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Abstract
The present work provides an analytical treatment of a modified version of the Lin-
demann mechanism with three reaction rate constants. We firstly derive the exact
analytical expressions among the three concentrations, then based on which the spe-
cific analytical forms of the invariant lines and feasible regions are also obtained,
although the existence of the invariant lines has been proved in a recent work. An
efficient semi-numerical and semi-analytical solution is also constructed in the frame-
work of Piecewise differential transform method (PDTM). What is more, the reaction
dynamical properties including the limiting behaviors are further discussed.

Keywords Modified Lindemann mechanism · Nonlinear differential equations ·
Analytical properties · First integral · Semi-numerical and semi-analytical solution

1 Introduction

The chemical reaction for the classical Lindemann Mechanism with three reaction
rate constants k1, k−1 and k2 usually reads [1–3]

(1)

B Yupeng Qin
yupeng_qin@163.com

1 School of Science, Henan Institute of Technology, Xinxiang 453003, People’s Republic of China

2 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s
Republic of China

3 School of Naval Architecture, State Key Laboratory of Structural Analysis for Industrial
Equipment, Dalian University of Technology, Dalian 116024, People’s Republic of China

4 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-022-01413-z&domain=pdf
http://orcid.org/0000-0003-4874-7579


390 Journal of Mathematical Chemistry (2023) 61:389–401

which describes that a reactant A decays into a product P by colliding with itself.
Nowadays somemodifications related to the LindemannMechanism have beenwidely
investigated, such as the oxidation of dimethyl ether, see e.g. [4–6] for reference.

In the present work, by using 2B → P instead of B → P in Eq. (1), we would
like to investigate a modified version of the Lindemann mechanism introduced in Ref.
[7], as follows:

(2)

The Law of Mass Action (see [2–4] for details) applied to this modified mechanism
corresponds to a Cauchy initial value problem (IVP) governed by the following three
nonlinear ordinary differential equations (ODEs), i.e. [7]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

da

dt
= k−1ab− k1a

2,

db

dt
= k1a

2 − k−1ab− 2k2b2,

dp

dt
= k2b

2,

(3a)

(3b)

(3c)

with the initial conditions (ICs)

a(0) = a0, b(0) = 0, p(0) = 0, (4)

where a, b and c are the concentrations of the reactant A, the activated complex B
and the product of the decay P respectively, t is the time and the initial value a0 is
one positive constant. In Eq. (3), the units of the concentrations for a, b and c can be
taken as mol · L−1, and the unit of the time t is commonly taken as s, min or h.

Analytical studies play significant roles in analyzing dynamics of various nonlinear
phenomena [8–12]. InRef. [7] authors have studied the dynamical properties of system
(3a) and (3b) bymeans of the blow–up technique, particularly they have also shown the
existence of the invariant lines, and given the power series expansion of the solutions
of a vector field defined by (3a) and (3b) via Newton–Puiseux polygon technique.
More details for blow–up technique and Newton–Puiseux polygon technique, see e.g.
Refs. [13, 14]. Nevertheless, both the exact analytical expressions for a and b and the
detailed analytical form of the invariant lines have not been given.

Themain aim of this work is to present a further analytical analysis for the modified
Lindemann mechanism governed by Eqs. (3) and (4). We will focus on the following
points: (i) the exact analytical expressions among a, b and p; (ii) the invariant lines
and the feasible regions in planes (a, b), (a, p) and (b, p); (iii) the semi-numerical
and semi-analytical solution by means of Piecewise differential transform method
(PDTM) [15], for Eqs. (3) and (4). We note that the above points, to some extent,
refine and improve the previous results in Ref. [7].

The rest of this work is arranged as follows. In Sect. 2, the exact analytical expres-
sions among a, b and p are derived and briefly discussed. Section 3 provides the
detailed analytical forms of the invariant lines and feasible regions. A semi-numerical
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and semi-analytical solution is established in Sect. 4. Finally in Sect. 5 we give the
conclusion of this work.

2 Exact analytical expressions among a, b and p

This part is devoted to provide an exact analytical analysis for the relations among
the three relevant concentrations a, b and p in the reaction process, i.e. exact analytical
expressions for (i) a and b, (ii) a and p, (iii) b and p respectively.

