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Abstract
A modification of the homotopy perturbation method is suggested with three effec-
tive expansions to solve a nonlinear oscillator with damping terms to expand  the 
solution, the frequency and the amplitude. The Duffing equation with linear damp-
ing is used as an example to illustrate the simple solution process and effective 
results. The analysis exhibits that the amplitude behaves as an exponential decay 
with the damping parameter. This scheme yields a more effective result for the non-
linear oscillators and overcomes the shortcoming in some problems.

Keywords Homotopy Perturbations Method · Exponential Decay Parameter · 
Damping Duffing Equation · Frequency Expansion method · Amplitude Expansion 
Method

1 Introduction

Most of the engineering problems, essentially some vibration equations are nonlin-
ear and in general, it is hard to solve such equations, principally in the analytical 
study. Also, many physics problems can be modeled by differential equations. How-
ever, it is hard to obtain closed-form solutions for them, essentially for nonlinear 
ones. In general, only approximate solutions (either numerical ones or analytical 
ones) can be anticipated. There are numerous nonlinear problems in the research 
of the various branches of science that do not have analytical solutions. Due to the 
shortness of finding exact solutions, numerous analytical and numerical approxima-
tions have been investigated. Therefore, these nonlinear equations are  imperative 
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to be solved by employing other methods. Many researchers have been working on 
various analytical methods for solving nonlinear oscillation systems. The earliest 
approximation method is the method of averaging and the idea of averaging origi-
nates from Lagrange in (1788) [1]. Towards the end of the nineteenth century, Poin-
care in (1890) [2] provided the qualitative analysis of dynamical systems to deter-
mine periodic solutions and stability.

The perturbation technique is the most one of the known techniques for solving 
nonlinear problems analytically. Some of these perturbation methods are demon-
strated in Nayfe’s books [3, 4]. A summarized literature survey of the perturbation 
methods in the application is discussed by Albert [5]. The traditional analytical tech-
niques, including the Lagrange, straightforward methods and the method of averag-
ing in the application and the weakness of actual existing approximate techniques 
are also investigated. Recently, nonlinear oscillator models have been widely con-
sidered in engineering and physics. A treatise on nonlinear problems that are pre-
sented in most areas of physics and also engineering is very important for scientists. 
Scanning of the literature with many references has been given by numerous authors 
utilizing several analytical methods for solving nonlinear oscillation systems. Non-
linear problems remain to be a challenge and attention has mainly intensified on 
qualitative changes in systems bifurcations and instability.

Since the nonlinear phenomena were observed in engineering, Duffing (1918) [6] 
used the hardening spring model to investigate the vibration of the electromagnetic 
vibrating beam and since then, the Duffing oscillator has been extensively applied in 
structural dynamics. Moreover to determining the existence of oscillatory motions 
of the second-order nonlinear differential equations in mathematics. Nayfeh [3] 
employed the multiple-scale perturbation methods to improve and obtain an approx-
imate solution of oscillatory motions in the Duffing equations. Nayfeh and Mook [4] 
applied the perturbation methods to nonlinear structural vibrations via the Duffing 
oscillators. Thus, the perturbation analysis continues to be applied to get an ana-
lytical approximate solution of oscillatory motions. The parameterized perturbation 
technique is a well-known approach for solving nonlinear oscillators. The method 
was first proposed by He [7] and is called the homotopy perturbation method. It was 
hired recently in many studies in physics and engineering, this method is a power-
ful tool for treating weakly nonlinear problems, but it is lowly effective for analyz-
ing some high nonlinearity problems [8–12]. There are many modifications done by 
many researchers and scientists to improve the homotopy perturbation method and 
become a more operative method. He [13, 14] employing the parameter-expanding 
method as a modification to the homotopy perturbation method to solve a strongly 
nonlinear oscillator. Liu et al. [15], El-Dib and Moatimid [16] and Nino et. al [17] 
develop the homotopy perturbation method by modifying it across coupling with 
the Laplace transform to solve nonlinear problems. Next, we briefly mention some 
of the last developments of this method; such as the coupling of HPM and Frobe-
nius method [18], multiple scales HPM method [19–22], parametrized HPM [23], 
nonlinearities distribution HPM used to find the solution of Troesch problem [24]. 
Recently, Shen and El-Dib [25] developed a new modification to the homotopy per-
turbation method for analyzing nonlinear equations having restoring force by chang-
ing the linear auxiliary operator by another suitable one, among many others. Anjum 
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and He coupled the homotopy perturbation method with Laplace transform, making 
the solution process much simple [26].

