
Vol.:(0123456789)

Journal of Mathematical Chemistry (2022) 60:969–1000
https://doi.org/10.1007/s10910-022-01334-x

1 3

ORIGINAL PAPER

mad‑GP: automatic differentiation of Gaussian processes
for molecules and materials

Daniel Huang1 · Chong Teng2 · Junwei Lucas Bao2 · Jean‑Baptiste Tristan3

Received: 1 September 2021 / Accepted: 4 February 2022 / Published online: 29 March 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
In this paper, we introduce a Python library called mad-GP that enables users to
more easily explore the design space of Gaussian process (GP) surrogate models for
modeling potential energy surfaces (PESs). A user of mad-GP only needs to write
down the functional form of the prior mean function (i.e., a prior guess for the PES)
and kernel function (i.e., a constraint on the class of PESs), and the library han-
dles all required derivative implementations via automatic differentiation (AD). We
validate the design of mad-GP by applying it to perform geometry optimization of
small molecules. In particular, we test the effectiveness of fitting GP surrogates to
energies and/or forces, and perform a preliminary study on the use of non-constant
priors and hierarchical kernels in GP PES surrogates. We find that GPs that fit forces
perform comparably with GPs that fit both energies and forces, although force-only
GPs are more robust for optimization because they do not require an additional step
to be applied during optimization. We also confirm that constant mean functions and
Matérn kernels work well as reported in the literature, although our tests also iden-
tify several other promising candidates (e.g., Coulomb matrices with three-times
differentiable Matérn kernels). Our tests validate that AD is a viable method for per-
forming geometry optimization with GP surrogate models on small molecules.

 * Daniel Huang
 danehuang@sfsu.edu

 * Junwei Lucas Bao
 lucas.bao@bc.edu

 * Jean-Baptiste Tristan
 tristanj@bc.edu

1 Department of Computer Science, San Francisco State University, San Francisco, CA 94132,
USA

2 Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
3 Department of Computer Science, Boston College, Chestnut Hill, MA 02467, USA

http://orcid.org/0000-0002-1949-1116
http://orcid.org/0000-0002-4967-663X
http://orcid.org/0000-0003-2574-7883
http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-022-01334-x&domain=pdf

970 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

1 Introduction

Potential energy surfaces (PESs) are fundamental to theoretical chemistry. The
PES of a system of NA atoms takes the form of a (3NA − 6)-dimensional hyper-
surface and is the solution to the multi-electron Schrödinger equation under a
fixed-nuclei approximation. Crucially, one can study the chemical properties of
a system (e.g., thermodynamics, activation energies, reaction mechanisms, and
reaction rates) by identifying the local extrema on its PES, a process known as
geometry optimization. In particular, local minima correspond to reactants, prod-
ucts, and reactive intermediates, while first-order saddle points correspond to
transition-state structures.

There is a rich line of work on developing electronic-structure methods (e.g.,
density-functional theory) that approximately evaluate the electronic-structure
energy of a system for a given geometry (i.e., positions of nuclei). These methods
can be applied to perform, e.g., single-point energy (SPE) calculations to evaluate
the electronic-structure energy of a given point on a PES. However, calculating a
system’s energy at even a single geometry with relatively high accuracy (i.e., to
an error under 1 kcal/mol) can be computationally expensive. In particular, the
computational cost of high-level electronic-structure methods scales unfavorably
with respect to system size (i.e., number of basis functions). Consequently, it is
often best practice to keep to a minimum the number of SPE calculations required
for convergence in geometry optimization. (Alternatively, one can attempt to
accelerate the SPE computation itself.)

One promising approach for managing the number of SPE calculations is to
use a surrogate for a PES with the following properties: (1) it is computation-
ally inexpensive to evaluate the surrogate at any point, and (2) the surrogate can
incorporate information from an electronic-structure calculation (e.g., energy and
force) to refine its approximation of the PES. The first property allows for rapid
but potentially inaccurate evaluations, while the second enables us to refine the
surrogate’s accuracy in a controlled manner by determining when and where to
pay the cost of an electronic-structure calculation.

Researchers have demonstrated that Gaussian processes (GPs) form an effec-
tive surrogate for representing the PESs of molecular systems [1–5], and can
reduce the number of SPE calculations required for geometry optimization (e.g.,
finding local extrema and minimum-energy reaction paths [6–9]). One particu-
larly favorable property of GPs for modeling PESs is that they can encode both
the PES and its gradient in a consistent manner. As a result, GP surrogates natu-
rally express the physical relationship between energy and forces, and can exploit
electronic-structure methods providing information on both.

The encouraging results on GPs as PES surrogates (e.g., see [1, 2, 5, 10]) war-
rant further study, especially since GPs form a large and flexible class of models
parameterized by prior mean and kernel functions. The prior mean function for a
surrogate GP encodes prior beliefs about the functional form of a PES (e.g., the
asymptotic behavior of stretching a bond from equilibrium length to the dissociation
limit) while the kernel function constrains its shape (e.g., it should be “smooth”).

971

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

A primary barrier to exploring the GP design space, particularly when incorporating
force information, is that the user must manually implement the first and second-order
derivatives for a GP’s mean and kernel functions. Prior work [6, 7, 11, 12] has largely
examined GPs with mean and kernel functions that have simple derivatives (e.g., con-
stant mean functions with constant 0 derivative or Matérn kernels with well-known
derivatives). As researchers begin to explore more complex mean and kernel functions
that model more of the chemistry and physics, the burden of deriving and implement-
ing derivatives will only increase.

In this paper, we introduce a Python library called mad-GP—molecular/material
and autodiff GPs—that enables researchers to more systematically explore GPs as PES
surrogates (Sect. 2). Users of mad-GP need only specify the functional form of the
prior mean and kernel functions parameterizing a GP as Python code, and the library
implements the first and second-order derivatives. As proof of concept, we have written
non-constant mean functions (e.g., Leonard-Jones potential) and kernel functions based
on chemical descriptors (e.g., Coulomb matrices [13], Smooth Overlap of Atomic Posi-
tions (SOAP) [14]) in mad-GP.

mad-GP handles differentiation of mean and kernel functions by applying auto-
matic differentiation (AD, or autodiff), a technique from computer science which
has played a significant role in the rise of deep learning. The hope is that research-
ers, unencumbered from the task of manually implementing derivatives, will be
able to experiment with functions that better capture the chemical structure (e.g., by
design or by learning from data).

We apply mad-GP to the task of geometry optimization for small molecules to
demonstrate its use (Sect. 3). Notably, mad-GP enables users to fit GP surrogates
to energies and/or forces. We use this functionality to compare the efficacy of two
popular approaches to GP surrogates for geometry optimization: (1) those that fit
energies and forces (e.g., [6, 7, 11, 12]) and (2) those that fit forces exclusively (e.g.,
[3, 10, 15]). We also evaluate a third approach, namely, the energy-only approach.
To the best of our knowledge, there has been relatively little work comparing these
approaches. We show that both the first two approaches are comparable at reducing
the number of SPE calculations, but that force-only GPs are more robust for optimi-
zation because they do not require an additional step (i.e., set the mean function to a
maximum energy) to be applied during optimization. We also perform a preliminary
study on the use of non-constant priors and hierarchical kernels in GP PES surro-
gates. We confirm that constant mean functions and Matérn kernels work well as
reported in the literature, although our studies also identify several other promising
combinations (e.g., Coulomb matrices with three-times differentiable Matérn ker-
nels). Our tests validate that AD is a viable method for performing geometry optimi-
zation with GP surrogate models on small molecules.

972 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

2 Methods

In this section, we review PESs and PES surrogate models (2.1). In the pursuit of
self-containment, we also give a brief introduction of Gaussian processes (Sect. 2.2);
likewise, we later discuss AD, which is central to the implementation of mad-GP
(Sect. 2.4).

2.1 Models of potential energy surfaces

PESs are complex hypersurfaces and there is a rich line of work on characterizing
their properties and their connections to chemistry (e.g., see [16] for an earlier
account). Notably, Fukui et al. [17] introduces the formal concept of an intrinsic
reaction coordinate for a PES which enables us to trace the “path" of a chemi-
cal reaction on a PES between products and/or reactants through transition states
(e.g., see [18, 19]), and consequently, study chemical reactions (e.g., see [20–25]
for PES models used to study chemical reactions). Mezey in a series of works
[26–35] studies PESs from a topological perspective. One important result shows
that a PES can be formally partitioned into catachment regions (i.e., basins of
attractions around local minima), thus justifying the view that PESs do indeed
encode the information necessary for studying chemical reactions (i.e., reac-
tants, products, transition states). Crucially, the topological perspective enables
a description of a PES in a coordinate-free manner, which provides insight into
the design of computational representations of PESs that are invariant to physical
symmetries (e.g., by working with a unique representation of an equivalence class
given by a quotient space).

The mathematical analysis of PESs inspires computational representations of
PESs for modeling and simulation purposes (e.g., see the software POTLIB [36]),
including many-mode representations [37–43] as well as sum-of-product repre-
sentations [44–47]. Recently, many ML models have been explored as candidates
for modeling PESs. ML models take a statistical point-of-view and attempt to
model the PES directly from data in line with earlier work that uses simpler mod-
els (e.g., see [48–50]). These models thus have to pay more attention to capturing
important physical properties of PESs with the hope of having better computa-
tional scaling potential. These ML models include neural networks [51–62], ker-
nel methods [1–4], and Gaussian processes [6, 7, 11, 12]. Some ML models are
designed specifically for modeling PESs (e.g., Gaussian Approximation Poten-
tials [1, 2], Behler-Parrinello Neural Networks [55–57], and q-Spectral Neighbor
Analysis Potentials [63]).

The choice of PES representation is informed by the task at hand. Neural
network surrogates have demonstrated success in regression settings where we
would like to directly predict a quantity (e.g., energy, force, dipole moments)
from a geometry. However, it is expensive to train a neural network and so their
use case in geometry optimization is limited. GP surrogates, on the other hand,
have demonstrated success in geometry optimization because they are trainable
in an online manner and also provide a closed form solution that is searchable

973

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

by gradient descent (Sect. 2.2). Moreover, GPs can also express conservation of
energy. However, GPs are hard to train when the number of examples is large
(cubic scaling in the number of examples).

