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Abstract
Proteins are linear molecular chains that often fold to function. The topology of fold-
ing is widely believed to define its properties and function, and knot theory has been 
applied to study protein structure and its implications. More that 97% of proteins 
are, however, classified as unknots when intra-chain interactions are ignored. This 
raises the question as to whether knot theory can be extended to include intra-chain 
interactions and thus be able to categorize topology of the proteins that are other-
wise classified as unknotted. Here, we develop knot theory for folded linear molecu-
lar chains and apply it to proteins. For this purpose, proteins will be thought of as an 
embedding of a linear segment into three dimensions, with additional structure com-
ing from self-bonding. We then project to a two-dimensional diagram and consider 
the basic rules of equivalence between two diagrams. We further consider the rep-
resentation of projections of proteins using Gauss codes, or strings of numbers and 
letters, and how we can equate these codes with changes allowed in the diagrams. 
Finally, we explore the possibility of applying the algebraic structure of quandles to 
distinguish the topologies of proteins. Because of the presence of bonds, we extend 
the theory to define bondles, a type of quandle particularly adapted to distinguishing 
the topological types of proteins.
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1  Introduction

Folded linear molecular chains are ubiquitous in biology. Proteins and nucleic acids 
are linear polymers responsible for most cellular functions, for the inheritance of 
biological information, and are subject to changes during evolution and pathologies 
[8, 25]. These chains often fold to function and their 3D structure contains infor-
mation about their dynamics, evolution, and inter-molecular interactions and can 
be used for designing drugs [15, 16]. Geometric and chemical properties of folded 
proteins and genomic DNA have been widely studied using various methods includ-
ing NMR spectroscopy, X-ray crystallography, chromosome conformation capture, 
and mass spectrometry among others. Topological properties of these molecules 
have remained relatively unexplored due to lack of a relevant conceptual framework. 
Knot theory was successfully applied to study proteins and nucleic acids and protein 
and DNA knots were studied using various experimental techniques including nano-
pore technology and probe microscopy [24, 27, 29, 30]. Despite being interesting 
and innovative, these studies have had a limited impact on protein science as the vast 
majority of identified proteins fall into one topology class, i.e., the unknot [22].

Thus, standard knot theory cannot be effectively used to classify proteins [18]. 
Another shortcoming of the standard knot theoretic approach is that intra-molecu-
lar interactions or contacts are ignored. These interactions drive the folding of the 
molecular chains and are functionally important [11, 12, 17, 20, 26]. When intra-
chain interaction is taken into consideration, the prevalence of knots and links sub-
stantially increases [5, 6, 28].

Thus, there is a need for a new topology framework that includes intra-chain 
interactions and is able to classify fold topology of biomolecular chains and in par-
ticular the proteins. This paper presents a new knot theory for folded linear molec-
ular chains and looks to classify the topological structure of proteins through the 
application of certain aspects of knot theory. More specifically, we will apply a mod-
ified singular knot theory, Gauss codes to keep track of the structure, and an associ-
ated singular quandle called a bondle to distinguish structures.

Proteins are continuous linear molecules with the ends unbonded, so we will look 
at them as linear segments embedded in 3-space. Protein structure for a single pro-
tein is formed on three different levels, shown in Fig. 1. The Primary Structure is 

Fig. 1   Depiction of protein structures
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defined by the ordering of the amino acids, or building blocks of the protein. These 
amino acids are bonded in a sequential chain from the N-terminus to the C-termi-
nus, with each amino acid presenting an exposed R-group that can interact chemi-
cally or through the electrostatic effect with other R-groups and other molecules. 
The Secondary Structure is defined by the coiling or local structuring of the amino 
acids. This is where structural patterns appear such as �-pleated sheets and �-heli-
ces, both held together by hydrogen bonds. Tertiary Structure is defined by the inter-
actions between different R-groups or backbone interactions, forming a structure for 
the entire protein.

A knot is an embedding of S 1 , the circle, into three dimensions, called a con-
formation, given by a function f ∶ [0, 2�] → ℝ

3 where f (0) = f (2�) . We define an 
equivalence on conformations of knots, considering two conformations equivalent if 
there is an ambient isotopy from one to the other. This means that we can deform the 
one through space to the other without passing the knot through itself. As is com-
mon, we will use the word “knot” to represent both a given conformation of a knot 
and the equivalence class of conformations corresponding to the given conforma-
tion, clarifying which is which when necessary.