As we know, the exact solutions to some of these non-linear differential equations 
do not exist. Therefore, the probing of approximate solutions to these types of equa-
tions can play a vital role in the study of non-linear physical phenomena. Serious 
studies in the literature of forced non-linear oscillators of the Duffing equation [27]. 
The general form of such equations is called damping Duffing equations and is given 
as follows:

This equation presents a tremendous domain of well-known behavior in nonlinear 
dynamical systems and is applied by many researchers to illustrate such behavior. 
The equation seems simple at the first look but has a lot of awesome features. The 
traditional perturbation method contains many shortcomings. They are not useful, 
especially, for damping nonlinear Eq. (1) see Ref. [28]. To overcome the shortcom-
ings, it requires a new perturbation technique. Surprisingly, the application of the 
fractional derivative with the homotopy perturbation has been used to overcome the 
shortcoming of Eq. (1) [29–40]. In the current work, we propose a new scheme to 
modify HPM applied to Eq. (1). Usually, to find an approximate solution of Eq. (1), 
a two iterations method is used. The iteration of the suggested solution and the itera-
tion of the frequency parameter, these two iterations are not enough to work [28]. 
Here an additional iteration is used to overcome the difficulty in the damping nonlin-
ear oscillator.

2  The enhanced homotopy perturbation approach with three 
expansion technology

Utilizing the homotopy perturbation method HPM [7, 8, 11–13], a general nonlinear 
equation is considered in the type,

where L is an auxiliary linear operator, N is a nonlinear operator and g(t) is the inho-
mogeneous part. The idea of homotopy to establish the following one-parameter 
family of equations

where � is the artificial parameter called a bookkeeping parameter. This parameter 
monotonically increases from zero to unity. As � → 1, it turns to the original nonlin-
ear one. So the growth process of � from zero to unity is completely that of Eq. (3) 
to Eq. (2). The homotopy equation corresponding to Eq. (1) is

The HPM utilizes the parameter � as an expanding parameter to get

(1)ÿ + 𝜇ẏ + 𝜔2
0
y + Qy3 = g(t); y = y(t)

(2)L(y) + N(y) = g(t),

(3)L(y) + �(N(y) − g(t)) = 0; � ∈ [0, 1]

(4)ÿ + 𝜔2
0
y = −𝜌

(

𝜇ẏ + Qy3 − g(t)
)

; 𝜌 ∈ [0, 1]
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It is obvious that when � → 0, Eq. (4) becomes a linear differential equation

In which an exact solution can be calculated, which have the form

where the amplitude A and the phase � are real constants determine by the initial 
conditions.

Oftentimes, one expanded method cannot act due to the difficult nonlinear equation. 
Accordingly, an additional expanded method was used. The perturbed for the natural 
frequency �0 may be useful

where �0 is known as a linear frequency, � and, �j are unknowns arriving from by 
removing the security conditions due to inhomogeneity in the perturbed equation.

In the case of, 𝜌 > 0, unfortunately, the use of the two expansions (5) and (8) cannot 
work with Eq. (4) because a shortcoming is presented. Therefore, an additional itera-
tion method is needed to overcome this failure. It is convenient to take the amplitude A 
as a function of the time t, besides that the frequency �0 as a function of the parameter, 
�, therefore, the above solution may be modified to become

Generally, the two expansions (5) and (8) cannot be work due to the presence of the 
damping part in the nonlinear equation, in which, a shortcoming is presented. There-
fore, a new technique is needed. According to this failure, the perturbed amplitude A is 
useful. Let the amplitude A is expanded as a power series in �, accounting unknowns 
functions of the variable t, so that when � → 0, it becomes a constant

where the unknowns Cj(t) will be determined by solving the equations arising from 
removing the secular terms. Put (8) and (10) into (9), yields

It is worthwhile to observe that, in the limiting case as � → 0, we have A → A0 and 
� → �0. Consequently, expansion (11) will convert to the solution (7). Thus, we have

(5)y(t) = y0(t) + �y1(t) + �2y2(t) + ...

(6)ÿ0 + 𝜔2
0
y0 = 0.

(7)y0(t) = A0 cos(�0t + �),

(8)�2
0
(�) = �2 − ��1 − �2�2 + ...

(9)y0(t;�) = A(t;�) cos
(

�0(�)t + �
)

.

(10)A(t, �) = �(1 + �C1(t) + �2C2(t) + ...),

(11)y0(t;�) = �(1 + �C1(t) + �2C2(t) + ...) cos (�t + �) .