2.2 Gaussian processes

A Gaussian process (GP) defines a probability distribution on a class of real-
valued functions as specified by a mean function � ∶ ℝ

D
→ ℝ

K and a (symmetric
and positive definite) kernel function k ∶ ℝ

D ×ℝ
D
→ ℝ

(K×K) . The notation

indicates that f ∶ ℝ
D
→ ℝ

K is a function drawn from a GP with mean � and kernel
k. The connection with multivariate Gaussian distributions is that

where the notation f (�) is shorthand for

for x1,… , xM ∈ ℝ
D (similarly, for �(�)) and the covariance matrix K(�,�) is

defined as

with �(D×M) =
(
x1 … xM

)
 (similarly, �(D×L) =

(
y1 … yL

)
).

We will review two properties of GPs that make them useful as PES surrogates:
(1) GP surrogates support gradient-based optimization which can be used in appli-
cation such as geometry optimization (Sect. 2.2.1) and (2) GP surrogates support
fitting force information (Sect. 2.2.3). Before we do this, we start by highlighting
aspects of GPs that are usually left abstract from a mathematical point-of-view that
are important for their application to PESs. For more background on GPs, we refer
the reader to standard references (e.g., see Williams et al. [64]).

2.2.1 Kernels for atomistic systems

As a reminder, GPs are parameterized by a kernel function k ∶ ℝ
D ×ℝ

D
→ ℝ

(K×K) .
Intuitively, the kernel function can be thought of as a measure of similarity between
two vectors x, y ∈ ℝ

D . For the use case of modeling PESs, the vectors x and y are
then vector encodings of two molecular structures mx and my . A molecular structure
mx describes a molecule with NA atoms by giving (1) the atomic nuclear charges
(Z1 … ZNA

) , (2) the masses (W1 … WNA
) , and nuclear positions (x1 … x3NA)T in

(1)f ∼ GP(�, k)

(2)f (�) ∼ N(�(�),K(�,�))

(3)f (�) =
(
f (x1) … f (xM)

)T

(4)K(�,�) =
⎛⎜⎜⎝

k(x1, y1) … k(x1, yL)
⋮ ⋱ ⋮

k(xM , y1) … k(xM , yL)

⎞⎟⎟⎠

974 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

Cartesian (xyz) coordinates. Consequently, we will need to convert molecular struc-
tures into vectors so that kernel functions can operate on them.

For example, if molecular structures are described in Cartesian coordinates, then
D would be 3NA where NA is the number of atoms in the system. The atomic charges
and masses would be ignored. The encoding would then be an identity function on
the nuclear positions, and x = (x1 … x3NA)T = (x1 … xNA)T would then correspond to
a particular geometry in Cartesian coordinates represented by a column vector con-
sisting of coordinates of all atoms. We could then use a standard GP kernel such as a
(twice-differentiable, or p = 2) Matérn kernel defined as

where � = ‖x − y‖ , and �M and l are hyper-parameters, to measure the geometric
similarity between two structures. In full detail, the kernel function would be

where xyz converts a molecular structure into its xyz coordinates (an identity func-
tion on the nuclear positions in this case). This kernel is the one used in many state-
of-the-art works on GP surrogates (e.g., see [11]). This approach, while effective,
leaves at least two directions of potential improvement.

First, the description of a molecule in terms of xyz coordinates does not respect
basic physical invariances such as permutation invariance. To solve these prob-
lems, researchers have developed chemical descriptors (e.g., global descriptors such
as Coulomb matrices [13] and local descriptors such as SOAP [14] that describe a
molecule as a set of local environments around its atoms) that describe molecules
in a way such that these physical invariances are respected. We can take advantage
of these more sophisticated (and physically accurate) descriptors by defining a GP
kernel

where d ∶ M → D is some descriptor, M is the space of molecular structures, and
D is the target space of a descriptor (e.g., D = ℝ

D). Different descriptors may be
better for different kinds of molecules and chemical systems.

Second, once we generalize from xyz coordinates to descriptors, the Matérn ker-
nel km may no longer be a sensible choice as a measure of similarity. For exam-
ple, local descriptors such as SOAP descriptors produce a set of variable-sized
local environments that describe a neighborhood of a system from the perspective
of each atom in the system. Consequently, we may also be interested in kernels
kd ∶ D ×D → ℝ

(K×K) that compare descriptors directly, resulting in a GP kernel of
the form

(5)km(x, y) = �2
M

�
1 +

√
5�

l
+

5�2

3l2

�
exp

�
−
√
5�

l

�

(6)km(xyz(mx), xyz(my))

(7)km(d(mx), d(my))

(8)kd(d(mx), d(my)) .

975

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

Note that descriptors of different molecules may return encodings of different sizes
(e.g., the xyz encoding of molecules with different number of atoms has different
sizes), and so these kernel functions kd are not necessarily the standard ones defined
on a fixed-size vector space. For instance, in the case of local descriptors, we may
need to perform structure matching (e.g., see [65]).

In short, while we can leave aspects of a GP such as the kernel function k
abstract, the use case of PESs highlights a hierarchical and compositional structure.
The choice of kernel depends on factors such as (1) what invariants we hope to cap-
ture (e.g., rotational and permutational invariance), (2) whether we are working with
molecules or materials, and (3) do we need to compare molecules with a different
number of atoms and atomic types. Constructing the appropriate kernels that cap-
ture the relevant chemistry and physics can lead to improved GP PES surrogates.

2.2.2 Geometry optimization with GPs

Previously, we saw that we could define hierarchical kernels with descriptors for
PES modeling. Although this may be interesting as a theoretical exercise, it is not
useful from a practical perspective if we cannot effectively compute with a GP sur-
rogate defined in this manner. For example, in an application such as using a GP
surrogate for geometry optimization, we would like to be able to extract a physical
geometry out. In this section, we will see that defining hierarchical kernels interacts
nicely with gradient-based surrogate optimization. Before we explain this, we will
first review how to update a GP surrogate with data obtained from an electronic-
structure calculation. This produces a posterior surrogate which will more closely
approximate a PES.

Fitting a GP We can fit GPs to observed data, called Gaussian Process Regres-
sion (GPR), to refine the class of functions defined by a GP in a principled manner
(e.g., maximum a posteriori or MAP inference) by solving a linear system of equa-
tions. In the context of modeling a PES of a molecule, the observed data would be a
set of observations {(x1,E1),… , (xN ,EN)} (i.e., training set) where each xi is a vec-
tor encoding of a molecule’s geometry and Ei the corresponding energy as obtained
from an electronic-structure method. (When forces are available, we can addition-
ally fit F = (F1 … FN)

T (Sect. 2.2.3).)
In practice, we perform GPR where we assume our observations are corrupted

with some independent, normally distributed noise � ∼ N(0, �2I) where I is the
identity matrix, which corresponds to the model

We can equivalently view this from the multivariate Gaussian perspective as using
the covariance matrix

(9)f ∼ GP(�, k)

(10)Ex = f (x) + � .

(11)K�(�,�) = �2I + K(�,�)

976 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

because the noise is also normally distributed. The noise � can be used to model
uncertainty in a SPE calculation (generated by standard quantum chemistry com-
putations), e.g., the energy convergence threshold used or the intrinsic error of the
electronic-structure method applied.

The system of equations to solve when fitting energy information is

where � = (x1 … xN) and � = (E1 …EN)
T are observations, and � ∈ ℝ

N indicates
the weights to solve for. These equations can be solved with familiar algorithms such
as Cholesky decomposition (cubic complexity, Scipy [66] implementation). When
GP surrogates are used in applications such as geometry optimization, we can use
incremental Cholesky decomposition (quadratic complexity, custom implementation
following Lawson et al. [67]). Note that GPR with noise has the added benefit for
increasing numerical stability of linear system solvers.

Gradient-based optimization To evaluate a GP surrogate that is fit to a training
set (�,�) , we compute the function

where f ∗ is the posterior mean (to distinguish it from the prior f) and � are weights
that are determined during the training process. The posterior mean gives the GPs
prediction of the energy.

Gradient-based optimization of the posterior mean corresponds to using the
gradient

to perform optimization (∇1k =
�k(x,y)

�x
). Consequently, gradient-based optimization

of a GP surrogate requires the first-order derivatives of the mean (∇�) and kernel
functions (∇1k). When mean and kernel functions are sufficiently complicated, a GP
user will need to implement these derivatives in order to perform gradient-based
optimization of the posterior mean. This highlights the benefit of having a method
that enables us to automatically obtain derivatives of mean and kernel functions.

We return now to the problem of ensuring that using hierarchical kernels does
not prevent us from using it in applications such as geometry optimization. As a
reminder, the issue is that if we use a descriptor d to define a GP kernel, then we
will need to somehow recover physical coordinates such as xyz coordinates during
geometry optimization. One approach pursued in the literature (e.g., see Meyer et al.
[68]) is to use an inverse mapping d−1 to map back into physical coordinates. While
this may exist for “simple" descriptors, it is unlikely to exist or be easily computable
for more complex descriptors.

Let us define a kernel kd with an arbitrary descriptor d as

(12)K�(�,�)� = � − �(�)

(13)f ∗(x) =
N∑
i=1

k(x, xi)�i + �(x)

(14)∇f ∗(x) =
N∑
i=1

(∇1k)(x, xi)�i + (∇�)(x)

977

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

to highlight that we start in xyz coordinates. Then the gradient of this kernel with
respect to xyz coordinates can be computed by the chain-rule. Because the poste-
rior mean can be written as a linear combination of gradients of the kernel (e.g.,
see (14)), an optimization procedure will thus be able to optimize directly in xyz
coordinates while also factoring the comparison of molecules through a descriptor,
giving us the best of both worlds. Note that this works for arbitrarily complex ker-
nels and descriptors so long as they are differentiable. (We will see with AD that
strict differentiability is not required.)

So far, there is no need for second-order derivatives. As we will see in the
next section, second-order derivatives will appear when we use GPs that fit force
information.