In view of system (3), we can easily see that d(a + b + 2p)/dt = 0 whose time
integral is a constant of the motion. So combining this with the ICs (4), we arrive at
the first integral

a(t) + b(t) + 2p(t) = a0. (5)

Actually, in Ref. [7], Bayón et al. also presented the above first integral (5) as the
conservation law. More about conservation law, see e.g. Refs [1, 4] for reference.

In view of system (3), it is easy to see that Eqs. (3a) and (3b) only include the
variables a and b, and the item p only exists in Eq. (3c). Hence, dividing Eq. (3b)
by Eq. (3a) to eliminate the time variable t , we immediately get the following scalar
reduction

db

da
= k1a2 − k−1ab − 2k2b2

k−1ab − k1a2
. (6)

It is obvious that Eq. (6) only contains two variables a and b, hence, in which form b
could be considered as a function of a.

Now let us solve Eq. (6) with ICs (4). After simplifying Eq. (6), we can obtain

db

da
= −1 − 2σ

( b
a

)2

ε
( b
a

) − 1
, (7)

where the new parameters ε and σ are [7]

ε = k−1

k1
, σ = k2

k1
. (8)

Clearly, the physical quantities ε and σ are dimensionless. By introducing the trans-
formation b(a) = u(a)a into Eq. (7) implies

u + a
du

da
= −1 − 2σu2

εu − 1
. (9)

Therefore, with the aid of separation of variables, i.e. separating variables u and a
from Eq. (9) we gain

du

u + 1 + 2σu2
εu−1

= −da

a
. (10)

As a consequence, integrating u and a on both sides of Eq. (10) respectively and
substituting u = b/a and ICs (4) into the result, we then achieve the following exact
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analytical expression between a and b, and it takes the form

2εb + 4bσ − a + εa =
a� tanh

[
�

(−ε ln | − εb2 + ab − εab + a2 − 2σb2| − 4σ ln |a| + C1
)

2(ε + 4σ + ε2)

]

,(11)

where

� =
√
2ε + 8σ + 1 + ε2,

C1 = (2ε + 4σ) ln |a0| + 2
(
ε + 4σ + ε2

)

�
arctanh

(
ε − 1

�

)
. (12)

Finally, using the first integral or the conservation law (5) and substituting b =
a0 − a − 2p and a = a0 − b− 2p into Eq. (11) respectively, we could also obtain the
exact analytical expression between a and p, that is,

2εa0 + 4σa0 − (4ε + 8σ)p − (ε + 4σ + 1)a = a� tanh�, (13)

where

� = �
[−ε ln | − (ε + 2σ)(a0 − a − 2p)2 + (1 − ε)(a0 − a − 2p)a + a2| − 4σ ln |a| + C1

]

2(ε + 4σ + ε2)
,

(14)
and the exact analytical expression between b and p can be written as

εa0 − a0 + (2 − 2ε)p + (ε + 1 + 4σ)b = (a0 − b − 2p)� tanh�, (15)

where

� =
�

[
−ε ln |4p2 + (2b − 4a0 + 2εb)p − ba0 − εba0 − 2σb2 + a20 | − 4σ ln |a0 − b − 2p| + C1

]

2(ε + 4σ + ε2)
.

(16)
Let us discuss the dynamical behavior through the exact analytical expressions (11),

(13) and (15), by considering the initial conditions

a(0) = 0.4, b(0) = 0, p(0) = 0, (17)

as plotted in Fig. 1. It is found that, in the reaction process, as a varies from the
initial value a(0) = 0.4 to its limiting value zero, b first increases from the initial
value b(0) = 0 to the maximal value bmax then approaches to its limiting value
zero, and p first rapidly increases from the initial value p(0) = 0 then tends to
the maximal/limiting value pmax = a(0)/2 = 0.2. It is also interesting that one can
directly determine themaximal value bmax by solving the system governed by (11) and
its derivative d

da b(a) = 0. Particularly, under the initial conditions (17) the maximal
value bmax ≈ 0.17134, and at the same time the corresponding value of a can be also
determined, namely 0.17134.
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Fig. 1 Plots of the relations of a, b and p through the exact analytical expressions in Eqs. (11), (13) and
(15) (solid lines) and the rkf45 numerical result (solid circles) by solving Eq. (6), with the ICs a(0) = 0.4,
b(0) = 0 and p(0) = 0

