1−�)(1−�)

a± g
)

)

(t),
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where Γ(⋅) is the (Euler’s) Gamma function.

Definition 2.3 [20] The Mittag–Leffler function with one parameter � and two 
parameters � and � are given respectively by

where z, �, � ∈ ℭ , ℜ(𝛼) > 0 and for � = 1 , it is clear that E�(z) = E�,1(z).

Definition 2.4 (see, [29, p. 798]) The Laplace transform of Hilfer derivative is given 
by

where 
(

RLI
(1−�)(m−�)−i

0+
g
)

(0+) is the Riemann–Liouville fractional integral.

3  Laplace iterative method for Hilfer fractional derivative

A new iterative method using �-Laplace transform was given by Bhangale et al. [4]. 
This chapter considers the same procedure for � = 1 , and Hilfer fractional derivative 
is employed instead of the Liouville–Caputo generalized fractional derivative. It is 
to be noted that, Daftardar-Gejji and Jafari in [5] gave this basic iterative procedure, 
where they discussed the fractional diffusion-wave equation. As given by Bhangale 
et al. [4], any functional equation can be written as

where g is the given function, L(u) is the linear function of u and N(u) is the nonlin-
ear function of u. The solution is given by the series

General linear and nonlinear terms in equation (3.1) separately can be written as

CD
𝜇

t g(t) =
1

Γ(n − 𝜇) ∫
t

0

(t − s)n−𝜇−1g(n)(s)ds, t > 0, n − 1 < 𝜇 < n,

(2.2)E�(z) =

∞
∑

k=0

zk

Γ(�k + 1)
and E�,�(z) =

∞
∑

k=0

zk

Γ(�k + �)

(2.3)L[D
�,�

t g(t)] = s�L[g(t)] −

m−1
∑

i=0

sm(1−�)+��−i−1
(

RLI
(1−�)(m−�)−i

0+
g
)

(0+),

(3.1)u = g + L(u) + N(u),

(3.2)u =

∞
∑

k=0

uk = u0 + u1 + u2 + u3 +⋯ .

(3.3)L(u) =

∞
∑

k=0

L(uk),
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From equations (3.2), (3.3) and (3.4), it can be seen that (3.1) is equivalent to

The terms in the above series can be written as,

A general nonlinear Hilfer fractional initial value problem can be defined as

with the initial condition I(1−�)(1−�)
0+

u(x, 0) . Applying the Laplace transform for Hilfer 
fractional derivative defined in (2.3) on each terms of the equation (3.6), gives

Simplification of the above equation reduces to

By taking the inverse Laplace transform on both sides of equation (3.7), the follow-
ing equation is obtained.

The other terms L(u) and N(u) can be estimated by comparing with (3.3) and (3.4), 
respectively. The terms of the new iterative method applied in the Hilfer fractional 
differential equation are summarized below.

The above mentioned procedure is simple and the error is minimum.

(3.4)N(u) =N(u0) +

∞
∑

k=0

[

N

( k
∑

l=0

ul

)

− N

( k−1
∑

l=0

ul

)

]

.

(3.5)u =

∞
∑

k=0

uk = g +

∞
∑

k=0

L(uk) + N(u0) +

∞
∑

k=1

[

N

( k
∑

l=0

ul

)

− N

( k−1
∑

l=0

ul

)

]

.

u0 =g, u1 = L(u0) + N(u0),

un+1 = L(un) +

[

N

( n
∑

k=0

uk

)

− N

( n−1
∑

l=0

uk

)

]

, n = 1, 2,…

(3.6)D
𝜇,𝜈

0+
u(x, t) + Nu(x, t) = g(x, t), 0 < 𝜇 < 1, 0 ≤ 𝜈 ≤ 1,

s𝜇ū(x, s) − s𝜈(𝜇−1)[I
(1−𝜇)(1−𝜈)

0+
u(x, 0)] = L[g(x, t)] − L[Nu(x, t)].

(3.7)ū(x, s) =
[I

(1−𝜇)(1−𝜈)

0+
u(x, 0)]

s𝜆
+

L[g(x, t)]

s𝜇
−

L[N(u(x, t))]

s𝜇
.

u(x, t) =
t�−1

Γ(�)
[I

(1−�)(1−�)

0+
u(x, 0)] + L

−1
[

s−�L[g(x, t)]
]

+ L
−1
[

s−�L[N(u(x, t))]
]

.