2.2.3 Models with conservative forces

GPs have the following remarkable property: if

then

when ∇1k∇
T
2
= �2

�x�y
k(x, y) exists. (∇1k =

�k(x,y)

�x
 and k∇T

2
= �k(x,y)

�yT
 .) The consequence

for PES modeling is that we can define a specific GP kernel that constrains the class
of functions a GP describes to be consistent with its gradients so that the physical
relationship between energy and force (i.e., the negative gradient of a PES) is
encoded. In particular, the GP

with

and

accomplishes this.
Second-order derivatives appear when we leverage force information during both

GPR and posterior optimization. To see the former, observe that the system of equa-
tions to solve when fitting both energies and forces is

(15)kd(d◦xyz(mx), d◦xyz(my))

(16)f ∼ GP(�, k)

(17)∇f ∼ GP(∇�,∇1k∇
T
2
)

(18)
(

f

∇f

)
∼ GP(�̃�, k̃)

(19)�̃� =

(
𝜇

∇𝜇

)

(20)k̃(x, y) =

(
k(x, y) k∇T

2
(x, y)

∇1k(x, y) ∇1k∇
T
2
(x, y)

)

978 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

for the weights �i and � i where �e is a noise parameter for the energy and �f is a
noise parameter for the force. The second-order derivatives appear through the ker-
nel k̃ used to set up the system of linear equations. To see the latter, observe that the
posterior predictions of the energy and gradient of the energy are given by

and

Note that the gradient of the posterior mean for the energy is given by the prediction
of the posterior mean for the gradient.

Thus the second-order derivative comes into play either by differentiating the poste-
rior mean f ∗ or by performing a posterior gradient prediction using (∇f)∗.

For completeness, we also give the equations for fitting forces exclusively.

We use GPE , GPF , and GPEF to refer to the GPs that fit energies exclusively (solv-
ing (12)), forces only (solving (24)), and energies and forces (solving (21))
respectively.

2.3 A Gaussian process library for representing potential energy surfaces

We introduce mad-GP first via an example (Fig. 1). The code in Fig. 1 corresponds to
defining the model

(21)
N∑
j=1

(
k̃(xi, xj) + 𝛿ij

(
𝜎2
e

0

0 𝜎2
f
I

))(
𝛼j
� j

)
=

(
Ei

−Fi

)
−

(
𝜇(xi)
∇𝜇(xi)

)

(22)f ∗(x) =
N∑
i=1

(k(x, xi)�i + k∇T
2
(x, xi)� i) + �(x)

(23)(∇f)∗(x) =
N∑
i=1

(∇1k(x, xi)�i + ∇1k∇
T
2
(x, xi)� i) + ∇�(x) .

(gradient of posterior
energy)

∇f ∗(x)

(definition)= ∇1

(
N∑
i=1

(k(x, xi)�i + k∇T
2
(x, xi)� i)

)
+ ∇�(x)

(linearity)=
N∑
i=1

(∇1k(x, xi)�i + ∇1k∇
T
2
(x, xi)� i) + ∇�(x)

(prediction of posterior
gradient)

= (∇f)∗(x) .

(24)
N∑
j=1

(∇1k∇
T
2
(xi, xj) + �ij�

2
f
I)� j = −Fi − ∇�(xi)

979

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

where �e ∼ N(0, �2
e
) and �f ∼ N(0, �2

f
I).

The first portion of the code (lines 1 − 7) defines a mean function mean imple-
menting a constant 0 mean. The function takes two arguments (1) atoms_x and
(2) x. The first argument atoms_x contains a molecular structure’s atomic charges
and masses (packaged in the type �����). The second argument � corresponds to
a vector encoding of a molecular structure which may be a function of a molecu-
lar structure’s atomic charges, masses, and nuclear positions (packaged in the type
���.�����������[�] which encodes a ℝD vector). The reason that � does not just
give the nuclear positions of a molecular structure is because we may want to use

(25)
(

f

∇f

)
∼ GPEF(0, k̃m)

(26)
(

Ei

−Fi

)
=

(
f (xi)
∇f (xi)

)
+

(
�e
�f

)

Fig. 1 Example of using mad-GP. This is the entire code required for the user to write in order to experi-
ment with a constant mean function and Matérn kernel (km , see (5)) which are used in state-of-the-art
results

980 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

a chemical descriptor that is a function of nuclear positions (among other infor-
mation). Thus �����_� and � together encode all the information available from
a molecular structure. The constant mean function, by definition, ignores all argu-
ments and returns a constant 0.

The second portion of the code (lines 9 − 24) defines a kernel function ker-
nel that implements the Matérn kernel (km , see (5)). The signature of the func-
tion is similar to the case for the prior. The arguments �����_�� and �����_�� are
not used because the Matérn kernel does not require either atomic charge or atomic
mass in a structure.

The last portion of the code (line 26) creates a GP surrogate that fits both ener-
gies and forces by supplying (1) the user-defined mean function mean and (2) the
user-defined kernel function kernel. The default vector encoding is xyz coordi-
nates, i.e., an identity function on nuclear positions of a molecular structure. This
concludes the amount of code that the user is required to write and illustrates the
main point: the user does not need to derive or implement derivatives of the mean
or kernel functions. Consequently, arbitrarily complex mean and kernel functions
can be defined so long as they can be programmed in Python and use mathematical
primitives from an AD library.

2.3.1 Support for kernels for atomistic systems

When we introduced kernels for atomistic systems (Sect. 2.2.1), we saw that there
were many design choices involved in constructing a GP kernel including (1) choice
of descriptor and (2) how to compare descriptors. For example, as a quick test of
a simple kernel that is (1) invariant to translation and rotation and (2) takes into
account atomic charges, we may choose the kernel

where km is a Matérn kernel, ������� ∶ ℝ
(M×L)

→ ℝ
ML flattens a matrix into a vec-

tor, ������� is a Coulomb descriptor [13], and mx and my are molecular structures.
We could decide later that a Matérn kernel on flattened Coulomb matrices is not
ideal and opt to compare Coulomb matrices directly as in

for some kernel k� ∶ ℝ
(NA×NA) ×ℝ

(NA×NA) → ℝ
K defined on matrices directly (e.g.,

using a matrix norm). To assist the user in managing the multitude of kernels one
could construct, mad-GP provides a small combinator library (Fig. 2). A combina-
tor library identifies (1) primitive building blocks and (2) ways to put those building
blocks together.

Global and local descriptors The base building blocks that mad-GP’s combina-
tor library provides are local and global descriptors, similar in spirit to libraries such
as DScribe [69]. (The difference with libraries like DScribe is that our combinator

(27)km(������� ◦ �������(mx), ������� ◦ �������(my))

(28)k�(�������(mx), �������(my))

981

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

library supports AD, and consequently, can derive derivatives of descriptors auto-
matically from their implementation.) A global descriptor dg ∶ ����� ×ℝ

3NA → ℝ
D

convert atomic charges, masses, and nuclear positions into vector encodings of
the molecule. Cartesian coordinates xyz are a typical example. Another exam-
ple includes Coulomb matrices (������� ∶ ����� ×ℝ

3NA → ℝ
(NA×NA)). A local

descriptor d𝓁 ∶ ����� ×ℝ
3NA → D1 ×⋯ ×DNA

 produces atom-centered encod-
ings of the molecules DNA . Examples of local descriptors include SOAP descrip-
tors (���� ∶ ����� ×ℝ

3NA → D1 ×⋯ ×DNA
) which are a differentiable descrip-

tion of a molecular structure that preserves rotational, translational, and permutation
invariance.

We have prototype implementations of Coulomb matrix descriptors [13] and
SOAP descriptors [14] in mad-GP to demonstrate its flexibility and expressiveness.
Note that, in some cases, some of the building blocks of a kernel are not differenti-
able. For example, when we sort the entries of a Coulomb matrix to obtain permuta-
tion invariance (Sect. 3.2) or when we use a topological algorithm such as Munkres
algorithm [70] to match the structure of two molecules, these descriptors are not
differentiable. They can still be handled with mad-GP because AD will assign a sub-
gradient to the points that the descriptor are not differentiable at.

Descriptor-to-vector combinators Once we have described a molecular struc-
ture in terms of descriptors, mad-GP provides combinators ⊕ that convert descrip-
tors into vectors. Examples of combinations include ������� ∶ ℝ

(M×L)
→ ℝ

ML
which flattens a matrix into a vector (as in the Coulomb descriptor example). The
combinator ������� ∶ D

NA
→ D takes a local descriptor and averages the represen-

tation over all atom centers as in

For example, we can average each local environment produced by a SOAP descrip-
tor to produce a global descriptor (e.g., see outer average in DScribe’s SOAP imple-
mentation [69]).

Vector kernels The kernel functions k are the ordinary symmetric and posi-
tive-definite functions used to parameterize GPs and include dot products ��� and
Matérn kernels ������.

Structure kernels Finally, the structure kernels are kernels that
are used to compare local descriptors. One simple structure kernel

(29)1

NA

NA∑
i=1

(d�(�����_�, x))i .

Fig. 2 A small combinator library for expressing GP kernels for PES surrogates

982 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

�������� ∶ (D ×D → ℝ) × (D1 ×⋯ ×DNA
) × (D1 ×⋯ ×DNA

) → ℝ performs
a pairwise comparison between every pair of atoms in a local environments using
a kernel k ∶ D ×D → ℝ that compares the descriptor at two atom centers. There
are also more advanced structure matching kernels such as those based on topologi-
cal algorithms [70] or optimal transport [65] that improve upon pairwise matching
by only comparing “suitably-aligned" portions of each molecular structure’s local
descriptor. We leave the implementation of more advanced structure kernels for
future work.

Using these combinators, the Matérn kernel can be written as
������(atomsx, atomsy, x, y) = kMatérn(���(atomsx, x), ���(atomsy, y)) to explicitly
highlight that we are using xyz descriptors of a molecule.

2.3.2 Support for gradient‑based surrogate optimization

mad-GP supports gradient-based optimization of a trained GP surrogate by exposing
(1) a prediction of the posterior energy and (2) the gradient of the posterior energy. As
a reminder, this functionality is useful for geometry optimization. How the gradient is
obtained depends on whether we are using GPE , GPF , or GPEF.