3 Invariant lines and feasible regions

Define the vector field X by the planar system (3a) and (3b). We should remark that
the authors in Ref. [7] has proved the following two conclusions (as summarized in
page 126), i.e.,

(Case I) There is a single invariant line b = ζ+
1 a, with ζ+

1 > 0 , on which X flows
towards (0, 0);

(Case II) There is an invariant line b = ζ−
1 a with ζ−

1 < 0, on which X flows towards
(0, 0).

Hence, the next aim is to present the specific forms of these two invariant lines by
determining ζ+

1 and ζ−
1 . Now let us pay more attention to the logarithmic function

ln |− εb2 + ab− εab+ a2 − 2σb2| in Eq. (11). Actually, one can obtain the invariant
lines of X by solving−εb2+ab−εab+a2−2σb2 = 0, since such case corresponding
to the separatrix of this logarithmic function. As a consequence, the two invariant lines
can be directly solved and have the form

b = 1 − ε + √
(1 + ε)2 + 8σ

2(ε + 2σ)
a (Case I), b = 1 − ε − √

(1 + ε)2 + 8σ

2(ε + 2σ)
a (Case II).

(18)
With the aid of the fact that the parameters ε > 0 and σ > 0, it should be note that
the relations in Eq. (18) respectively correspond to (Case I) and (Case II) since

ζ+
1 ≡ 1 − ε + √

(1 + ε)2 + 8σ

2(ε + 2σ)
> 0, ζ−

1 ≡ 1 − ε − √
(1 + ε)2 + 8σ

2(ε + 2σ)
< 0. (19)

Specially, when k1 = 1, k2 = 0.4 and k−1 = 0.2, i.e., ε = 0.2 and σ = 0.4 from the
relation (8), then the invariant lines (18) becomes b = (2 + √

29)a/5 ≈ 1.477a [7]
and b = (2−√

29)a/5 ≈ −0.677a, as shown in Fig. 2. Figure 2 is also coincide with
Figs. 4 and 6 in Ref. [7].

Below let us consider the feasible region of plane (a, b) for X . In practice, consid-
ering that the concentrations a and b are always non-negative in the reaction process,
and with the help of the fact that (a, b) = (0, 0) is the equilibrium point of the vector
field X [7], one only need to consider the filled area in Fig. 2 (left one) as the feasible
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Fig. 2 Plots of the invariant lines (red-straight lines) and feasible regions (cyan-filled areas), based on Eqs.
(18), (20), (21), (22), (24), (25) with k1 = 1, k2 = 0.4 and k−1 = 0.2

region where the initial data in Eq. (4) should be included in. In other words, the
feasible region for the concentrations a and b restricted to the field X is

�ab = {(a, b)|0 < a < ∞, 0 ≤ b < ζ+
1 a}, (20)

where ζ+
1 is defined in Eq. (19).We remark that this feasible region admits the inequal-

ity −εb2 + ab − εab + a2 − 2σb2 > 0, thus in such case the symbols of absolute
value in Eq. (11) can be eliminated straightforwardly.

Similarly, based on (13) and (15) we can also discuss the invariant lines and feasible
region for planes (a, p) and (b, p). Actually, from the part of logarithmic functions
in Eqs. (13) and (15) one can easily obtain the two invariant lines in plane (a, p)

a = ζ±
2 (a0 − 2p), (21)

and the two invariant lines in plane (b, p)

b = ζ±
3 (a0 − 2p), (22)

where

ζ±
2 ≡ 4σ + 1 + ε ± √

(1 + ε)2 + 8σ

4σ
, ζ±

3 ≡ −1 − ε ± √
(1 + ε)2 + 8σ

4σ
. (23)

It is easy to prove that ζ±
2 > 0, ζ+

3 > 0 and ζ−
3 < 0. Also according to the invariant

lines (21) and (22), one can immediately determine the feasible region �ap for a and
p, and the feasible region �bp for b and p, i.e.,

�ap =
{
(a, p)