(12)y0(t;0) = A0 cos
(

�0t + �
)

,

(13)y0(t;1) = �(1 + C1(t) + C2(t) + ...) cos (�t + �) .
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3  Solution of the homotopy Eq. (4)

To obtain an approximate solution of the undertaken homotopy equation, we put 
the expansions (5), (8) and (11) in Eq. (4), letting g(t) = 0 and reorganize the coef-
ficients of the same powers of � . Making these coefficients tends to zero, a system 
of a differential equation is obtained. The zero-order solution will satisfy automatic, 
while the remaining orders are solved sequentially. The first and second-order prob-
lems are as follows:

To eliminate the secular terms from Eq. (14), the following should be satisfied

In the light of the conditions (16) and (17) the bounded solution of Eq.  (14) is 
presented in the form

Substituting (18) into Eq. (15), using (16) and (17), removing the secular terms 
requires

The solution of Eq. (15) without secular terms is given by

Integrating the condition (17) and making the integration constant be zero yields

(14)

ÿ1 + 𝜔2y1 = − 𝛼

(

C̈1 +
3

4
Q𝛼2 − 𝜔1

)

cos(𝜔t + 𝜃) + 𝛼𝜔
(

𝜇 + 2Ċ1

)

sin(𝜔t + 𝜃)

−
1

4
Q𝛼3 cos(3𝜔t + 3𝜃),

(15)

ÿ2 + 𝜔2y2 = −𝛼

[

C̈2 + 𝜇Ċ1 +

(

9

4
Q𝛼2 − 𝜔1

)

C1 − 𝜔2

]

cos(𝜔t + 𝜃) + 𝛼𝜔
(

2Ċ2 + 𝜇C1

)

sin(𝜔t + 𝜃)

−𝜇ẏ1 +

(

𝜔1 −
3

2
Q𝛼2(1 + cos(2𝜔t + 2𝜃)

)

y1 −
3

4
Q𝛼3C1 cos(3𝜔t + 3𝜃).

(16)C̈1 = 𝜔1 −
3

4
Q𝛼2

(17)Ċ1 = −
1

2
𝜇.

(18)y1(t) =
Q�3

32�2
cos(3�t + 3�).

(19)𝜔2 = C̈2 + 𝜇Ċ1 +

(

9

4
Q𝛼2 − 𝜔1

)

C1 +
3Q2𝛼4

128𝜔2
,

(20)Ċ2 = −
1

2
𝜇C1.

(21)

y2(t) =
Q�3

256�4

(

−�1 +
3Q�2

2

)

cos(3�t + 3�) −
3�Q�3

256�3
sin(3�t + 3�)

+
3Q2�5

3072�4
cos(5�t + 5�) −

3Q�3

4
(

D2 + �2
)C1(t) cos(3�t + 3�).
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Besides, integrating condition (20), we have

Putting � = 1, in (5), (8) and (10) the approximate solution, frequency and the 
amplitude, therefore, can be readily obtained.

4  The amplitude‑frequency equation and stability analysis

It is worthwhile to note that the solvability conditions presented in (16), (18) and 
(19) represent four unknowns in four equations. By combing the two conditions pre-
sented in (16) yields

Inserting (17), (20) and (22) into the condition (19) yields the following relation:

To construct the frequency-amplitude equation, we may insert the solvability 
conditions (27) and (28) into the expansion (25), yields

It is worthwhile to observe the bract in (29) represents the first two terms in the 
exponential function e−�t. Therefore, in the compact form, the frequency equation 
arises in the form

This is the modified frequency included the influence of the damping forces. 
When � → 0 the classical frequency arises [7].

Further, inserting (22) and (23) into the expansion (26) gets

(22)C1(t) = −
1

2
� t.

(23)C2(t) =
1

8
�2t2.

(24)y(t) = y0(t) + y1(t) + y2(t) + ...,

(25)�2 = �2
0
+ �1 + �2 + ...,

(26)A(t) = �(1 + C1(t) + C2(t) + ...).

(27)�1 =
3Q�2

4
.

(28)�2 = −
1

4
�2 −

3

4
Q�2�t +

3Q2�4

128�2
.

(29)�2 = �2
0
−

1

4
�2 +

3Q�2

4
(1 − �t + ...) +

3Q2�4

128�2
.

(30)�2 = �2
0
−

1

4
�2 +

3Q�2

4
e−�t +

3Q2�4

128�2
.
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It is worthwhile to observe that (31) represents the first three terms in the 
expansion of the exponential function e−

1

2
� t
, therefore, the compact form of (31) 

is

Employing (32) to (11) the results coincide with the normal form solution of the 
linear harmonic equation as known in the classical differential calculus.

The second-order approximate solution is derived by inserting (32), (18) and (21) 
in the expansion (24), which yields

This represented an enhanced homotopy solution. It is noted that the classical 
approximate solution is found as � → 0.

It is worthwhile to note that the stability criteria require that the parameter � is 
positive and � be real. To solve the frequency Eq. (30), we may apply the perturba-
tion technique. We introduce a small parameter � to put Eq.(30) in a perturbed form

Supposing that the frequency � is expanded as

Substituting (35) into (34) and equating to being zero, the identical powers of �, 
yields

To the first-order approximation, we insert (36) and (37) into (35) and taking 
� = 1, we obtain

(31)A(t) = �

[

1 −
(

1

2
� t

)

+
1

2

(

1

2
� t

)2

+ ...

]

.

(32)A(t) = �e
−
1

2
�t
.

(33)
y(t) =�e

−
1

2
�t
cos (�t + �) +

Q�3

32�2

(

e
−
3

2
�t

+
3Q�2

32�3

)

cos(3�t + 3�)

+
3�Q�3

128�3
sin(3�t + 3�) +

3Q2�5

3072�4
cos(5�t + 5�).

(34)�2 = �2
0
−

1

4
�2 + �

(

3Q�2

4
e−��t +

3Q2�4

128�2

)

; � ∈ [0, 1]

(35)�2 = Ω2
0
+ �Ω1 + �2Ω2 + ...

(36)Ω0 =

√

�2
0
−

1

4
�2,

(37)Ω1 =
3Q�2

4
+

3Q2�4

128
(

�2
0
−

1

4
�2

) .
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It is noted that the necessary conditions for stability are

In the absence of the parameter � in the above condition the classical stability 
condition is found [19].

5  Numerical illustration

In this part, we will utilize the outlined approximate scheme in Eq. (33) and Eq. (34) 
to obtain numerical simulations for solving the damping Duffing Eq.  (1).To show 
the high accuracy of the present approach, the comparison of the numerical solu-
tion with the analytical approximate solution is displayed in Fig. 1. This numerical 
solution has been done using the algorithm building in the Mathematica for finding 
the numerical solution of the Duffing Eq. (1). The analytical approximate solution is 
derived from the modification of the homotopy perturbation method with the three 
expansion techniques given by (33). The full nonlinear frequency � given by (30) is 
used in this calculation. The graph of Fig. 1 shows the excellent agreement between 
the numerical solution (Red curve) and the analytical solution (Blue curve). The 
damping influence is clear in this illustration, in which the wave solution will decay 
as time t is increased. The influence of the variation of the damping coefficient � of 
the analytical solution (33) has been illustrated in Fig. 2. This graph shows that the 
periodic solution without damping is found as � → 0. When � is different from zero 
the decaying in the wave solution is observed. This decay speeds up as � increases. 
The variation of the constant amplitude � has been displayed in Fig. 3.

(38)�2 = �2
0
−

1

4
�2 +

3

4
Q�2 +

3Q2�4

128
(

�2
0
−

1

4
�2

) .

(39)𝜇 > 0, &𝜔2
0
−

1

4
𝜇2 +

3

4
Q𝛼2 +

3Q2𝛼4

128
(

𝜔2
0
−

1

4
𝜇2

) > 0.

Fig. 1  Graphic to the comparison between the numerical solution of Eq.  (1) and its analytical solution 
(33), for a system of �0 = 2, � = 0.5, Q = 0.5, � = 0& � = 1.



1147

1 3

Journal of Mathematical Chemistry (2021) 59:1139–1150 

Fig. 2  The analytical solution (33) with a variety of the damping coefficient � , for the same system as 
given in Fig. 1

Fig. 3  The analytical solution (33) with a variety of the constant amplitude � , for the same system as 
given in Fig. 1

Fig. 4  The illustration of the stability condition (39) with a variety of the damping coefficient � , for the 
same system as given in Fig. 2
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Further, the stability condition (39) has been illustrated numerically as shown 
in Fig. 4. The graph contains the classical stability condition in the case of � = 0 
which plotted in blue color. The region labeled with the symbol “S” refers to the sta-
ble region, while the unstable region is labeled by the symbol “U”. Also, this graph 
represents the modified stability condition in the presence of the effect of the damp-
ing parameter, where � have the consequence values � = 0.5, 1.0, 1.5 . It is observed 
that the increase in � leads to the stable region increases steadily.

6  Conclusion

In the present paper, we have successfully employed the Homotopy Perturbation 
Method with three expanded expansions to solve the damping nonlinear Duffing 
equation. Besides the two known expansions used in the homotopy perturbation 
method, an additional approach of the amplitude-expanding method. We also find 
the accuracy of this method which gives us very attractive results in the terms of the 
exponential of the negative damping parameter. The comparison between our ana-
lytical solution and the numerical solution shows a more excellent agreement. This 
is proved to be a powerful mathematical tool for nonlinear oscillators, can be easily 
extended to the damping nonlinear oscillators and the present proposal can be used 
as paradigms for many other applications in searching for a period or frequency of 
various nonlinear oscillators.
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