Knot theory can be extended to singular knot theory, where we allow a finite 
number of singular points where two points on the circle are sent to the same point 
in 3-space by f. (See [7] for more on singular knots.) Allowing singularities will pro-
vide us with the ability to model intra-molecular bonds.

While it is often preferable to describe a knot in three dimensions, it is not always 
tractable. Therefore, we project the knot in a particular direction onto a plane, 
obtaining a projection. We consider only regular projections where a finite number 
of pairs of points on the knot are identified with each other and result in what we 
call crossings. We keep track of which of the two points in the pair is the top one. 
A projection is essentially a shadow that retains information at the crossings of the 
strands. Using a defined set of rules called Reidemeister moves, we can change one 
projection of a knot to any other projection of that same knot. In a two-dimensional 
projection, we define a classical crossing as a place where one strand goes over 
another, and if we are allowing singularities, a singular crossing where two or more 
strands intersect each other at a point in the three-dimensional conformation.

We can similarly think of proteins as a conformation of a line segment [0,1] in 
three dimensions, which we will call a protein model, with an associated function 
f ∶ [0, 1] → ℝ

3 . If we utilize the same equivalence of ambient isotopy, then every 
protein can be disentangled and they are all equivalent. But once we include singu-
larities reflecting bonding of points along the conformation, this will no longer be 
true.

In a protein, we define singular crossings to exist where a protein has intra-chain 
interactions (also called contacts). These contacts take one of two forms. The first 
is covalent bonds, defined as two atoms sharing electrons. Of special interest to 
proteins are disulfide bridges, in which two thiol R-groups, made of one sulfur and 
one hydrogen, bond and release their hydrogen atoms. The second type of bond is 
formed through non-covalent interactions. A major form of non-covalent interac-
tions are the electrostatic ones, particularly in the form of hydrogen bonds, which are 
partially electrostatic, but often come in multiples, making their strength significant 
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enough to control the protein’s structure. Hydrogen bonds mediate the interactions 
between beta strands and the formation of alpha-helical structures.

Proteins differ from knots in that they have two endpoints that are not connected. 
One approach to this difference has been work on modelling proteins as knotoids, 
which are the projection of the conformations of a linear segment [6, 10]. Reide-
meister moves (which we will look at in the next section) apply in the theory of kno-
toids, but in this theory, the endpoints cannot be moved across other strands in the 
projection. Although this may be useful when dealing with proteins that are some-
what rigid and have so-called lassos, here we desire a general theory that allows 
the movement of endpoints across strands in a projection. Thus we do not consider 
proteins as they relate to knotoids.

In finding a notation for protein structure, it is true that proteins have variable 
flexibility and restricted length, providing more limitations than the ones we place 
on curves in 3-space when defining knots. But the goal of this paper is topological 
in nature. Thus, we do not capture the full sense of rigidity or steric hindrance in a 
protein. Since we are allowing for the deformation of a protein’s strands in the fol-
lowing sections, we will at times allow the same for the ends of the strand. The nota-
tion defined in this paper looks to balance simplicity and mathematical utility with 
chemical precision.

In Sect.  2, we discuss Reidemeister moves, which are moves one can do on a 
projection of a knot to obtain a new diagram of the same knot. We extend them to 
allow features present in proteins, including bonds, endpoint �-pleated sheets and �
-helices.

In Sect. 3, we introduce Gauss codes, which can be used to describe in symbols a 
projection of a knot. We extend them to proteins.

In Sect. 4, we introduce quandles, which are algebraic objects that can be used to 
distinguish between different knots. In Sect. 5, we introduce singquandles, which are 
an extension of quandles that have been used to distinguish knots with singularities. 
We further extend this idea to the idea of a bondle, which is a quandle that can be 
applied in the presence of bonds.

In Sect. 6, we introduce the oriented bondle, which seems particularly suited to 
distinguishing between the topological types of proteins. We then identify several 
families of oriented bondles. In Sect. 7, we provide several examples of pairs of pro-
teins that can be distinguished using oriented bondles.