∣∣∣0 ≤ p <
a0
2

, ζ−
2 (a0 − 2p) < a < ζ+

2 (a0 − 2p)
}

, (24)

and
�bp =

{
(b, p)

∣∣∣0 ≤ p <
a0
2

, 0 ≤ b < ζ+
3 (a0 − 2p)

}
. (25)

Specific plots of the invariant lines (21) and (22), and the feasible regions (24) and
(25) are also given in Fig. 2 (middle and right ones).
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Table 1 Basic differential transforms at the node t = tm

Original function Transformed function

u(x) = g(x) + h(x) Um ( j) = Gm ( j) + Hm ( j)

u(x) = αg(x) Um ( j) = αGm ( j)

u(x) = g(x)h(x) Um ( j) =
j∑

i=0
Gm (i)Hm ( j − i)

u(x) = g2(x) Um ( j) =
j∑

i=0
Gm (i)Gm ( j − i)

u(x) = ∂g(x)
∂x Um ( j) = ( j + 1)Gm ( j + 1)

u(x) = ∂k g(x)
∂xk

Um ( j) = ( j + 1)( j + 2) . . . ( j + k)Gm ( j + k)

4 Semi-numerical and semi-analytical solution

It seems that the exact analytical solution to IVP (3) and (4) is not easy to found, and
in what follows we will focus on the construction of its semi-numerical and semi-
analytical solution, based on the piecewise differential transform method (PDTM)
suggested in Ref. [15]. More about DTM and DTM-based approaches, see Refs. [16–
18] for reference and the references therein.

We first start by segmenting the time interval [0,+∞] into the following piecewise
intervals [0, t1], [t1, t2], ..., [tm−1, tm], ..., with a given equal step-size h ≡ �tm =
tm − tm−1 (here t0 = 0), namely

tm = mh. (26)

Now let us expand a(t), b(t) and p(t) at the node t = tm in Taylor series

a(t) =
∞∑

j=0

Am( j)(t − tm) j , b(t) =
∞∑

j=0

Bm( j)(t − tm) j ,

p(t) =
∞∑

j=0

Pm( j)(t − tm) j , (27)

where Am(0), Bm(0) and Pm(0) clearly denote the function values of a(t), b(t) and
p(t) at t = tm respectively. In such case, according to the operations in Table 1 the
differential transforms to system (3) yield
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( j + 1)Am( j + 1) = k−1

j∑

i=0

Am( j)Bm( j − i) − k1

j∑

i=0

Am( j)Am( j − i),

( j + 1)Bm( j + 1) = k1

j∑

i=0

Am( j)Am( j − i)

− k−1

j∑

i=0

Am( j)Bm( j − i) − 2k2

j∑

i=0

Bm( j)Bm( j − i),

( j + 1)Pm( j + 1) = k2

j∑

i=0

Bm( j)Bm( j − i).

(28)

By substituting j = 0, 1, 2, ... into Eq. (28) one after another, we can get the explicit
analytical expressions of Am( j), Bm( j) and Pm( j) with respect to Am(0), Bm(0) and
Pm(0), see Table 2. As a result one immediately achieves the M th-order analytical
approximations for a(t), b(t) and p(t) respectively whose centers are located at the
point t = tm , i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a[M] (t; Am(0), Bm(0), Pm(0)) ≡
M∑

j=0

Am( j)(t − tm) j ,

b[M] (t; Am(0), Bm(0), Pm(0)) ≡
M∑

j=0

Bm( j)(t − tm) j ,

p[M] (t; Am(0), Bm(0), Pm(0)) ≡
M∑

j=0

Pm( j)(t − tm) j ,

(29)

with a local truncation error o((t − tm)M ). We should note that, in Eq. (29),
the item Pm(0) only exists in p[M] (t; Am(0), Bm(0), Pm(0)), that is to say,
p[M] (t; Am(0), Bm(0), Pm(0)) and p[M] (t; Am(0), Bm(0), Pm(0)) just include Am(0)
and Bm(0), as shown in Table 2. However, for the sake of talking convenience in this
work we still use the above forms in Eq. (29).