Energy For GPE , the posterior mean gives the prediction of the energies as

and the gradient of the posterior mean

is computed with (reverse-mode) AD. (Sect. 2.4 for the distinction between reverse-
mode and forward-mode.)

Force For GPF , observe that the posterior prediction of the gradient is

The second-order derivatives of the kernel are obtained with (reverse-mode then
forward-mode) AD. A prediction of the energy is recovered up to a constant via the
line integral along the curve �x

x0
 starting at x0 and ending at x as

(30)f ∗(x) =
N∑
i=1

k(x, xi)�i + �(x)

(31)∇f ∗(x) =
N∑
i=1

∇1k(x, xi)�i + ∇�(x)

(32)g∗(x) =
N∑
i=1

∇1k∇
T
2
(x, xi)� i + ∇�(x) .

983

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

where C is some constant. (The base point x0 is arbitrary and unspecified.) That is,
we “compute" the integral using the converse of the gradient theorem for conserva-
tive forces: any conservative force field can be written as the gradient of a scalar
field. Thus we compute (35) directly by computing k∇T

2
 using (reverse-mode) AD.

Energy and force For GPEF , we simply evaluate the posterior mean at a geom-
etry to obtain both the prediction of the energy and (negative) forces. Recall that the
gradient of the posterior mean for the energy is given by the prediction of the poste-
rior mean for the gradient.

2.3.3 Support for GPs with forces

We implement GPs that fit forces (i.e., GPF and GPEF) by implementing their respec-
tive kernels using AD where appropriate. For instance, for GPEF(�, k) , we imple-
ment ∇� , ∇1k , and k∇T

2
 with (reverse-mode) AD, and ∇1k∇

T
2
 with (reverse-mode

then forward-mode) AD. We will see in Sect. 2.4 that the run-time of using AD to
calculate a second-order term such as ∇1k∇

T
2
 is proportional to DT where D is the

number of dimensions of the molecular representation and T is the run-time of k. To
fit these GPs to training data, we apply the mean and kernel functions to the training
data to construct mean vectors and kernel matrices, and use a generic linear system
solver to solve the system of equations. Note that AD does not need to interact with
the linear solver.

2.4 Automatic differentiation

Automatic differentiation (AD) is a technique that algorithmically transforms a com-
puter program evaluating a function into one evaluating the derivative of that func-
tion that has the same time-complexity as the program evaluating the original func-
tion. This statement is a mouthful—let us unpack this by comparison with (1) finite
differences (FD) and (2) symbolic differentiation (SD) in the context of an example.
Table 1 summarizes the differences between the methods.

(33)E(x) = ∫
�x
x0

g∗(y)dy

(34)= ∫
�x
x0

N∑
i=1

∇1k∇
T
2
(x, xi)� i + ∇�(x)

(35)=
N∑
i=1

k∇T
2
(x, xi)� i + �(x) + C

984 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

2.4.1 AD by example

Consider the function f ∶ ℝ → ℝ defined as

for some g, h, i ∶ ℝ → ℝ . The (simplest) finite differences method approximates the
derivative of the function as

This approach can easily be implemented in code (as above), operates on pro-
grams, and approximately computes the gradient via a linear approximation. The
time-complexity of the function is proportional to the time-complexity of the
original function f—we call it twice.

One form of the symbolic derivative for the function f is

where g′, h′, i′ are the respective (symbolic) derivatives of g, h, i. Thus the symbolic
derivative is not unique—depending on how we factor this expression, the symbolic
derivative may take worst-case exponential time compared to the evaluation of the
original function. Consequently, we should be careful when translating symbolic
derivatives into code to pick the appropriate factorization.

Figure 3 provides a pedagogical example of applying source-to-source and
reverse-mode AD to f. (mad-GP uses combinations of reverse-mode and forward-
mode AD when appropriate, as well as non source-to-source methods of imple-
mentation.) We have presented the code in a way such that one can see how this
code could be mechanically generated by a computer. Note that each line of code
of the original code is translated into

and produces the corresponding derivative code

(36)f (x) = g(x)h(x)i(x)

(37)f �(x) = g�(x)h(x)i(x) + g(x)h�(x)i(x) + g(x)h(x)i�(x)

�� = ��(��, ��)

Table 1 A comparison of finite differences (FD), symbolic differentiation (SD), and automatic differen-
tiation (AD) for differentiating a function f ∶ ℝ

D
→ ℝ

FD and AD take programs as inputs and produce programs as outputs whereas SD takes symbolic math
expressions as inputs and produces symbolic math expressions as outputs. All three methods support
higher-order derivatives. =∗ indicates = up to floating-point precision

Method Time-complexity Precision Unique? Input/output

FD Guaranteed ∝ ����(f) ��(f) ≈ ∇f yes �� ∶ ������� → �������

SD Worst-case exp(����(f)) ��(f) =∗ ∇f no �� ∶ ���� → ����

AD Guaranteed ∝ ����(f) ��(f) =∗ ∇f yes �� ∶ ������� → �������

985

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

where ��_��_��� and ��_��_��� correspond to the derivatives of the operation ��
with respect to the first and second arguments. This code can be obtained with a
recursive application of ��.

In this form, it is easy to see that the time-complexity of the derivative is pro-
portional to the original code because each line of code in the original function
produces at most 2 additional lines of code of the same time-complexity. Upon
closer inspection, we see that AD is a method that, as a default, mechanically
selects the factorization of the SD that has the appropriate time-complexity. Thus
it also computes the derivative exactly, like SD and unlike FD.

AD naturally generalizes from functions of a single variable to functions of mul-
tiple variables. Moreover, AD is composable—in the example, we can computed
��(f) by composing the constituents of its sub-functions ��(g) , ��(h) , ��(i) . Another
implication of the composability of AD is that we can use it to compute higher-order
derivatives.

2.4.2 AD for higher‑order derivatives

��(��(f)) computes the second-order derivative of f because the result of the inner
call produces a program evaluating the derivative of f, which can be fed back into
another call to �� . Note that the time-complexity guarantees of AD hold for higher-
order derivatives, whereas the time-complexity guarantees for SD are amplified for
higher-order derivatives.

For computing higher-order derivatives of functions with multivariate out-
put spaces, the distinction between reverse-mode (what was presented) and

���_��+ = �� ∗ ��_��_���(��, ��)

���_��+ = �� ∗ ��_��_���(��, ��)

Fig. 3 A pedagogical example of applying ��(f) = ��_�

986 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

forward-mode AD is important for time-complexity reasons. In particular, for a
function f ∶ ℝ

D
→ ℝ

K , computing the derivative with forward-mode AD takes
D passes whereas it takes K passes for reverse-mode AD. Thus forward-mode is
advantageous when K > D and reverse-mode is advantageous when D > K . When
D = K , forward-mode is advantageous because it takes less memory. Consequently,
for taking second-order derivatives of scalar-valued functions, it is best to perform
reverse-mode AD followed by forward-mode AD. We refer the interested reader to
references (e.g., see the survey [71] and the references within) for more background.

2.4.3 AD in mad‑GP

For the use case of PES modeling where we require second-order derivatives when
taking forces into account, we should be careful to select an AD library that sup-
ports both reverse-mode and forward-mode. Popular AD libraries such as Torch
[72] that are specialized for neural networks prioritize reverse-mode AD because
training neural networks only requires first-order derivatives of a loss function, i.e.,
single-value output. Jax [73] is an AD library that supports both forward-mode and
reverse-mode AD. Consequently, Jax is the default AD library in mad-GP. Jax addi-
tionally supports Just-In-Time (JIT) compilation. This means that Jax will generate
optimized derivative code based on the sizes of vectors and matrices it sees during
run-time, further reducing the cost of using a high-level interpreted language like
Python for performing efficient numerical computation.

3 Results

In the previous section, we introduced and built machinery that enables systematic
exploration of GPs for modeling PESs. In this section, we apply mad-GP to geom-
etry optimization of small molecules to validate its use (Sect. 3.1). We use mad-GP
to test the effectiveness of fitting forces (GPE vs. GPF and GPEF , Sect. 3.1.1), the
effectiveness of fitting energies for GPs that fit forces (GPF vs. GPEF , Sect. 3.1.2),
and a preliminary study on the use of non-constant priors and hierarchical kernels
(Sect. 3.1.3). For completeness, we also qualitatively describe our experiences using
AD for constructing GP surrogates for representing molecular PESs (Sect. 3.2).

3.1 Geometry optimization

We use mad-GP to perform geometry optimization on the Baker-Chan dataset [74]
of molecules (Fig. 4), a benchmark dataset consisting of initial-guess structures of
small molecules, which is tested in prior work on GP surrogates [11]. Note that in
Baker et al.’s work, their goal was to optimize to transition-state structures (i.e.,
first-order saddle points); however, in this work (as well as in Denzel et al.’s prior
work), we optimize to stable local minima. There are many geometry optimization

987

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

algorithms that use GP surrogates [11, 12, 75]. We use the geometry optimization
algorithm designed for GPs based on the one given in ASE [12, 75] (Atomistic Sim-
ulation Environment). We choose this algorithm as a baseline so we can focus on
varying (1) fitting energies/forces and (2) mean and kernel functions to explore mad-
GP’s capabilities. We summarize the algorithm below.

Step 1 Update the current training set of N points–(�,�) , (�,F) , or (�, (�,F))–with
a call to an electronic-structure method to obtain energies EN+1 and/or forces FN+1 at
a geometry xN+1 . In this work, we use the PM7 semi-empirical method [76] imple-
mented in MOPAC2016 [77], which we refer to as MOPAC from now on. To man-
age the computational complexity of fitting a GP, we only keep the last 100 data
points.

Step 2 Fit the GP with the new data point (xN+1,EN+1) , (xN+1,FN+1) , or
(xN+1,EN+1,FN+1) . If we are fitting energies, perform a “set maximum" step: set the
mean function � to be the maximum energy seen during geometry optimization

 (Note that this does not apply to GPF which we will comment on in Sect. 3.1.2.)

(38)�(x) = max
1≤i≤N+1Ei .

Fig. 4 A visualization of initial geometries from systems (system 01 to system 25 arranged left-to-right
and top-to-bottom) in the Baker-Chan dataset [74]. White, grey, blue, red, cyan, green, navy green,
orange and yellow balls represent H, C, N, O, F, Cl, Si, P, and S atoms, respectively (Color figure online)

988 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

Step 3 Use L-BFGS to search the posterior gradient for a new local minimum. Our
current implementation uses Scipy’s L-BFGS algorithm [66] using gradients sup-
plied by mad-GP.

Step 4 If the energy found at the new local minimum is higher than the last energy
as determined by a SPE calculation, restart the search for a new local minimum by
going to step 2. Otherwise we return the last point xN+1 found.

Step 5 Iterate until convergence. Because we are comparing against MOPAC, the
convergence criterion we use is the same as MOPAC’s GNORM keyword:

where the units are in eV∕Å and NA is the number of atoms in the system so that
3NA is the dimensionality of the xyz encoding of a molecule. (A common choice is
to also constrain the maximum force, i.e., both the l∞ norm and the l2 norm. We do
not do that here to be consistent with MOPAC.)

 For the purposes of reducing the number of hyper-parameters we need to tune,
we do not use a maximum step-size or adaptive length-scale tuning [11, 78]. Note
that smaller length-scales might be needed closer to convergence. We emphasize
that the choices of MOPAC and the optimization algorithm above are for demon-
strating the use of mad-GP for geometry optimization. Different electronic-structure
calculators and geometry optimization algorithms can easily be used/implemented
in mad-GP.

3.1.1 Fitting forces

mad-GP supports GP surrogates that fit energies exclusively (GPE), fit forces
exclusively (GPF), and fit both energies and forces (GPEF). We use this function-
ality to compare GPE , GPF , and GPEF with a baseline implementation of L-BFGS
in MOPAC to test the efficacy of fitting forces. We perform SPE calculations for
both GP and L-BFGS optimizations by using the semiempirical PM7 Hamiltonian
within the unrestricted Hartree-Fock formalism (not to be confused with the Har-
tree-Fock method, which uses the full non-empirical Fock operator with explicitly
calculated one- and two-electron integrals) via the MOPAC keyword "PM7 UHF
1SCF GRAD". The self-consistent field (SCF) energy convergence criterion was set
to 10−8 kcal mol−1.

All GPs use a constant 0 mean and a Matérn kernel with �M = 1.0 and l = 0.4 Å.
We set the energy noise �e = 0.002 eV1∕2 and the force noise σf = 0.005 (eV/Å)1∕2 .
We have tested 2 × 10−10 ≤ �e ≤ 2 × 10−5 and 5 × 10−10 ≤ �e ≤ 5 × 10−5 , and found
that they do not significantly affect performance. We refer the reader to the Support-
ing Information for more details (Table S1).

Table 2 summarizes the results of benchmarking GP surrogates against each
other and L-BFGS in MOPAC. We include ΔE (eV), which measure the energy

(39)‖FN+1‖ ≤ 0.0054 ⋅ 3NA

989

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

difference between the final geometries obtained by each method with respect to the
one obtained by MOPAC, as well as the root-mean-squared distance (RMSD in Å).
The RMSD between the mad-GP optimized and L-BFGS baseline structures were
calculated after the alignment (translate the center-of-mass and perform the proper
rotation) of the two molecules using an implementation of the Quaternion algorithm
[79] from the rmsd package [80]. We refer the reader to the Supporting Information
for more details about the RMSD calculation (Fig. S1).

Recall again that we are not using an adaptive length-scale. In particular,
a Matérn kernel with a length-scale of 0.4Å will be quite large once we near the
convergence threshold of ‖FN+1‖ ≤ 0.0054 ⋅ 3NA , especially given that we do not
dampen the size of the optimizer steps once we near convergence.

Table 2 Benchmarking a simple
geometry optimizer that uses
GP

E

 (not shown because it fails
to converge), GP

F

 , and GP
EF

surrogates against L-BFGS
geometry optimizer in MOPAC
to test effect of fitting forces

The column id gives the Baker-Chan system id, Natom gives the num-
ber of atoms, # SPE gives the number of SPE calculations, ΔE gives
the final relative energy of the converged structure with respect to
MOPAC’s in eV, and RMSD gives the root-mean-squared distances
in Å of the final geometry with respect to MOPAC’s

SPE ΔE (eV) RMSD (Å)

id Natom L-BFGS GPF GPEF GPF GPEF GPF GPEF

1 3 18 16 15 0.00 0.00 0.00 0.00
2 4 77 25 22 − 0.38 − 0.38 0.07 0.07
3 4 22 36 33 − 0.01 − 0.01 0.18 0.17
4 5 11 10 10 − 0.00 − 0.00 0.00 0.00
5 8 22 33 25 0.00 0.00 0.01 0.01
6 10 22 29 26 0.01 − 0.00 0.06 0.02
7 10 36 50 46 0.00 0.00 0.04 0.04
8 10 24 33 28 0.01 0.01 0.06 0.07
9 16 26 40 36 0.02 0.00 0.14 0.10
10 8 13 10 10 0.00 0.00 0.00 0.00
11 10 11 8 10 0.00 − 0.00 0.00 0.00
12 8 15 15 17 0.00 0.00 0.01 0.01
13 8 20 11 11 − 0.00 0.00 0.00 0.01
14 7 18 18 18 − 0.00 − 0.00 0.04 0.04
15 4 31 12 11 − 0.78 − 0.77 0.70 0.70
16 7 25 34 26 0.00 0.00 0.05 0.05
17 14 50 36 35 0.11 0.10 0.39 0.37
18 11 17 22 23 − 0.00 − 0.00 0.03 0.03
19 5 34 28 24 0.01 0.01 0.02 0.02
20 7 23 37 36 − 0.17 − 0.17 0.12 0.11
21 8 18 12 11 0.00 0.00 0.02 0.02
22 7 19 24 22 0.00 − 0.00 0.02 0.01
23 5 26 20 20 0.00 0.00 0.00 0.00
24 5 22 21 21 0.00 − 0.00 0.00 0.00
25 5 17 52 49 0.01 0.01 0.14 0.14

990 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

Our results show that GPs that fit forces perform better compared to those that
do not on the Baker-Chan dataset. In particular, none of the geometry optimiza-
tions using GPE converge. The geometry optimizations that use GPF and GPEF con-
verge for all of the molecules. Both GPF and GPEF are competitive with the base-
line L-BFGS optimizer in MOPAC with respect to the number of SPE calculations,
consistent with previous work demonstrating the effectiveness of GP surrogates.
Occasionally, GPF and GPEF find geometries that are lower-energy than the L-BFGS
optimizer in MOPAC. All final geometries are stable local minima as verified by
frequency calculations conducted with MOPAC except for system id 3, which has
a relatively flat PES and has a small imaginary frequency (56.7i cm−1 in GPF , 5.5i
cm−1 in GPEF , and 56.5i cm−1 in L-BFGS baseline) under current convergence crite-
ria. Note that some optimized structures in the Baker-Chan set are pre/post-reaction
complex (e.g., 03, 09, 15, 17) with multiple local minima, leading to higher RMSD
values and slightly larger energy differences between GP and L-BFGS. This also
indicates that the advantage of GP is finding lower-energy structures compared to
the L-BFGS algorithm. Next, we will take a closer look at GPF and GPEF.

3.1.2 Fitting forces versus energies and forces

It is popular to fit both energies and forces when using GPs as a surrogate func-
tion for a PES for geometry optimization. This is a natural design decision to make
because knowing both energies and forces gives more information than just forces.
Nevertheless, some work [3, 15] considers fitting forces exclusively. To the best of
our knowledge, there has been relatively little work comparing the two approaches,
and we aim to fill that gap now.

At first glance, the results in Table 2 support the intuition that it is better to fit
both energies and forces. GPEF and GPF require roughly the same number of SPE
calculations across the Baker-Chan dataset. Nevertheless, there is an important opti-
mization detail that is different between GPEF and GPF which we term the “set maxi-
mum" step.

State-of-the-art results on applying GPEF surrogates use constant mean functions
and a variation of the following step: update the mean function to be

which sets the mean function to be the constant function that returns the highest
energy seen during geometry optimization and c is some constant. The justification
for this design decision is that it makes the optimizer more stable by forcing a local
minima (e.g., Denzel et al. [11]). We find this reasoning plausible: setting the prior
to a high value in unseen regions should encourage the optimizer to stay around
regions that it has seen before because regions far away from observed points will
take on the mean value (which is high). The reason that the “set maximum" step is
important is because it is not applicable to GPF . As a reminder, the bias term only
affects the energy component when the mean function is constant (the derivative of
a constant is 0), and a force-only GP does not have an energy component.

(40)�(x) = max
1≤i≤N+1Ei + c

991

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

Table 3 summarizes the results of comparing GPF and GPEF by varying the prior
choices, including the ability to use the “set maximum" step. The entries with a ΔE
but no corresponding SPE exceed the max cycle limitation before reaching con-
vergence(> 300 steps). The entries with no ΔE and no corresponding SPE failed to
produce any meaningful results. As we can see, the “set maximum" step where c = 0
drastically improves the performance of GPEF by reducing the number of SPE calls
required. We have also tested the “set maximum" step with c = 10a.u. (e.g., as sug-
gested by Denzel et al. [11]) and found that we improve the results over a baseline
where we do not perform a “set maximum" step, but worse when c = 0 . (Note that
Denzel et al.’s geometry optimization [11] is not the same as ours and contains an over-
shooting step that may explain the difference in performance, among other differences.)

Table 3 Comparing GP
F

 and GP
EF

 by varying prior choices to test impact of fitting energies

The kernel k corresponds to a Matérn kernel with �M = 1.0 and l = 0.4 . The prior �̃� corresponds to set-
ting the prior to the maximum energy found during training, �̃�10 corresponds to setting the prior to the
maximum energy plus 10 during training, and LJ corresponds to a Leonard-Jones potential. The entries
with a ΔE (in eV) but no corresponding SPE timed-out before reaching convergence (> 300 steps)

id GPF(0, k) GPEF(0, k) GPEF(�̃�, k) GPEF(�̃�10, k) GPF(LJ, k) GPEF(LJ, k)

#SPE ΔE #SPE ΔE #SPE ΔE #SPE ΔE #SPE ΔE #SPE ΔE

1 16 0.00 146 0.00 15 0.00 26 0.00 18 0.00 147 0.00
2 25 − 0.38 186 − 0.38 22 − 0.38 36 − 0.38 33 1.69 185 − 0.38
3 36 − 0.01 – 0.00 33 − 0.01 52 − 0.01 – – – 0.00
4 10 − 0.00 151 0.00 10 − 0.00 19 0.00 49 0.00 150 0.00
5 33 0.00 – 0.03 25 0.00 53 0.01 – – – 0.03
6 29 0.01 – 0.06 26 − 0.00 50 0.02 – – – 0.06
7 50 0.00 – – 46 0.00 83 0.01 – – – 0.48
8 33 0.01 – 0.05 28 0.01 36 0.01 – – – 0.05
9 40 0.02 – – 36 0.00 51 0.06 – – – –
10 10 0.00 207 0.00 10 0.00 11 0.00 11 0.00 189 0.00
11 8 0.00 95 0.00 10 − 0.00 12 0.00 40 0.00 94 0.00
12 15 0.00 178 0.00 17 0.00 33 0.00 67 − 0.01 176 0.00
13 11 − 0.00 220 0.00 11 0.00 21 0.00 40 0.00 222 0.00
14 18 − 0.00 266 0.00 18 − 0.00 32 0.00 – – 264 0.00
15 12 − 0.78 – – 11 − 0.77 15 − 0.77 11 − 0.77 – –
16 34 0.00 – 0.68 26 0.00 57 0.00 – – – 0.67
17 36 0.11 – – 35 0.10 41 0.13 – – – –
18 22 − 0.00 – – 23 − 0.00 52 0.00 – – – –
19 28 0.01 – 1.93 24 0.01 57 0.02 38 0.00 – 1.93
20 37 − 0.17 – 0.02 36 − 0.17 57 − 0.17 36 − 0.17 – 0.02
21 12 0.00 167 0.00 11 0.00 11 0.00 – – 155 0.00
22 24 0.00 – 0.04 22 − 0.00 41 0.00 54 − 2.16 – 0.04
23 20 0.00 193 0.00 20 0.00 32 0.00 20 0.00 192 0.00
24 21 0.00 203 0.00 21 − 0.00 33 0.00 21 0.00 204 0.00
25 52 0.01 – 0.02 49 0.01 70 0.01 42 2.30 – –

992 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

Thus, at least for constant 0 priors, we can improve the performance of GPEF at the cost
of tuning one additional parameter (i.e., the constant c) and performing a “set maxi-
mum" step during optimization.

We have also included an example of a non-constant prior in the form of a simplified
pairwise Leonard-Jones (LJ) potential

where x = (x1 … xNA)T are the xyz coordinates of a molecular structure and
ri,j = ‖xi − xj‖ is the distance between atoms i and j (in Å). Thus we compute the
LJ potential VLJ(x) as the summation of the pairwise potential of every unique pair
of atoms. We do not use a cutoff radius in evaluating the summation. For our tests,
we set the effective diameter of the cross-section �LJ = 1 Å and the depth of the
potential well �LJ = 1 eV . We implement this LJ potential as a proof-of-concept to
demonstrate how to implement a non-constant prior in mad-GP (Fig. S2 in the Sup-
porting Information for more details). We are not claiming that LJ is a good choice
of mean function.

The surrogate GPEF(LJ, k) performs similarly to GPEF(0, k) and GPF(LJ, k) per-
forms similarly to GPF(0, k) . This is not surprising as the LJ potential is a very
simple model that is mostly suitable for describing non-covalent interactions
between non-bonded molecules, and unsuitable for bond breaking, bond stretch-
ing, valence-angle bending, and internal rotations. In this proof-of-concept test,
the LJ mean function behaves like a constant 0 mean function. Implementing and
systematically testing more complex and physically inspired prior mean functions
is current work-in-progress. We also believe that further exploration of the “set
maximum" step and how it affects a choice of mean function is worth pursuing in
future work that more thoroughly compares GPF and GPEF.

3.1.3 Gaussian processes with non‑constant priors and hierarchical kernels

We use mad-GP to explore several combinations of non-constant priors and hier-
archical kernels for GPF and GPEF . Figure 5 provides a visualization of the results
using wandb [81].

Each curve, read from left-to-right, passes through each choice and results in
an average number of steps (color-coded, darker is better) across the Baker-Chan
dataset (lower is better). The choices include (1) optimizer: GPF vs. GPEF , (2)
mean functions, (3) descriptors: COULOMB which gives the Coulomb matrix [13],
PRE-COULOMB which gives the Coulomb matrix without atomic charges Zi , and
xyz which gives Cartesian coordinates, and (4) kernel functions: squared-expo-
nential, Matérn kernel with p = 3 (three-times differentiable), and Matérn kernel
with p = 2 (twice differentiable).

For completeness, the Coulomb matrix without atomic charges is defined as
the matrix with ij-th entry

(41)VLJ(x) =
∑
i<j

4𝜀LJ

[(
𝜎LJ

ri,j

)12

−

(
𝜎LJ

ri,j

)6
]

993

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

where x = (x1 … xNA)T are the xyz coordinates of a molecular structure with NA
atoms. The Coulomb matrix is defined as the matrix with ij-th entry

(42)Pij = ‖xi − xj‖

(43)Cij =

�
0.5Z2.4

i
i = j

ZiZj

‖xi−xj‖ otherwise

Fig. 5 Comparing different choices of mean functions, descriptors, and kernel functions with respect to
the average number of steps across the Baker-Chan dataset (lower is better). Each curve, read from left-
to-right, passes through each choice and results in an average number of steps (darker is better). The
figure was generated with wandb [81]

994 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

where x = (x1 … xNA)T are the xyz coordinates of a molecular structure with NA
atoms. The squared-exponential kernel is

where �se is a weight and l is a length-scale parameter. Finally, the Matérn kernel
with p = 3 is

where � = ‖x − y‖.
For the first choice of optimizer, we see that GPF is better at reducing the average

number of steps as compared to GPEF . Note that we are not performing the “set max-
imum" step for GPEF as we hope to compare different priors. These results are con-
sistent with those in Table 3. For prior functions, constant prior functions perform
better than LJ potentials. These results are also consistent with those in Table 3.

For the choice of descriptors, xyz coordinates perform better than both the Cou-
lomb descriptor and the pre-Coulomb descriptor without atomic charges. There are at
least two points we should highlight about this result. First, AD enables us to perform
gradient-based geometry optimization using descriptors of molecules without requir-
ing us to define an inverse transformation from descriptor space back into xyz coordi-
nates. Indeed, the geometry optimization with Coulomb descriptors converges on the
Baker-Chan dataset, and thus gives us an example of a chemically-inspired descriptor
that can be applied for geometry optimization. Second, while the average number of
steps may be higher for a single geometry optimization, note that Coulomb descrip-
tors are invariant to rotation, a property that xyz descriptors do not possess. Con-
sequently, further geometry optimization involving a GP using Coulomb descriptors
will be robust to rotations of a molecule while those based on xyz descriptors will
not be. Note that, herein, we are referring to the direct usage of the xyz encoding of a
structure without pre-fixing the orientation (by defining a standard orientation using
principle axis as done in quantum chemistry codes) and the center of mass of the
input structure, which certainly eliminate the issue of rotation and translation invari-
ance of the descriptor.

Finally, for the choice of kernel functions, we see that if we use constant 0 mean
function, then Matérn kernels perform the best. As a reminder, we are not perform-
ing the “set maximum" step here for constant priors so it is better to look at the
results for GPF for comparison of mean and kernel functions. For GPF , we see that
several combinations work well: Coulomb matrices with Matérn p = 2 , p = 3 , and
squared exponential kernels work. Coulomb descriptors increase the dimensionality
of the representation, and so it is interesting to see that kernels that impose smoother
constraints still work.

(44)kse(x, y) = �2
se
exp

�
−
‖x − y‖2

l2

�

(45)kM3(x, y) = �2
M
(1 +

√
7�

l
+

14�2

5l2
+

7
√
7�3

15l3
) exp

�
−
√
7�

l

�

995

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

3.2 Using automatic differentiation

One of the design goals of mad-GP is to enable users to more systematically explore
different priors and kernel functions for GP PES surrogate models without need-
ing to implement first and second-order derivatives. The key technique for achieving
this was AD. We summarize some of our experiences using AD in this section.

One question we might be interested in is: “what can I do now that I could not do
before?" For a standard kernel such as a Matérn kernel, the extra work that is done if
AD is not used is (1) deriving or looking up the derivatives, (2) transcribing them to
code, (3) and checking that the derivatives are implemented correctly. For complete-
ness, the first-order derivatives are

and

The second-order derivative is

where ⊗ is an outer product.
Although this might be simple enough for a standard kernel, consider implement-

ing the Matérn kernel for arbitrary p. This kernel is defined as

where � = ‖x − y‖ . We have implemented this kernel for 1 ≤ p ≤ 10 in mad-GP
using 18 lines-of-code. Deriving the first and second-order derivatives with respect
to x and y and checking that they are correct is harder. Notably, SD tools are less
effective on multivariate spaces.

Beyond this, consider deriving and implementing first and second-order deriva-
tives for a chemical descriptor that may not be differentiable in the traditional sense.
Figure 6 gives an example of a descriptor implemented in mad-GP that is not differ-
entiable because the columns of the Coulomb matrix are sorted by their l2 norm. (It
also gives an example of how to use atomic charges in a GP kernel.) AD, unlike SD,
can still handle such descriptors by using the concept of sub-gradients. Thus AD
presents us the opportunity to perform geometry optimization using kernels with
descriptors that are non-invertible and non-differentiable.

We emphasize again that AD implements an appropriate factorization of the
SD in an automatic fashion. Consequently, it implements a particular symbolic

(46)
�k(x, y)

�x
= −

5

3l3
[(l +

√
5�)(x − y)]�2

M
exp

�
−
√
5�

l

�

(47)
�k(x, y)

�x
= −

�k(x, y)

�y

(48)
𝜕2k(x, y)

𝜕x𝜕y
= −

5

3l3
[
5

l
(x − y)⊗ (x − y) − (l +

√
5𝜌)�]𝜎2

M
exp

�
−
√
5𝜌

l

�

(49)kp(x, y) = �2
M
exp

�
−
√
2p + 1�

l

�
p!

(2p)!

p�
i=0

(p + i)!

i!(p − i)!

�
2
√
2p + 1�

l

�p−i

996 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

derivative and the floating-point precision is identical to implementing that sym-
bolic derivative. The performance cost that one pays when using AD is that the first
and second-order derivatives are derived when the code is executed. This is a one-
time cost because we can use JIT technology to cache the results of the derivatives.
Compared to the cost of SPE calculations and geometry optimization, the one-time
cost to compile the first and second-order derivatives is negligible.

4 Discussion

As we demonstrate with our prototype mad-GP, users need only write the mean and
kernel functions before being able to explore a variety of GP surrogate models that
implement GPE , GPF , or GPEF . In the rest of this section, we will highlight a few
interesting discoveries that we were able to uncover due to the flexibility of mad-GP.

AD is crucial for atomistic kernel functions In light of the testing results, one
can see the possibility for an abundance of mean functions, kernel functions, their
combinations, and their compositions that one can explore using mad-GP. To the
best of our knowledge, most prior work explores simple mean functions like con-
stant function and standard kernels such as Matérn kernels. Notably, the usage of
AD along with gradient-based optimization of GP surrogates means that we can
use arbitrarily complex descriptors so long as we can implement them in mad-GP.
We have identified several combinations that work using mad-GP. We leave a more
through exploration of this direction as future work.

“Set maximum" step The usage of GPEF only performs well in our tests if the
“set maximum" step is applied. In contrast, GPF performs well without this addi-
tional step. Consequently, we find that GPF is more robust compared to GPEF
because we do not need to modify the geometry optimization algorithm. Crucially,
the “set maximum" step affects our ability to explore different mean functions for
GPEF . We believe that further investigation of this step and its impact on choice of
mean function in comparing GPEF and GPF is a good direction of future work. These
questions only became apparent to us when we tried to implement a tool that could

Fig. 6 A kernel where we sort the columns of a Coulomb matrix by it’s l
2

 norm (lines 2–3 and 8–9). Line
5 gives an example of how to use the molecule metadata atoms_x and atoms_y to obtain the atomic
masses for use in a descriptor. The function jax.lax.map is a functional looping construct (line 6).
The function �������_���� (not shown) implements a Coulomb matrix using atomic masses and posi-
tions as inputs

997

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

handle a variety of GP use cases in a generic manner. At a meta-level, we hope that
this provides further evidence that better tools can lead to better science.

5 Conclusion

In summary, we introduce mad-GP, a library for constructing GP surrogate models
of PESs. A user of mad-GP only needs to write down the functional form of the
mean and kernel functions, and the library handles all required derivative imple-
mentations. mad-GP accomplishes this with a technique called AD. Our hope is that
mad-GP can be used to more systematically explore the large design space of GP
surrogate models for PESs.

As an initial case study, we apply mad-GP to perform geometry optimization.
We compare GP surrogates that fit forces with those that fit energies and forces. In
general, we find that GPEF performs comparably with GPF in terms of the number of
SPE calculations required, although GPF is more robust for optimization because it
does not require an additional step to be applied during optimization. In our prelimi-
nary study on the use of non-constant priors and hierarchical kernels in GP PES sur-
rogates, we also confirm that constant mean functions and Matérn kernels work well
as reported in the literature, although our tests also identify several other promising
candidates (e.g., Coulomb matrices with three-times differentiable Matérn kernels).
Our studies validate that AD is a viable method for performing geometry optimiza-
tion with GP surrogate models on small molecules.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10910- 022- 01334-x.

Acknowledgements This work was supported by Oracle Labs and by the Schiller Institute Grant for
Exploratory Collaborative Scholarship (SIGECS). The authors thank Darius Russell Kish, Weiming Qin
and Yang Wang for feedback on usage of mad-GP. Finally, the authors thank the Boston College Linux
Cluster for computing resources.

References

 1. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the accuracy of
quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010)

 2. P. Rowe, V.L. Deringer, P. Gasparotto, G. Csányi, A. Michaelides, An accurate and transferable
machine learning potential for carbon. J. Chem. Phys. 153, 034702 (2020)

 3. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Machine learn-
ing of accurate energy-conserving molecular force fields. Sci. Adv. (2017). https:// doi. org/ 10. 1126/
sciadv. 16030 15

 4. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics simu-
lations with machine-learned force fields. Nat. Commun. 9, 1–10 (2018)

 5. H. Sugisawa, T. Ida, R.V. Krems, Gaussian process model of 51-dimensional potential energy sur-
face for protonated imidazole dimer. J. Chem. Phys. 153, 114101 (2020)

 6. A. Denzel, B. Haasdonk, J. Kästner, Gaussian process regression for minimum energy path optimi-
zation and transition state search. J. Phys. Chem. A 123, 9600–9611 (2019). (PMID: 31617719)

 7. A. Denzel, J. Kästner, Gaussian process regression for transition state search. J. Chem. Theory
Comput. 14, 5777–5786 (2018). (PMID: 30351931)

https://doi.org/10.1007/s10910-022-01334-x
https://doi.org/10.1007/s10910-022-01334-x
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015

998 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

 8. O.-P. Koistinen, V. Ásgeirsson, A. Vehtari, H. Jónsson, Nudged elastic band calculations accelerated
with gaussian process regression based on inverse interatomic distances. J. Chem. Theory Comput.
15, 6738–6751 (2019). (PMID: 31638795)

 9. O.-P. Koistinen, V. Ásgeirsson, A. Vehtari, H. Jónsson, Minimum mode saddle point searches using
gaussian process regression with inverse-distance covariance function. J. Chem. Theory Comput.
16, 499–509 (2020). (PMID: 31801018)

 10. O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, A. Tkatchenko,
K.-R. Müller, Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021)

 11. A. Denzel, J. Kästner, Gaussian process regression for geometry optimization. J. Chem. Phys. 148,
1–32 (2018)

 12. E. Garijo del Río, J.J. Mortensen, K.W. Jacobsen, Local Bayesian optimizer for atomic structures.
Phys. Rev. B 100, 104103 (2019)

 13. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Fast and accurate modeling of molecu-
lar atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)

 14. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B (2013).
https:// doi. org/ 10. 1103/ PhysR evB. 87. 184115

 15. H.E. Sauceda, S. Chmiela, I. Poltavsky, K. Müller, A. Tkatchenko, Molecular force fields with gra-
dient-domain machine learning: construction and application to dynamics of small molecules with
coupled cluster forces. J. Chem. Phys. 150(11)(2019)

 16. Smith Jr, V. H.; Schaefer III, H. F.; Morokuma, K. (2012). Applied Quantum Chemistry: Proceed-
ings of the Nobel Laureate Symposium on Applied Quantum Chemistry in Honor of G. Herzberg,
RS Mulliken, K. Fukui, W. Lipscomb, and R. Hoffman, Honolulu, HI, 16–21 December 1984 ;
Springer Science & Business Media

 17. K. Fukui, Formulation of the reaction coordinate. J. Phys. Chem. 74, 4161–4163 (1970)
 18. K. Fukui, S. Kato, H. Fujimoto, Constituent analysis of the potential gradient along a reaction coor-

dinate. Method and an application to methane + tritium reaction. J. Am. Chem. Soc. 97, 1–7 (1975)
 19. K. Ishida, K. Morokuma, A. Komornicki, The intrinsic reaction coordinate. An ab initio calculation

for HNC→HCN and H-+CH4→CH4+H-. J. Chem. Phys. 66, 2153–2156 (1977)
 20. N.C. Blais, D.G. Truhlar, B.C. Garrett, Improved parametrization of diatomics-in-molecules poten-

tial energy surface for Na(3p 2P)+H2 → Na(3s 2S)+H2. J. Chem. Phys. 78, 2956–2961 (1983)
 21. D.G. Truhlar, R. Steckler, M.S. Gordon, Potential energy surfaces for polyatomic reaction dynam-

ics. Chem. Rev. 87, 217–236 (1987)
 22. A.J.C. Varandas, F.B. Brown, C.A. Mead, D.G. Truhlar, N.C. Blais, A double many-body expansion

of the two lowest-energy potential surfaces and nonadiabatic coupling for H3. J. Chem. Phys. 86,
6258–6269 (1987)

 23. S.C. Tucker, D.G. Truhlar, A six-body potential energy surface for the SN2 reaction Cl-(g) +
CH3Cl(g) and a variational transition-state-theory calculation of the rate constant. J. Am. Chem.
Soc. 112, 3338–3347 (1990)

 24. G.C. Lynch, R. Steckler, D.W. Schwenke, A.J.C. Varandas, D.G. Truhlar, B.C. Garrett, Use of
scaled external correlation, a double many-body expansion, and variational transition state theory to
calibrate a potential energy surface for FH2. J. Chem. Phys. 94, 7136–7149 (1991)

 25. E.E. Dahlke, D.G. Truhlar, Electrostatically embedded many-body expansion for simulations. J.
Chem. Theory Comput. 4, 1–6 (2008)

 26. P.G. Mezey, Reactive domains of energy hypersurfaces and the stability of minimum energy reac-
tion paths. Theor. Chim. Acta 54, 95–111 (1980)

 27. P.G. Mezey, Catchment region partitioning of energy hypersurfaces. I. Theor. Chim. Acta 58, 309–
330 (1981)

 28. P.G. Mezey, The isoelectronic and isoprotonic energy hypersurface and the topology of the nuclear
charge space. Int. J. Quant. Chem. 20, 279–285 (1981)

 29. P.G. Mezey, Manifold theory of multidimensional potential surfaces. Int. J. Quant. Chem. 20, 185–
196 (1981)

 30. P.G. Mezey, Critical level topology of energy hypersurfaces. Theor. Chim. Acta 60, 97–110 (1981)
 31. P.G. Mezey, Lower and upper bounds for the number of critical points on energy hypersurfaces.

Chem. Phys. Lett. 82, 100–104 (1981)
 32. P.G. Mezey, Quantum chemical reaction networks, reaction graphs and the structure of potential

energy hypersurfaces. Theor. Chim. Acta 60, 409–428 (1982)
 33. P.G. Mezey, Topology of energy hypersurfaces. Theor. Chim. Acta 62, 133–161 (1982)

https://doi.org/10.1103/PhysRevB.87.184115

999

1 3

Journal of Mathematical Chemistry (2022) 60:969–1000

 34. P.G. Mezey, The topology of energy hypersurfaces II. Reaction topology in euclidean spaces. Theor.
Chim. Acta 63, 9–33 (1983)

 35. P. Mezey, Potential Energy Hypersurfaces. Studies in Physical and Theoretical Chemistry (Elsevier,
New York, 1987)

 36. R. Duchovic, Y. Volobuev, G. Lynch, D. Truhlar, T. Allison, A. Wagner, B. Garrett, J. Corchado,
POTLIB 2001: a potential energy surface library for chemical systems. Comput. Phys. Commun.
144, 169–187 (2002)

 37. Ö.F. Alış, H. Rabitz, Efficient implementation of high dimensional model representations. J. Math.
Chem. 29, 127–142 (2001)

 38. K. Yagi, C. Oyanagi, T. Taketsugu, K. Hirao, Ab initio potential energy surface for vibrational state
calculations of H 2 CO. J. Chem. Phys. 118, 1653–1660 (2003)

 39. K. Yagi, S. Hirata, K. Hirao, Multiresolution potential energy surfaces for vibrational state calcula-
tions. Theor. Chem. Accounts 118, 681–691 (2007)

 40. S. Carter, S.J. Culik, J.M. Bowman, Vibrational self-consistent field method for many-mode sys-
tems: a new approach and application to the vibrations of CO adsorbed on Cu (100). J. Chem. Phys.
107, 10458–10469 (1997)

 41. J.M. Bowman, S. Carter, X. Huang, MULTIMODE: a code to calculate rovibrational energies of
polyatomic molecules. Int. Rev. Phys. Chem. 22, 533–549 (2003)

 42. J.M. Bowman, T. Carrington, H.-D. Meyer, Variational quantum approaches for computing vibra-
tional energies of polyatomic molecules. Mol. Phys. 106, 2145–2182 (2008)

 43. B.J. Braams, J.M. Bowman, Permutationally invariant potential energy surfaces in high dimension-
ality. Int. Rev. Phys. Chem. 28, 577–606 (2009)

 44. A. Jäckle, H.-D. Meyer, Product representation of potential energy surfaces. II. J. Chem. Phys. 109,
3772–3779 (1998)

 45. F. Otto, Multi-layer Potfit: an accurate potential representation for efficient high-dimensional quan-
tum dynamics. J. Chem. Phys. 140, 014106 (2014)

 46. G. Avila, T. Carrington Jr., Using multi-dimensional Smolyak interpolation to make a sum-of-prod-
ucts potential. J. Chem. Phys. 143, 044106 (2015)

 47. B. Ziegler, G. Rauhut, Efficient generation of sum-of-products representations of high-dimensional
potential energy surfaces based on multimode expansions. J. Chem. Phys. 144, 114114 (2016)

 48. D.G. Truhlar, C.J. Horowitz, Functional representation of Liu and Siegbahn’s accurate ab initio
potential energy calculations for H+H2. J. Chem. Phys. 68, 2466–2476 (1978)

 49. T.C. Thompson, G. Izmirlian, S.J. Lemon, D.G. Truhlar, C.A. Mead, Consistent analytic representa-
tion of the two lowest potential energy surfaces for Li3, Na3, and K3. J. Chem. Phys. 82, 5597–5603
(1985)

 50. K.A. Nguyen, I. Rossi, D.G. Truhlar, A dual-level shepard interpolation method for generating
potential energy surfaces for dynamics calculations. J. Chem. Phys. 103, 5522–5530 (1995)

 51. S. Manzhos, T. Carrington Jr., A random-sampling high dimensional model representation neural
network for building potential energy surfaces. J. Chem. Phys. 125, 084109 (2006)

 52. K.T. Schütt, P.-J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller, SchNet: A
continuous-filter convolutional neural network for modeling quantum interactions. Proceedings of
the 31st international conference on neural information processing systems. Red Hook, NY, USA,
2017; pp 992–1002

 53. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, Schnet-a deep learning
architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018)

 54. K. Schutt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller, SchNetPack: a deep
learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2018)

 55. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-
energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)

 56. J. Behler, Representing potential energy surfaces by high-dimensional neural network potentials. J.
Phys. 26, 183001 (2014)

 57. J. Behler, Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145,
170901 (2016)

 58. L. Zhang, J. Han, H. Wang, W. Saidi, R.E. Car, End-to-end symmetry preserving inter-atomic
potential energy model for finite and extended systems. Advances in Neural Information Processing
Systems. 2018

 59. J.S. Smith, O. Isayev, A.E. Roitberg, ANI-1: an extensible neural network potential with DFT accu-
racy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017)

1000 Journal of Mathematical Chemistry (2022) 60:969–1000

1 3

 60. O.T. Unke, M. Meuwly, PhysNet: a neural network for predicting energies, forces, dipole moments,
and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019)

 61. B. Anderson, T.S. Hy, R. Kondor, Cormorant: covariant molecular neural networks. Adv. Neural
Inf. Process. Syst. 32, 14537–14546 (2019)

 62. J. Klicpera, J. Groß, S. Günnemann, Directional message passing for molecular graphs. Interna-
tional conference on learning representations. 2019

 63. M.A. Wood, A.P. Thompson, Extending the accuracy of the SNAP interatomic potential form. J.
Chem. Phys. 148(2018)

 64. C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2 (MIT Press,
Cambridge, MA, 2006)

 65. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural and
alchemical space. Phys. Chem. Chem. Phys. 18, 13754–13769 (2016)

 66. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P.
Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.-J. Millman, N. May-
orov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J.
VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. Quintero, A.C.R. Harris, A.M.
Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, ciPy 1.0 Contributors, SciPy 1.0: funda-
mental algorithms for scientific computing in python. Nature Methods 2020, 17, 261–272

 67. C.L. Lawson, R.J. Hanson, Solving least squares problems (SIAM, Philadelphia, 1995)
 68. R. Meyer, A.W. Hauser, Geometry optimization using Gaussian process regression in internal coor-

dinate systems. J. Chem. Phys. 152, 084112 (2020)
 69. L. Himanen, M.O.J. Jäger, E.V. Morooka, F. Federici Canova, Y.S. Ranawat, D.Z. Gao, P. Rinke,

A.S. Foster, DScribe: library of descriptors for machine learning in materials science. Comput.
Phys. Commun. 247, 106949 (2020)

 70. H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res. Logist. Q 2, 83–97 (1955)
 71. A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine

learning: a survey. J. Mach. Learning Res. 18, 1–43 (2018)
 72. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S.
Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, In Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, R. Gar-
nett, (Eds.), Curran Associates, Inc., pp. 8024-8035 (2019)

 73. J. Bradbury, R. Frostig, P. Hawkins, M. Johnson, J.C. Leary, D. Maclaurin, G. Necula, A. Paszke, J.
VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy
programs. 2018; http:// github. com/ google/ jax

 74. J. Baker, F. Chan, The location of transition states: a comparison of Cartesian, Z- matrix, and natu-
ral internal coordinates. J. Comput. Chem. 17, 888–904 (1996)

 75. A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N.
Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin,
E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L.
Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge,
L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic simulation environment—a Python
library for working with atoms. J. Phys. 29, 273002 (2017)

 76. J.J. Stewart, Optimization of parameters for semiempirical methods VI: more modifications to the
NDDO approximations and re-optimization of parameters. J. Mol. Modeling 19, 1–32 (2013)

 77. J.J.P. Stewart, MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA (2016)
 78. I. Fdez Galván, G. Raggi, R. Lindh, Restricted-variance constrained, reaction path, and transition state

molecular optimizations using gradient-enhanced kriging. J. Chem. Theory Comput. 17:571–582
 79. M.W. Walker, L. Shao, R.A. Volz, Estimating 3-D location parameters using dual number quaterni-

ons. CVGIP: Image Understanding 54, 358–367 (1991)
 80. J.C. Kromann, Calculate Root-mean-square deviation (RMSD) of Two Molecules Using Rotation.

2021; Software available from http://github.com/charnley/rmsd,v1.4
 81. L. Biewald, Experiment Tracking with Weights and Biases. (2020) https:// www. wandb. com/, Soft-

ware available from wandb.com

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://github.com/google/jax
https://www.wandb.com/

	mad-GP: automatic differentiation of Gaussian processes for molecules and materials
	Abstract
	1 Introduction
	2 Methods
	2.1 Models of potential energy surfaces
	2.2 Gaussian processes
	2.2.1 Kernels for atomistic systems
	2.2.2 Geometry optimization with GPs
	2.2.3 Models with conservative forces

	2.3 A Gaussian process library for representing potential energy surfaces
	2.3.1 Support for kernels for atomistic systems
	2.3.2 Support for gradient-based surrogate optimization
	2.3.3 Support for GPs with forces

	2.4 Automatic differentiation
	2.4.1 AD by example
	2.4.2 AD for higher-order derivatives
	2.4.3 AD in mad-GP

	3 Results
	3.1 Geometry optimization
	3.1.1 Fitting forces
	3.1.2 Fitting forces versus energies and forces
	3.1.3 Gaussian processes with non-constant priors and hierarchical kernels

	3.2 Using automatic differentiation

	4 Discussion
	5 Conclusion
	Acknowledgements
	References