(3.8)

g =
t�−1

Γ(�)
[I

(1−�)(1−�)

0+
u(x, 0)],L(u) = L

−1
[

s−�L[g(x, t)]
]

,

N(u) = L
−1
[

s−�L[N(u(x, t))]
]

,

∞
∑

k=0

uk = g + L

(

∞
∑

k=0

uk

)

+ N

(

∞
∑

k=0

uk

)

.
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4  Applications

The above-mentioned iterative method can be applied to linear and nonlinear frac-
tional differential equations to obtain an iterative solution that reduces to the exact 
solution in closed form. The value � can be altered to switch between the Liou-
ville–Caputo and the Riemann–Liouville fractional order differential equations.

Example 1 Consider the one-dimensional linear Hilfer fractional heat equation:

Taking the Laplace transform on each terms of the given heat equation (4.1), we get

Using the initial conditions given in problem (4.1), the above equation reduces to

Applying the inverse Laplace transform of each term in the above equation gives

Using the Laplace iterative method (3.8), the recursive terms of the solution are 
given by

Accordingly, a few terms in the series are obtained as follows

The successive terms of the solution are obtained in a similar way

The series solution can thus be written as

(4.1)
{

D
𝜇,𝜈

0+
u(x, t) = uxx, 0 < 𝜇 < 1, 0 ≤ 𝜈 ≤ 1, t ≥ 0,

I
(1−𝜇)(1−𝜈)

0+
u(x, 0) = 2 − 1.5x + sin(𝜋x), 0 ≤ x ≤ 1.

s𝜇ū(x, s) − s𝜈(𝜇−1)I
(1−𝜇)(1−𝜈)

0+
u(x, 0) = L[uxx].

s𝜇ū(x, s) =
(

s𝜈(𝜇−1)(2 − 1.5x + sin(𝜋x))
)

+ L[uxx]

⟹ū(x, s) =
(2 − 1.5x + sin(𝜋x))

s𝜆
+

L[uxx]

s𝜇
.

u(x, t) = L
−1
[

(2 − 1.5x + sin(�x))

s�

]

+ L
−1
[

L[uxx]

s�

]

.

g = L
−1
[

(2 − 1.5x + sin(�x))

s�

]

, L(u) = L
−1
[

L[uxx]

s�

]

.

u0 =
t�−1

Γ(�)
(2 − 1.5x + sin(�x)),

u1 =L(u0) = L
−1
[

L[t�−1(−�2) sin(�x)]

s�Γ(�)

]

= −�2 sin(�x)L−1
[

1

s�+�

]

,

u1 =
−�2 sin(�x)(t)�+�−1

Γ(� + �)
.

u2 = L(u1) = L
−1
[

L[t�+�−1(�4) sin(�x)]

s�Γ(�)

]

=
�4 sin(�x)(t)2�+�−1

Γ(2� + �)
.
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With the help of Definition 2.2, the series form of solution for the Hilfer fractional 
one-dimensional heat equation (4.1) is derived as

The derived solution reduces to the exact solution u(x, t) = sin(�x)e−�
2t + 2 − 1.5x 

in closed form when � = 1 . A detailed analysis of the solution, for various values of 
0 < 𝜇 < 1 with � = 0 and � = 1 is discussed below.

Observation 1 From Fig. 1a, it is clear that the iterated solution for the case � = 1 , 
and for nearly all values of 0 < 𝜇 < 1 , is proximate to the exact solution. When 
� = 0 and 0 < 𝜇 < 1 , the derived solution reduces to a fractional-order system with 
the Riemann–Liouville derivative. From Fig. 1b, it can be observed that the trajec-
tory of the derived solution with � = 0 is not very close to the trajectory of the exact 
solution except for the higher values of � . The 3D plot in Fig. 2 represents the com-
parative display of the exact solution and the derived solution for various values of 
� and � = 0.9 . As the value of � increases from 0 to 1, the solution of the fractional-
order system (4.1) approaches the exact solution faster and closer.

Observation 2 Figure 3 exhibits the variation between the derived solution and the 
exact solution for two values, � = 0.9 and � = 0.1 , with three different values of � . It 
can be noticed that the deviation of the fractional order from the integer order attains 
zero when � = 0.9 or � = 0.1 with � = 1 . The variation is still minimum for the case 
� = 0.5 and � = 0.9 . To conclude, the deviation is maximum for lower values of � , 
lower values of � , and lower values of x.

u(x, t) = u0 + u1 + u2 +⋯

⟹ u(x, t) =
t�−1

Γ(�)

(

2 − 1.5x + sin(�x)
)

+
(−�2) sin(�x)(t)�+�−1

Γ(� + �)

+
�4 sin(�x)(t)2�+�−1

Γ(2� + �)
+⋯

(4.2)u(x, t) = sin(�x)t�−1E�,�(−�
2t�) +

2t�−1

Γ(�)
−

1.5xt�−1

Γ(�)
.