Suppose that ãm , b̃m and p̃m are the approximate values for a(t), b(t) and p(t) at
t = tm respectively. Thus substituting ãm = Am(0), b̃m = Bm(0) and p̃m = Pm(0)
into Eq. (29) directly indicates the analytical approximations for a(t), b(t) and p(t)
on the interval [tm, tm+1].

Below we would like to determine the values of ãm , b̃m and p̃m . For Cauchy IVP
(3) and (4), it is natural that

ã0 = A0(0) = a0, b̃0 = B0(0) = 0, p̃0 = P0(0) = 0. (30)

Meanwhile a[M] (t; a0, 0, 0), b[M] (t; a0, 0, 0) and p[M] (t; a0, 0, 0) are also deter-
mined as the analytical approximations to approximate a(t), b(t) and p(t) on the
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interval [0, t1], i.e. [0, h], by substituting t = t1 = h into which one could then deter-
mine ã1 = a[M] (h; a0, 0, 0), b̃1 = b[M] (h; a0, 0, 0) and p̃1 = p[M] (h; a0, 0, 0).
Generally, we can progressively obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ãm = a[M] (mh; ãm−1, b̃m−1, p̃m−1

)
,

b̃m = b[M] (mh; ãm−1, b̃m−1, p̃m−1

)
,

p̃m = p[M] (mh; ãm−1, b̃m−1, p̃m−1

)
.

(31)

Finally, the semi-numerical and semi-analytical solution for Cauchy IVP (3) and
(4) can be constructed and written as follows:

a PDTM(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a[M] (t; a0, 0, 0) , 0 ≤ t ≤ h,

a[M] (t; ã1, b̃1, p̃1
)

, h ≤ t ≤ 2h,

· · · · · · ,

a[M] (t; ãm, b̃m, p̃m
)

, mh ≤ t ≤ (m + 1)h,

· · · · · · ,

(32)

b PDTM(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[M] (t; a0, 0, 0) , 0 ≤ t ≤ h,

b[M] (t; ã1, b̃1, p̃1
)

, h ≤ t ≤ 2h,

· · · · · · ,

b[M] (t; ãm, b̃m, p̃m
)

, mh ≤ t ≤ (m + 1)h,

· · · · · · ,

(33)

p PDTM(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p[M] (t; a0, 0, 0) , 0 ≤ t ≤ h,

p[M] (t; ã1, b̃1, p̃1
)

, h ≤ t ≤ 2h,

· · · · · · ,

p[M] (t; ãm, b̃m, p̃m
)

, mh ≤ t ≤ (m + 1)h,

· · · · · · .

(34)

Figure 3 presents the comparisons between the PDTM solutions (32), (33) and (34)
and the corresponding rkf45 numerical solutions under suitable parameter values. It
is seen that they have a good agreement with each other. It is also interesting to note
that one can achieve higher accuracy of the PDTM solutions expressed by Eqs. (32),
(33) and (34) to meet the requirement through choosing a larger approximation order
M and a smaller step-size h [15]. Moreover, from Fig. 3 it is easy to find that the
reaction dynamics are coincide with those arising from Fig. 1 in Sect. 2. We can also
straightforwardly see the limiting behaviors of the reaction dynamics, i.e., as the time
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Fig. 3 Evolutions of a(t), b(t) and p(t) using the 4th-order PDTM solutions (32), (33) and (34) with a
step-size h = 0.5 (lines) and the relevant rkf45 numerical solutions (solid circles), for Cauchy IVP (3) and
(17) with k1 = 1, k2 = 0.4 and k−1 = 0.2

t goes to infinity, the values of a and b tend to zero, and the value of p approaches to
a(0)/2 (=0.2 in Fig. 3).

5 Conclusion

A modified Lindemann mechanism has been studied analytically. We have obtained
the exact analytical expressions among the three concentrations in Eqs. (11), (13) and
(15), the detailed forms of the invariant lines and feasible regions in Eqs. (18), (21),
(22) and (20), (24), (25) respectively, and also the semi-numerical and semi-analytical
solution by utilizing PDTM in Eqs. (32), (33) and (34). The semi-numerical and semi-
analytical solutions are valid by comparison with the numerical ones. Additionally,
the reaction dynamics, even the limiting behaviors, have also been discussed due to
the obtained analytical results.
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