2 � Reidemeister moves

Reidemeister moves are a set of changes to the combinatorial pattern that is a projec-
tion of a knot. Planar isotopy is a deformation of the projection that does not change 
the combinatorial pattern. The critical result from [2] or [23] says that two knots K1 
and K2 are equivalent if and only if there exists a sequence of Reidemeister moves 
and planar isotopy in the plane that transforms a projection of K1 to a projection of 
K2 . The three Reidemeister moves are depicted in Fig. 2. We refer to the monogonal 
face found in a Type I Reidemeister move as a kink.
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While these three Reidemeister moves are able to completely describe equiva-
lence in classical knots, for our purposes we need to add in singular crossings to 
represent the covalent and hydrogen bonds that proteins form with themselves 
[7]. The use of singular crossings requires an additional two Reidemeister moves 
as shown in Fig. 3 [1, 31].

As appearing in this illustration, we denote a singularity by a small rectangle 
with two parallel edges on two strands. By drawing singular crossings in this fash-
ion, we show that the strands do not cross over each other, but are instead bound 
together to more closely replicate the structure we see in proteins. By doing so, 
we do not lose any of the structure or properties we would hope to retain.

In a protein, a �-pleated sheet consists of multiple segments of a protein that 
run parallel to each other, roughly in a plane, with hydrogen bonds connecting 
each segment to its adjacent segment in multiple places. If we collapse the sheet 
to a point, this functionally looks like a singular crossing with more than two 
strands. Therefore, in order to represent �-pleated sheets, we must extend singu-
lar knot theory to contain multi-singularities. We define a multi-singularity as a 

Fig. 2   Types I, II, and III Reidemeister moves

Fig. 3   Type IV and V Reidemeister moves for singularities
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place where two or more strands intersect each other at a single point, as shown 
in Fig. 4.

We can then incorporate this into the moves shown in Fig. 3 and define the set of 
singular Reidemeister moves shown in Fig. 5 to describe topological isotopy.

Note that when applying a Type V Reidemeister move to a multi-singular cross-
ing, we allow any number of segments to be included, even though we have only 
depicted three segments to simplify the illustration. When the singularity is flipped, 
this causes a half-twist of all of the segments above and below the multi-singular 
crossing in the process.

Whereas in a Type IV move we only explicitly allow a segment to pass through 
a multi-singularity from left to right, we can use the given Reidemeister moves to 
show that we can slide a horizontal segment past a multi-singularity from top to bot-
tom a well, as shown in Fig. 6.

Proteins also contain �-helices, which we can represent in multiple ways. An �
-helix appears where a segment of a protein coils, with hydrogen bonds holding 
the coils together, as shown in Fig. 1. For now, we simply say that they do not add 

Fig. 4   �-pleated sheets and multi-singular crossings

Fig. 5   Types IV and V Reidemeister moves for multi-singular crossings
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topological structure, but are important in protein function. In a projection, we allow 
�-helices to slide along a segment, freely traversing a classical crossing, but not to 
pass through a singular crossing. Thus, we create a Reidemeister move Type VI to 
allow �-helices, depicted as the small set of jagged lines, to pass over or under other 
segments as in Fig. 7.

Since a protein is a continuous strand, we are able to equate its projection to a 
segment of a knot, allowing us the aforementioned Reidemeister moves. But because 
the protein has two unbonded endpoints, denoted N and C, that are free to move 
around, we need to be able to slide these endpoints past another strand. Therefore, 
we define a final Reidemeister Type VII move for this action as well as in Fig. 8.

We would like to prove that this set of seven moves captures all possible equiv-
alences between projections of protein conformations. To achieve this, as is done 

Fig. 6   A vertical Type IV Reidemeister move produces a horizontal Type IV Reidemeister move

Fig. 7   Type VI Reidemeister move

Fig. 8   Type VII Reidemeister move
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in the knot case as well, we replace smooth conformations with piece-wise lin-
ear conformations, meaning that our conformation can be represented by a finite 
number of line segments glued end-to-end.

Theorem 2.1  Given two protein conformations, they are equivalent if and only if 
there is a sequence of planar isotopies and Reidemeister moves from this set of seven 
moves to get from a projection of the first to a projection of the second.

Proof  As previously mentioned, it has already been proved that for a classical knot, 
planar isotopy and Type I, Type II, and Type III moves suffice to represent ambient 
isotopy in a knot (see [14] for a readable proof). The proof uses triangle moves to 
realize ambient isotopy between two piecewise linear knots. A triangle move is real-
ized by taking a solid triangle that intersects the knot in one or two edges and replac-
ing those line segments on the knot by the non-intersecting edges on the triangle, as 
shown in Fig. 9. Any isotopy we attain from deforming the original conformation 
can be represented by triangle moves. When we project down to a projection, one 
can show the triangle moves appear as planar isotopy and Reidemeister moves.

A spatial graph is a conformation of a graph (consisting of a collection of edges 
sharing a collection of vertices as their endpoints) in 3-space. A rigid vertex graph 
further posits that adjacent edges coming into a vertex cannot twist about one 
another. The vertex can be flipped, intertwining the edges appropriately as in our 
Type V move. In [14], it is shown that two conformations of a rigid vertex spatial 
graph with all vertices of valency 4 (called an RV4 graph) are equivalent if and only 
if there is a sequence of planar isotopies and Reidemesister moves of Types I, II, III, 
IV, and V from a projection of one to a projection of the other. This proof also con-
siders how triangle moves impact the projection.

Our situation for a protein conformation has three differences from this one. First, 
we allow our vertices to have an even number of edges that can be four or greater. 
However, this does not impact the proof as in [14] and it goes through exactly as 
before.

Second, we have �-helices. These can be treated as vertices of valency two, and 
then the same arguments as in [14] go through to generate the Type VI Reidemeister 
move.

Third, we have the N and C endpoints of the protein. But it is straightforward to 
see that a triangle move that projects to overlap an endpoint will simply generate the 
Type VII Reidemeister move.

Fig. 9   Example of triangle move
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Thus, all isotopies allowed in deforming our structure can be represented by trian-
gle moves, which in the projections can be represented by the defined Reidemeister 
moves. Hence, the seven moves are sufficient to convert one projection of a protein 
conformation to any projection of a topologically equivalent protein conformation. 	
� ◻

With these seven Reidemeister moves, we are able to transform one projection 
of a protein to another. However, it is inconvenient to convey these transformations 
through diagrams. Encoding diagrams as strings of text allows us to both interpret 
and transmit the information. Therefore, we turn to Gauss codes to represent protein 
structure in text form.

3 � Gauss codes

Gauss codes are a means to represent knot projections using only symbols instead 
of diagrams. Using a Gauss code, we are able to easily go back and forth between 
the code and a projection while also being able to change entries in the code when 
Reidemeister moves are applied.

Since proteins are constructed and written from the N-terminus to the C-termi-
nus, there is a definitive start and end point to proteins. Therefore, we start the Gauss 
code of a protein projection with N and end the code with C. We also have a natural 
orientation to the protein. Crossings are oriented as in Fig. 10.

As with traditional Gauss codes, when following a strand, if the strand crosses 
over another strand, we denote this with an O for over. Similarly, when traversing 
beneath another strand, we denote this with a U for under. We assign an orientation 
to the crossing denoted by a superscript of ±.

If an �-helix appears, we denote it as � with a superscript of + if the helix is right-
handed (coils clockwise) and − if the helix is left-handed (coils counterclockwise). 
Bonds are written as B, and �-pleated sheets are written as � . Strands in bonds and �
-pleated sheets are labeled with a superscript of ±, using + if the strand runs parallel 
to the strand that first occurs in the bond or sheet (so the first strand always receives 
a +), and − if the strand runs anti-parallel to the strand that first occurs.

With �-pleated sheets, strands are numbered with a subscript. The zero strand 
is defined as the first strand that appears in the protein’s sequence. Numbers are 
assigned as sequential integers to the left and right of the initial strand, with 
positive integers appearing on the side to which the second strand appears in the 

Fig. 10   Positive and negative 
oriented crossings
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sequence, and all strands on the opposite side of the initial strand are defined as 
negative, as in Fig. 11.

Finally, each crossing, �-helix, bond, or �-pleated sheet is denoted with 
a sequential numbering based on its first appearance in the protein. Figure  12 
gives an example of a Gauss code for a complete protein projection.

When we apply Reidemeister moves to a given projection, the move will 
be reflected in certain changes to the Gauss code. For instance, a Type I move 
inserts On±Un± or Un±On± into the Gauss code at the relevant point. Similar 
operations hold for all the Reidemeister moves.

For example, for the protein projection appearing in Fig. 12, we could apply 
a Type VI Reidemeister move to slide the �-helix out of the bigon (region in the 
projection plane bounded by two edges of the projection) bounded by crossings 
5 and 6, and then remove the bigon by a Type II Reidemeister move to result in 
the Gauss code N �1+

0
 O2+ O3− B4+ U3− �1+

1
 U2+ �1+

−2
 �1−

−1
 �5+ B4− C.

But caution should be exercised. The corresponding operations on the Gauss 
codes do not always correspond to actual Reidemeister moves. For example, to 
do a Type II Reidemeister move, we must have two strands of the projection that 
are on the same complementary face of the projection. This is not visible from 
the Gauss code.

Fig. 11   A �-pleated sheet in a 
projection, with Gauss code N 
�1+

0
 �1−

2
 �1+

1
 �1−

−1

Fig. 12   Example of a projection 
of a protein conformation with 
Gauss code given by N �1+

0
 O2+ 

O3− B4+ U3− �1+
1
 U2+ O5− O6+ 

�1+
−2

 �1−
−1

 U6+ �7+ U5− B4− C 
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4 � Quandles

A knot invariant is a map I ∶ K → S from all knot diagrams K to some set S such 
that for any two projections K1 and K2 of the same knot type, I(K1) = I(K2) . The 
set S can be a collection of integers, groups, polynomials or other mathematical 
objects. An invariant is said to be a complete invariant if the converse is true, 
which is to say I(K1) = I(K2) implies K1 and K2 represent the same knot type.

A quandle is an algebraic object that was introduced as an invariant for knots 
in 1982 independently in [13, 19]. It has turned out to be a particularly effective 
means to distinguish knots. For more details on quandles, see for example [9].

Definition 4.1  A quandle is a set X with an operation ⊳ ∶ X × X → X such that the 
following three conditions are satisfied.

A slightly more restrictive algebraic structure than a quandle is a kei, also 
called an involutory quandle.

Definition 4.2  A kei, or involutory quandle is a set X and operation ⊳ ∶ X × X → X 
that satisfy the following three conditions.

Note that the only difference is that for an involutory quandle, ⊳ is equivalent 
to ⊳−1.

Depending on the situation, as we will discuss, one or the other of these alge-
braic structures may be the more appropriate to apply.

A coloring of an oriented knot projection by a quandle is an assignment of a 
value from X to each arc, where an arc is defined as part of a strand in a projec-
tion that both starts and ends at an under crossing, but going over zero or as many 
crossings as we like. We require that the labels assigned to the arcs be related 
through the quandle operation as in Fig. 13.

The relevance of quandles to knots becomes apparent when we consider how 
the Reidemeister moves affect our labelled diagram as in Fig. 14. We see that the 
quandle axioms satisfied by the labels ensure that the quandle coloring is still 
valid after the Reidemeister moves. This means that the validity of the quandle 
coloring does not depend on the particular projection. It just depends on the knot 
type.

(1) For all x ∈ X, x ⊳ x = x.

(2)There exists an inverse function ⊳
−1 such that for all x, y ∈ X,

(x ⊳ y) ⊳−1 y = x = (x ⊳−1 y) ⊳ y.

(3) For all x, y, z ∈ X, (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z).

(1) For all x ∈ X, x ⊳ x = x.

(2) For all x, y ∈ X, (x ⊳ y) ⊳ y = x = (x ⊳ y) ⊳ y.

(3)For all x, y, z ∈ X, (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z).
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Thus, given a particular quandle, we can generate an invariant for knots by 
seeing how many distinct colorings by that quandle a particular knot has. Two 
knots with different numbers of colorings by that quandle must then be distinct 
knots.

We can also drop the orientation on the knots, in which case ