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Abstract
An accurate frequency-amplitude relationship is very needed to elucidate the prop-
erties of the oldest device of Fangzhu for collecting water from the air. The Fang-
zhu oscillator was derived and solved approximately (He et  al. in Math Methods 
Appl Sci, 2020, https​://doi.org/10.1002/mma.6384), here we show that the singular 
Duffing-like oscillator can be more effectively solved by the homotopy perturbation 
method and a criterion is obtained for the existence of a periodic solution for the 
singular differential equation. The results obtained in this paper are helpful for the 
optimal design of the Fangzhu device.

Keywords  Homotopy perturbation method · Frequency expansion method · Periodic 
solution · Fangzhu oscillator

Mathematics Subject Classification  34-K13 · 34-K27 · 34-L30 · 37-J25 · 37-K45 · 
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1  Introduction

The Fangzhu device was considered as the oldest nanotechnology used in ancient China 
for collecting water from the air, its nano-scale surface morphology plays an important 
role in water collection efficiency, the super-hydrophobic surface is designed to attract 
water molecules from the air, and its super-hydrophilic partner is used to deliver the 
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attracted water molecules to the water collector. Its mechanism was fully elucidated by 
a singular differential equation by He et al. [1]:

where y is the distance of the attracted molecule from its equilibrium position. The 
understanding of each parameter is given in Ref. [1]. A low frequency is benefi-
cial for the attracted molecule to be transmitted from the super-hydrophobic surface 
of the super-hydrophilic surface, so an accurate estimation of its solution is very 
needed.

The nano-scale surface has a high surface energy or geometric potential, different 
geometric patterns result in different wetting property of the surface [2–11].

Equation  (1) is a Duffing-like oscillator, and we call it as Fangzhu oscillator, the 
periodic property or the instability property of the absorbed water on the Fangzhu’s 
surface plays an important role [1]. There are many analytical methods to solve such an 
equation [12–22], and this paper adopts the homotopy perturbation method [23–28] to 
reveal the periodic property of Eq. (1).

The approximate analytical solutions derived by HPM for the enzyme kinetic model 
of the double nucleic acid strand synthesis during the PCR cycle are presented by 
Fedorov et al. [29]. The analytic approximate solution using the Homotopy Perturba-
tion Method is used by Bayón et al. [30] to solve the nonlinear differential equations 
that appear in an irreversible linear pathway with the enzyme kinetics. Recently, a mod-
ification to the Homotopy perturbation method has been demonstrated by Shen and El-
Dib [31] and El-Dib and Elgazery [32]. This scheme allows us to convert the original 
equation, to an easy alternative one. The approach is concerned to replace the original 
auxiliary linear operator with a new linear auxiliary one.

2 � Homotopy construction to expand (sec x)˛ in the periodic form

Since there is no exact expansion when the function has a negative or fractional power, 
therefore, we need to derive an approximate periodic expansion of the function (sec x)� 
where � it may be a positive integer or perhaps a fraction.

Here, we try to use the concept of the homotopy perturbation method [33] to obtain 
an approximate expansion. To accomplish this aim, it is convenient to rewrite the func-
tion (sec x)� in the form

where � any parameter and may be taken as a small parameter defined by � ∈ [0, 1]. 
Clearly, as � → 1 , the original function is found. The following binomial expansion 
will be used:

Expanding the formula (2) about the parameter �, and using (3), we obtain

(1)ÿ + 𝜔2

0
y + Qy−𝛼 = g(t).

(2)(sec x)� = (cos x)−� = lim
�→1

[1 + �(cos x − 1)]
−�
, � ∈ [0, 1]

(3)(1 + �u)−� = 1 − ��u +
�(� + 1)

2!
�2u2 −

�(� + 1)(� + 2)

3!
�3u3 +⋯ .
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We, again, apply the binomial expansion to expand (1 − �)
−n−�

; n = 1, 2, 3,… . 
Then (4) becomes

If we approximate the above series to the cubic order for the parameter � and 
take the limit as � → 1 , Eq. (5) becomes

The cubic approximate expansion of (cos x)−� can be rewritten in the form

Accordingly, we can write the periodic form of the function sec x as

3 � The solution of Eq. (1) by the homotopy perturbation method

As usual, we need to replace Eq. (1) by its corresponding homotopy equation and 
solve it. Thus we have

Supposing that the solution of Eq. (9) and �2

0
 can be expressed in the form

(4)

(cos x)
−� = lim

�→1
[1 + �(cos x − 1)]

−� = lim
�→1

[(1 − �) + � cos x]−� = lim
�→1

(1 − �)
−�

[

1 +

(

� cos x

1 − �

)]−�

= lim
�→1

(1 − �)
−�

[

1 − ��(1 − �)
−1

cos x +
�(� + 1)

2
�2(1 − �)

−2
cos2 x −

�(� + 1)(� + 2)

6
�3(1 − �)−3 cos3 x −⋯

]

(5)

(cos x)
−� = lim

�→1

[

1 + �� +
1

2
�(� + 1)�2 +

1

6

(

�3 + 3�2 + 2�
)

�3 +⋯

]

− lim ��
�→1

[

1 + (1 + �)� +
1

2
(2 + 3� + �2)�2 +

(

1 +
11

6
� + �2 +

1

6
�3

)

�3 +⋯

]

cos x

+ lim
�(� + 1)

2
�2

�→1

[

1 + (2 + �)� +
1

2
(6 + 5� + �2)�2 +⋯

]

cos2 x

− lim
�→1

�(� + 1)(� + 2)

6
�3(1 + (3 + �)� +⋯) cos3 x +⋯

(6)
(cos x)−� =

(

1 +
11

6
� + �2 +

1

6
�3

)

−
1

2
�
(

9 + 5� + �2
)

cos x

+
1

2
�(� + 1)(3 + �) cos2 x −

1

6
�(� + 1)(� + 2)(4 + �) cos3 x +⋯

(7)

(cos x)−� =

(

1 +
31

12
� + 2�2 +

5

12
�3

)

−
1

2
�

(

9 + 4� −
1

8
�2(� + 1)(� + 6)

)

cos x

+
1

4
�(� + 1)(3 + �) cos 2x −

1

24
�(� + 1)(� + 2)(4 + �) cos 3x +⋯

(8)sec x ≅ 6 −
45

8
cos x + 2 cos 2x −

5

4
cos 3x +⋯

(9)ÿ + 𝜔2

0
y + 𝜌(Qy−𝛼 − g(t)) = 0; 𝜌 ∈ [0, 1]
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If we focus on the case of g(t) = 0, then one can substitute (10) and (11) into 
Eq. (9) and equating coefficients of like powers � , to become zero yields the fol-
lowing equations:

Solving Eq. (12) results in

where A and � are constants determined by initial conditions. Employing (14) in 
Eq. (13), using (7) and avoiding the presence of a secular term needs:

The approximate frequency-amplitude relation is

Without a secular term, solution of Eq. (13) is

Its first-order approximation is sufficient, and then we have:

It is worthwhile to note the oscillatory solution is available when

(10)y(t) = y0 + �y1 + �2y2 +⋯

(11)�2 = �2

0
+ ��1 + �2�2 +⋯

(12)ÿ0 + 𝜔2y0 = 0

(13)ÿ1 + 𝜔2y1 = 𝜔1y0 − Qy−𝛼
0
.

(14)y0(t) = A cos(�t + �),

(15)�1 = −
1

2
�

(

9 + 4� −
1

8
�2(� + 1)(� + 6)

)

QA−1−� .

(16)�2 = �2

0
−

1

2
�

(

9 + 4� −
1

8
�2(� + 1)(� + 6)

)

QA−1−� .

(17)

y1 = −QA−�

[

1

�2

(

1 +
31

12
� + 2�2 +

5

12
�3

)

−
�(� + 1)(3 + �)

12�2
cos 2(�t + �)

+
�(� + 1)(� + 2)(4 + �)

192�2
cos 3(�t + �)

]

(18)

y(t) = −
Q

A��2

(

1 +
31

12
� + 2�2 +

5

12
�3

)

+ A cos(�t + �) +
�(� + 1)(3 + �)Q

12�2A�
cos(2�t + 2�)

−
�(� + 1)(� + 2)(4 + �)Q

192�2A�
cos(3�t + 3�) +⋯

(19)𝜔2

0
>

1

2
𝛼

(

9 + 4𝛼 −
1

8
𝛼2(𝛼 + 1)(𝛼 + 6)

)

QA−1−𝛼 .
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4 � To estimate the most suitable ̨  for the periodic solution

In this section, one can derive an alternative form of Eq. (1) free of y−� , By apply-
ing the modified homotopy perturbation method [31, 32]. This scheme allows us to 
convert the original equation, to an easy alternative one. The approach is concerned 
to replace the original auxiliary linear operator with a new linear auxiliary one. This 
can be accomplished by operating to Eq. (1) by D2 then adding a new auxiliary part 
�2(D2 + �2

0
)y to both sides, yields

Replacing the term Qy−� by bits of help of the original Eq. (1), then applying the 
operator 

(

D2 + �2

0

)−1 to both sides of Eq. (20), final, write its corresponding homot-
opy equation which becomes

Employing the expansion (10) in Eq. (21) and equating the identical power of � 
to zero, we have the zero-order problem as given above in (12), while the first-order 
problem is derived as

Inserting the zero-order solution (14) into Eq. (22), converted to

Due to the difficulty in estimating the particular integral of sec (�t + �), us may 
use the approximate expiration of sec (�t + �) as given in (8), yields

Avoid the secular term requires that � = −1 or � =
8

53
. It is noted that the first 

is the trivial value refers to the linear form of Eq. (1), therefore we consider the 
second value only, to evaluate the nonlinear analysis of Eq. (1). Accordingly, the 
solution of Eq. (24) has the form

(20)
(

D2 + 𝜔2
)(

D2 + 𝜔2

0

)

y = 𝜔2
(

D2 + 𝜔2

0

)

y − 𝛼Q

(

(𝛼 + 1)
ẏ2

y2
−

ÿ

y

)

y−𝛼 .

(21)
(

D2 + 𝜔2
)

y = 𝜌

[

𝜔2y −
𝛼

(

D2 + 𝜔2

0

)

(

(𝛼 + 1)
ẏ2

y2
−

ÿ

y

)

(

ÿ + 𝜔2

0
y
)

]

.

(22)
(

D2 + 𝜔2
)

y1 = 𝜔2y0 −
𝛼

(

D2 + 𝜔2

0

)

(

(𝛼 + 1)
ẏ2
0

y2
0

−
ÿ0

y0

)

(

ÿ0 + 𝜔2

0
y0
)

.

(23)

(

D2 + �2
)

y1 =
(

1 − �2
)

�2A cos(�t + �) +
�(� + 1)A�2

(

�2 − �2

0

)

(

D2 + �2

0

) sec (�t + �).

(24)

(

D2 + �2
)

y1 = −
1

8
(� + 1)

(

� −
8

53

)

�2A cos(�t + �) + �(� + 1)A�2
(

�2 − �2

0

)

×

(

6

�2

0

−
2

(

4�2 − �2

0

) cos (2�t + 2�) +
5

4
(

9�2 − �2

0

) cos (3�t + 3�) +⋯

)

.
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Substitute the zero-order solution and the first-order one into expansion (10) to 
obtain the first-order approximate solution in the form

5 � The Fangzhu oscillator with an external periodic force

In this section, we investigate the influence of the external periodic force, there-
fore, assume that the inhomogeneous part in Eq. (1) become a nonzero. For exam-
ple, let g(t) = f cos (�t + �) ; f  represents the amplitude of the external force and 
� denotes its frequency.

To derive the solution at the harmonic resonance case, we proceeded to oper-
ate on Eq. (1) by D2

(

D2 + �2

0

)−1
, and replacing the function y−� by the help of the 

original equation resulting

Introducing a new auxiliary parameter �2y , and construct the corresponding 
homotopy equation, which has the following configuration:

Using the expansion (10), we obtain the unknown function y1(t) of the har-
monic resonance case is governed by

where the solution of the zero-order problem is still given similarly Eq. (14). Using 
the approximate periodic form of the function sec (�t + �) as defined by (8), then 
removing the secular terms yields the following condition:

(25)

y1 =
488

2809
A
(

�2 − �2

0

)

(

6

�2

0

+
2

3
(

4�2 − �2

0

) cos (2�t + 2�) −
5

32
(

9�2 − �2

0

) cos (3�t + 3�) +⋯

)

.

(26)

y(t) = A cos (�t + �) +
488

2809
A
(

�2 − �2

0

)

(

6

�2

0

+
2

3
(

4�2 − �2

0

) cos (2�t + 2�) −
5

32
(

9�2 − �2

0

) cos (3�t + 3�) +⋯

)

.

(27)

D2y =
𝛼

(

D2 + 𝜔2

0

)

(

(𝛼 + 1)
ẏ2

y2
−

ÿ

y

)

(

ÿ + 𝜔2

0
y − f cos𝛺t

)

+
𝛺2

(

𝛺2 − 𝜔2

0

) f cos (𝛺t + 𝜃).

(28)

(

D2 +𝛺2
)

y = 𝜌

{

𝛺2y +
𝛼

(

D2 + 𝜔2

0

)

(

(𝛼 + 1)
ẏ2

y2
−

ÿ

y

)

(

ÿ + 𝜔2

0
y − f cos (𝛺t + 𝜃)

)

+
𝛺2f

(

𝛺2 − 𝜔2

0

) cos (𝛺t + 𝜃)

}

.

(29)

(

D2 +�2
)

y1 =
(

1 − �2
)

�2

(

A +
f

(

�2 − �2

0

)

)

−
�(� + 1)�2

(

A
(

�2 − �2

0

)

+ f
)

(

D2 + �2

0

) sec (�t + �),
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This condition can be read as mentioned before, the most suitable � =
8

53
 , and the 

frequency � is related to the linear frequency �0 by the relationship

It is worthwhile to note that the detuning parameter � [34], in this case, is � = −
f

A
.

At this end, the solution of Eq. (29) is inserted in the expansion (10), becomes

6 � Conclusion

This short note shows a singular second-order equation might admit a periodic solu-
tion, the frequency-amplitude relationship given in Eq. (16) shows the main param-
eters affecting the frequency property and can be used to design the concave hydro-
philic and convex hydrophobic morphologies on Fangzhu’s surface. The criterion of 
the periodic solution given in Eq. (19) is of great importance for the optimal design 
of the Fangzhu’s surface. A lotus-like surface can not meet the criterion of Eq. (19), 
as a result, the water absorbed on the surface can not be continuously transmitted 
for collection. This paper shows that the homotopy perturbation is an effective tool 
for the Fangzhu oscillator, and the results are given in this paper to help rebuild the 
Fangzhu device, which has been lost for thousands of years.
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