(a) (b)

Fig. 1  Analytical solution for different values of � and t = 0.5 in Example 1
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Example 2 Consider the one-dimensional linear time fractional heat-like model with 
Hilfer derivative for 1 < 𝜇 < 2 [3]:

with initial conditions,

Applying the Laplace transform on each term of the heat equation and using Eq. 
(2.3), gives

(4.3)D
𝜇,𝜈

0+
u(x, t) −

x2

2
uxx = 0, 1 < 𝜇 < 2, 0 ≤ 𝜈 ≤ 1, 0 < t < 1,

(4.4)I
(1−𝜇)(1−𝜈)

0+
u(x, 0) = x, I

(1−𝜇)(2−𝜈)−1

0+
u(x, 0) = x2,−1 < x < 1.

Fig. 2  3D plot when � = 0.9

(a) (b)

Fig. 3  Error analysis of Example 1 for t = 0.5
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Now, on substituting the initial conditions given in the problem (4.4) in the above 
equation, it is found that

Taking the inverse Laplace transform of the above equation, gives

Using the derived Laplace iterative method (3.8), the recursive terms of series solu-
tion are obtained as

The other few terms in the series can be calculated as follows:

The successive terms of the series solution are obtained in the following similar way.

The solution in series form can thus, be written as

Using Definition 2.2, the solution of the Hilfer fractional one dimensional heat equa-
tion (4.3) reduces to

It can observed that the derived solution converges to the exact solution x + x2 sinh t 
in a closed form. Further analysis of the trajectory of the iterated solution when 
1 < 𝜇 < 2 with � = 0 and � = 1 is given separately.

s𝜇ū(x, s) = s𝜈(𝜇−2)+1I
(1−𝜇)(2−𝜈)

0+
u(x, 0) + s𝜈(𝜇−2)I

(1−𝜇)(2−𝜈)−1

0+
u(x, 0) +

x2

2
L[uxx].

ū(x, s) =
x

s𝜆+𝜈−1
+

x2

s𝜆+𝜈
+

x2

2

1

s𝜇
L[uxx].

u(x, t) =
xt�+�−2

Γ(� + � − 1)
+

x2t�+�−1

Γ(� + �)
+

x2

2
L
−1
[

1

s�
L[uxx]

]

.

g =
xt�+�−2

Γ(� + � − 1)
+

x2t�+�−1

Γ(� + �)
, L(u) =

x2

2
L
−1
[

1

s�
L(uxx)

]

.

u0 =
xt�+�−2

Γ(� + � − 1)
+

x2t�+�−1

Γ(� + �)
,

u1 = L(u0) =
x2

2
L
−1

[

1

s�
L

[

2t�+�−1

Γ(� + �)

]

]

= x2L−1
[

1

s�+�+�

]

,

⟹ u1 =
x2t�+�+�−1

Γ(� + � + �)
.

u2 = L(u1) = L
−1

[

1

s�
L

[

x2t�+�+�−1

Γ(� + � + �)

]

]

=
x2t2�+�+�−1

Γ(2� + � + �)
.

u(x, t) = u0 + u1 + u2 +⋯

⟹ u(x, t) =
xt�+�−2

Γ(� + � − 1)
+

x2t�+�−1

Γ(� + �)
+

x2t�+�+�−1

Γ(� + � + �)
+

x2t2�+�+�−1

Γ(2� + � + �)
+⋯ .

(4.5)u(x, t) =
xt�+�−2

Γ(� + � − 1)
+ x2t�+�−1E�,�+�(t

�).
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Observation 3 Figure 4 clearly illustrates the trajectory of the fractional-order solu-
tion and the exact solution for the case � = 0 and � = 1 . The difference of the frac-
tional order from the integer value is minimum for positive values of x. The plot 
in Fig. 4a clearly explains that the derived solution for the Liouville–Caputo order 
traces the exact solution path very closely.

Observation 4 Figure 5 sketches the error difference between the series solution and 
the exact solution for two different values of � with three values of � of the integral. 
At this point, it is essential to mention the fact that the plot given by Khan et al. [19] 
has some constraints. Even though their graph is for 0 < 𝜇 ≤ 1 , the hypothesis of 
their result is given for 1 < 𝜇 ≤ 2 . Hence their plot requires a different analysis.

Example 3 Consider the two-dimensional Hilfer fractional wave equation:

(4.6)D
𝜇,𝜈

0+
u(x, y, t) =

y2

2
uyy +

x2

2
uxx, 0 < 𝜇 < 1, 0 ≤ 𝜈 ≤ 1, 0 ≤ t ≤ 1,

(a) (b)

Fig. 4  Plot of Example 2 for t = 0.5

(a) (b)

Fig. 5  Deviation when −1 < x < 1 in Example 2
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with initial conditions,

Taking the Laplace transform (2.3) on both sides of the given wave equation (4.6), 
gives

Substituting the initial condition given in (4.7) in the above equation leads to

The inverse Laplace transform is applied to each term to get the series solution. This 
means,

From the iterative method, the general following recursive term can be found as

Few iterative terms are obtained as follows:

The series solution is given by

Using Definition 2.2, the solution obtained is given by

The exact solution in closed form of this wave equation is given by

(4.7)I
(1−�)(1−�)

0+
u(x, y, 0) = y2.

s𝜇ū(x, y, t) = s𝜈(𝜇−1)[I
(1−𝜇)(1−𝜈)

0+
u(x, y, 0)] + L

[y2

2
uyy

]

+ L

[

x2

2
uxx

]

.

ū(x, y, t) =
y2

s𝜆
+

1

s𝜇
L

[y2

2
uxx

]

+
1

s𝜇
L

[

x2

2
uyy

]

.

u(x, y, t) =
y2t�−1

Γ(�)
+ L

−1

[

1

s�
L

[y2

2
uxx

]

]

+ L
−1

[

1

s�
L

[

x2

2
uyy

]

]

.

u0 =
y2t�−1

Γ(�)
, L(u) = L

−1

[

1

s�
L

[y2

2
uxx

]

]

+ L
−1

[

1

s�
L

[

x2

2
uyy

]

]

.

u1 = L(u0) =
x2t�−1

Γ(�)
L
−1
[

1

s�+�

]

= x2
t�+�−1

Γ(� + �)
,

u2 = L(u1) = y2
t2�+�−1

Γ(2� + �)
,⋯ .

u(x, y, t) = u0 + u1 + u2 +⋯

⟹ u(x, y, t) = x2t�−1
(

t�

Γ(� + �)
+

t3�

Γ(3� + �)
+

t5�

Γ(5� + �)
+⋯

)

+ y2t�−1
(

1

Γ(�)
+

t�

Γ(2� + �)
+

t4�

Γ(4� + �)
+⋯

)

.

(4.8)u(x, y, t) = x2t�+�−1E2�,�+�(t
2�) + y2t�−1E2�,�(t

2�).

u(x, y, t) = x2 sinh t + y2 cosh t.
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The iterated solution reduces to the exact solution when � = 1 . For the values 
0 < 𝜇 < 1 , the table explains that the difference between the fractional-order solu-
tion and the exact solution is very minimum for various fractional order and type.

Observation 5 Table 1 displays the difference between the fractional-order solution 
and the exact solution for various values of � with � = 0 . The error difference in the 
last column is calculated between the values of the iterated solution when � = 0.9 
and the exact solution. These values are calculated for t = 0.5 and for various values 
of x and y. It can be observed that the difference is minimum for the lower values of 
x and y. Table 2 displays the difference between the iterated solution and the exact 
solution for various values of � with � = 1 . Similar to the previous table, the devia-
tion between the values of the derived solution and the exact solution is minimum 
when � = 0.9.

Observation 6 Figure 6a explains the error when 0 ≤ x, y ≤ 1 and t = 0.5 , for vari-
ous values of order and type of the derivative. From Figs. 6b,  7a and  7b, we can 
observe that for 0 ≤ x, y ≤ 1 , the trajectory of the fractional-order solution almost 
coincides with the trajectory of the exact solution when � = 0.9 and 0 ≤ � ≤ 1 . For 
the lower values of the fractional order, there is a considerable deviation between the 
trajectory of the fractional-order solution and the exact solution.

Example 4 Consider the two-dimensional non-linear Hilfer fractional wave equation:

Table 1  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 0

Error analysis when � = 0 , t = 0.5

x,y � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9 Exact Error

0.2 0.7308 0.2418 0.1429 0.0997 0.0749 0.0660 0.0089
0.5 4.5673 1.5112 0.8630 0.6227 0.4680 0.4122 0.0558
0.7 8.9520 2.9620 1.7503 1.2205 0.9173 0.8078 0.1095
1 18.2693 6.0450 3.5722 2.4910 1.8720 1.6487 0.2233

Table 2  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 1

Error Analysis when � = 1 , t = 0.5

x,y � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9 Exact Error

0.2 0.4738 0.1714 0.1110 0.0851 0.0709 0.0660 0.0049
0.5 2.9614 1.0711 0.6936 0.5322 0.4431 0.4122 0.0309
0.7 5.8043 2.0994 1.3594 1.0432 0.8685 0.8078 0.0607
1 11.8456 4.2845 2.7743 2.1289 1.7725 1.6487 0.1238
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with initial conditions,

Taking the Laplace transform on both sides of the given wave equation (4.9) gives

Substituting the initial conditions given in (4.10) in the above equation, yields

(4.9)D
𝜇,𝜈

0+
u(x, t) =

𝜕2u

𝜕x𝜕y
(uxx) −

𝜕2u

𝜕x𝜕y
(xyuxxuyy) − u, 1 < 𝜇 < 2, 0 ≤ 𝜈 ≤ 1

(4.10)I
(1−�)(1−�)

0+
u(x, 0) = exy, I

(1−�)(2−�)−1

0+
u(x, 0) = exy, 0 ≤ x, y ≤ 1.

s𝜇ū(x, s) = s𝜈(𝜇−2)+1I
(1−𝜇)(2−𝜈)

0+
u(x, 0) + s𝜈(𝜇−2)I

(1−𝜇)(2−𝜈)−1

0+
u(x, 0)

+ L

[

𝜕2u

𝜕x𝜕y
(uxx) −

𝜕2u

𝜕x𝜕y
(xyuxxuyy) − u

]

.

(a)
(b)

Fig. 6  Error analysis of Example 3 for 0 ≤ x, y ≤ 1

(a) (b)

Fig. 7  Error analysis of Example 3 for 0 ≤ x, y ≤ 1



232 Journal of Mathematical Chemistry (2023) 61:219–241

1 3

Taking the inverse Laplace transform of each term in the above equation leads to

Using the derived Laplace transform method (3.8), the terms are separated as 
follows:

Accordingly, the iterative terms are obtained as below,

Here,

and

Hence,

Using the given iterative procedure, it can be found that u2 = L(u1) + N(u0 + u1) − N(u0) , 
where

ū(x, s) =
exy

s𝜆+𝜈−1
+

exy

s𝜆+𝜈
+

1

s𝜇
L

[

𝜕2u

𝜕x𝜕y
(uxx) −

𝜕2u

𝜕x𝜕y
(xyuxxuyy) − u

]

.

u(x, t) = L
−1
[

exy

s�+�−1
+

exy

s�+�

]

+ L
−1
[

1

s�
L[−u]

]

+ L
−1

[

1

s�
L

[

�2u

�x�y
(uxx) −

�2u

�x�y
(xyuxxuyy)

]

]

.

g =
exyt�+�−2

Γ(� + � − 1)
+

exyt�+�−1

Γ(� + �)
, L(u) = L

−1
[

1

s�
L[−u]

]

N(u) = L
−1

[

1

s�
L

[

�2u

�x�y
(uxx) −

�2u

�x�y
(xyuxxuyy)

]

]

.

u0 =
exyt�+�−2

Γ(� + � − 1)
+

exyt�+�−1

Γ(� + �)
,

u1 = L(u0) + N(u0).

L(u0) =L
−1
[

1

s�
L[u0]

]

= L
−1

[

1

s�
L

[

exyt�+�−2

Γ(� + � − 1)
+

exyt�+�−1

Γ(� + �)

]

]

,

L(u0) = exyL−1
[

1

s�+�+�−1
+

1

s�+�+�

]

,

⟹ L(u0) = exy
[

t�+�+�−2

Γ(� + � + � − 1)
+

t�+�+�−1

Γ(� + � + �)

]

,

N(u0) =L
−1

[

1

s�
L

[

�2

�x�y

[

x2y2e2xy
(

t�+�−1

Γ(� + �)
+

t�+�−2

Γ(� + � − 1)

)2]

−
�2

�x�y

[

x2y2e2xy
(

t�+�−1

Γ(� + �)
+

t�+�−2

Γ(� + � − 1)

)2]]
]

= 0.

u1 = −exy
[

t�+�+�−2

Γ(� + � + � − 1)
+

t�+�+�−1

Γ(� + � + �)

]

.
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As a result, the series is written as:

The series solution is thus, given by

The exact solution of the two dimensional wave equation in closed form is given 
by u(x, t) = exy(sin t + cos t). The exact solution is reduced from the fractional-order 
solution when � = 2.

Observation 7 Tables  3 and 4 gives the data clearly on how the derived solution 
deviates from the exact solution when � = 1 and � = 0 for various values of � , 
respectively. The error difference is calculated between the values of the iterated 
solution when � = 0.9 and the exact solution. Further, Fig. 8 gives an overall view 
of the error for various values of � when � = 1.9 . The error plot clearly shows that 
the fractional-order solution with the Liouville–Caputo derivative converges close to 
the integer solution.

L(u1) = exy
[

t2�+�+�−2

Γ(2� + � + � − 1)
+

t2�+�+�−1

Γ(2� + � + �)

]

,N(u0 + u1) = 0,N(u0) = 0.

u(x, t) = u0 + u1 + u2 +⋯

⟹ u(x, t) = exy
[

t�+�−1

Γ(� + �)
−

t�+�+�−1

Γ(� + � + �)
+

t2�+�+�−1

Γ(2� + � + �)
−⋯

]

+ exy
[

t�+�−2

Γ(� + � − 1)
−

t�+�+�−2

Γ(� + � + � − 1)
+

t2�+�+�−2

Γ(2� + � + � − 1)
−⋯

]

(4.11)u(x, t) = exyt�+�−1E�,�+�(−t
�) + exyt�+�−2E�,�+�−1(−t

�).

Table 3  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 1 of 
Example 4

Error analysis when � = 1 , t = 0.5

x,y � = 1.1 � = 1.3 � = 1.5 � = 1.7 � = 1.9 Exact Error

0.2 0.5371 0.5665 0.5901 0.6081 0.6213 1.4124 0.7911
0.5 0.6627 0.6990 0.7280 0.7502 0.7665 1.7424 0.9759
0.7 0.8424 0.8885 0.9255 0.9537 0.9744 2.2151 1.2407
1 1.4028 1.4797 1.5412 1.5881 1.6226 3.6887 2.0661

Table 4  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 0 of 
Example 4

Error analysis when � = 0 , t = 0.5

x,y � = 1.1 � = 1.3 � = 1.5 � = 1.7 � = 1.9 Exact Error

0.2 0.2001 0.6620 1.0707 1.3215 1.4197 1.4124 0.0073
0.5 0.2470 0.8167 1.3210 1.6385 1.7510 1.7424 0.0086
0.7 0.3140 1.0382 1.6792 2.0830 2.2260 2.2151 0.0109
1 0.5228 1.7290 2.7965 3.4687 3.7070 3.6887 0.0183
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Example 5 Consider the Fokker-Plank time fractional nonlinear equation with Hilfer 
fractional derivative

with initial conditions,

Taking the Laplace transform for each term of the given wave equation (4.12) and 
applying the initial conditions given in (4.13), gives

Taking the inverse Laplace transform on both sides of the above equation leads to

Comparing with the iterative procedure (3.8), u(x, t) can be written as,

Here,

(4.12)D
𝜇,𝜈

0+
u(x, t) = −

𝜕

𝜕x

(

3u2

x
−

xu

3

)

+
𝜕2

𝜕x2
(u2), 0 < 𝜇 < 1, 0 ≤ 𝜈 ≤ 1,

(4.13)I
(1−𝜇)(1−𝜈)

0+
u(x, 0) = x2, 0 ≤ x ≤ 1, 0 < t < 1.

s𝜇ū(x, s) = s𝜈(𝜇−1)I
(1−𝜇)(1−𝜈)

0+
u(x, 0) + L

[

𝜕

𝜕x

(

xu

3

)]

+ L

[

𝜕2

𝜕x2
(u2) −

𝜕

𝜕x

(

3u2

x

)]

,

⟹ ū(x, s) =
x2

s𝜆
+

1

s𝜇
L

[

𝜕

𝜕x

(

xu

3

)]

+
1

s𝜇
L

[

𝜕2

𝜕x2
(u2) −

𝜕

𝜕x

(

3u2

x

)]

.

u(x, t) = L
−1
[

x2

s�

]

+ L
−1

[

1

s�
L

[

�

�x

(

xu

3

)]

+
1

s�
L

[

�2

�x2
(u2) −

�

�x

(

3u2

x

)]

]

.

u(x, t) =
x2t�−1

Γ(�)
+ L(u) + N(u).

u0 =
x2t�−1

Γ(�)
, u1 = L(u0) + N(u0).

Fig. 8  Error plot of the solution for 0 < t < 1 of Example 4
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The successive iterative terms L(u0) and N(u0) are calculated as below.

The next term according to the iterative method (3.5) is given by 
u2 = L(u1) + N(u0 + u1) − N(u0) . It can be obtained that N(u0 + u1) = 0 . Substituting these val-
ues in the series solution, yields

The exact solution in closed form of the given differential system (4.12) is given by,

Figure 9 is the trajectory of the fractional-order solution for various values of � with 
respect to the cases � = 0 and � = 1 . In both cases, it is clear that as the value of � 
increases, the series solution approaches the exact solution.

Observation 8 A more detailed analysis in terms of values are given in Tables  5 
and  6 . The tabulated values in Table 5 shows the error analysis with t = 0.5 , for 
� = 0 . The error is minimum for values of x < 0.5 . Table 6 shows the error with 
t = 0.5 , for � = 1 . It can be seen that the error is minimum for values of x < 0.7 . For 
higher order values, the solution trajectories with Riemann–Liouville and Liouville–
Caputo derivatives trace a similar path to the integer order solution.

Example 6 Consider three-dimensional Hilfer fractional-order diffusion equation:

with initial conditions,

L(u0) =L
−1

[

1

s�
L

[

�

�x

(

x3t�−1

Γ(�)

)]

]

=
x2t�+�−1

Γ(� + �)
,

N(u0) =L
−1

[

1

s�
L

[

�2

�x2

(

x4t2�−2

(Γ(�))2

)]

]

− L
−1

[

1

s�
L

[

�

�x

(

3x4t2�−2

(Γ(�))2

)]

]

,

=L
−1
[

12x2

s�(Γ(�))2
L[t2�−2]

]

− L
−1
[

12x2

s�(Γ(�))2
L[t2�−2]

]

= 0,

⟹ u1 =
x2t�+�−1

Γ(� + �)
.

(4.14)

u(x, t) = u0 + u1 + u2 +⋯ ,

u(x, t) =
x2t�−1

Γ(�)
+

x2t�+�−1

Γ(� + �)
+

x2t2�+�−1

Γ(2� + �)
+⋯ ,

= x2t�−1
[

1

Γ(�)
+

t�

Γ(� + �)
+

t2�

Γ(2� + �)
+⋯

]

,

⟹ u(x, t) = x2t�−1E�,�(t
�).

u(x, t) = x2et.

(4.15)D
𝜇,𝜈

0+
u(x, y, z, t) =

𝜕2u

𝜕x2
+

𝜕2u

𝜕y2
+

𝜕2u

𝜕z2
, 0 < 𝜇 < 1, 0 ≤ 𝜈 ≤ 1, 0 < t < 1,
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Taking the Laplace transform on both sides of the given wave equation (4.15) using 
the formula given by (2.3) gives

Substituting the initial conditions given in (4.16) in the above equation reduces to

(4.16)I
(1−�)(1−�)

0+
u(x, y, 0) = sin x sin y sin z, 0 ≤ x, y, z ≤ 10.

s𝜇ū(x, y, z, t) − s𝜈(1−𝜇)I
(1−𝜇)(1−𝜈)

0+
[u(x, y, z, 0)] = L

[

𝜕2u

𝜕x2
+

𝜕2u

𝜕y2
+

𝜕2u

𝜕z2

]

.

(a) (b)

Fig. 9  Riemann–Liouville order and the Liouville–Caputo order in Example 5

Table 5  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 0 of 
Example 5

Error analysis when � = 0 , t = 0.5

x � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9 Exact Error

0.2 0.7308 0.2418 0.1429 0.0996 0.0749 0.0660 0.0089
0.5 4.5673 1.5112 0.8930 0.6227 0.4680 0.4122 0.0558
0.7 8.9520 2.9620 1.7503 1.2205 0.9173 0.8079 0.1094
1 18.2693 6.0450 3.5722 2.4909 1.8720 1.6487 0.2233

Table 6  Error difference 
between the closest value of � 
in the analytic solution with the 
exact solution when � = 1 of 
Example 5

Error analysis when � = 1 , t = 0.5

x � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9 Exact Error

0.2 0.4738 0.1714 0.1110 0.0851 0.0709 0.0660 0.0049
0.5 2.9614 1.0711 0.6936 0.5222 0.4431 0.4122 0.0309
0.7 5.8043 2.0994 1.3594 1.0432 0.8685 0.8079 0.0609
1 11.8456 4.2846 2.7743 2.1290 1.7725 1.6487 0.1238
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Taking the inverse Laplace inverse transform leads to

Comparing with the iterative method (3.8), u0 and L(u) are given by,

The successive terms of the series solution are as follows:

The series solution is written as,

The solution is thus given by

and the exact solution in closed form is given by

Observation 9 It can be observed that the fractional-order solution (4.17) does not 
explicitly depend on the value of � . Hence, it can be concluded that for � = 1 the 
series solution reduces to exact solution irrespective of � = 0 or � = 1 . Thus the 

s𝜇ū(x, s) =
(

s𝜈(1−𝜇)(sin x sin y sin z)
)

+ L

[

𝜕2u

𝜕x2
+

𝜕2u

𝜕y2
+

𝜕2u

𝜕z2

]

,

⟹ ū(x, s) =
sin x sin y sin z

s𝜆
+ s−𝜇L

[

𝜕2u

𝜕x2
+

𝜕2u

𝜕y2
+

𝜕2u

𝜕z2

]

.

u(x, y, z, t) = L
−1
[

sin x sin y sin z

s�

]

+ L
−1

[

1

s�
L

[

�2u

�x2
+

�2u

�y2
+

�2u

�z2

]

]

.

u0(x, y, z, t) = sin x sin y sin z
t�−1

Γ(�)
,

L(u) =L
−1

[

1

s�
L

[

�2u

�x2
+

�2u

�y2
+

�2u

�z2

]

]

.

u1 = L(u0) = L
−1

[

1

s�
L

[

− 3 sin x sin y sin z
t�−1

Γ(�)

]

]

,

= − 3 sin x sin y sin zL−1
[

1

s�+�

]

= −3 sin x sin y sin z
t�+�

Γ(� + �)
,

u2 =L(u1) = L
−1

[

1

s�
L

[

9 sin x sin y sin z
t�+�−1

Γ(� + �)

]

]

,

= 9 sin x sin y sin z
t�+�−1

Γ(2� + �)
.

u(x, t, z, t) = u0 + u1 + u2 +⋯ ,

⟹ u(x, y, z, t) = sin x sin y sin z
t�−1

Γ(�)
− 3 sin x sin y sin z

t�+�

Γ(� + �)

+9 sin x sin y sin z
t�+�−1

Γ(2� + �)
−⋯ .

(4.17)u(x, y, z, t) = sin x sin y sin z t�−1[E�,�(−3t
�)],

u(x, y, z, t) = e−3t sin x sin y sin z.
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solution trajectory of the integer order and fractional-order with the Riemann–Liou-
ville derivative and Liouville–Caputo derivative traces a close path.

Observation 10 From the error plot in Fig. 10a, it is clear that for � = 0 , the error 
difference converges to zero for t ↣ 1 . The error plot in Figs. 10b and  11a shows 
that the error value increases as the value of the type � of the derivative increases. 
Figure 11b gives a consolidate image of error variation. While analyzing Fig. 10a, it 
is evident that the solution of the differential equation with the Riemann–Liouville 
derivative is close to the exact solution than with the Liouville–Caputo order solu-
tion, as t ↣ 1.

(a) (b)

Fig. 10  Error analysis of Example 6 for x = y = z = 5 , 0 < t < 1

(a) (b)

Fig. 11  Error analysis of Example 6 for x = y = z = 5 for 0 < t < 1
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5  Conclusion

Analytic solution of fractional differential equation reduced to closed-form to the 
exact solution with order 0 < 𝜇 < 1 and type 0 ≤ � ≤ 1 is studied in this paper. 
Examples of one-dimensional, two-dimensional, and three-dimensional systems that 
generate different differential models in chemistry are discussed with appropriate 
initial conditions. The solution of differential equations with Hilfer fractional deriv-
ative with numerical and graphical comparison has not been studied. Mathematica 
12.2 has been utilized for the graphical representations. It can be noticed that the 
observations vary from example to example. For some examples, the trajectory 
of the solution of the differential equation with the Riemann–Liouville fractional 
derivative traces a relatively close path to the integer-order trajectory. In some exam-
ples, the trajectory of the solution of the differential equation with Liouville–Caputo 
order traces a close path. There are also examples where the solution trajectory of 
the differential equation is similar with little difference compared to the solution tra-
jectory of the differential equation with integer order. These results will give rise 
to studying the fractional-order system from a different view with a more profound 
analysis. An immediate open problem that can be explored is the analysis of the 
Hilfer fractional derivative involving the Sumudu transform. For recent results on 
Sumudu transform, the article by Gao et al. [7] can be referred to.
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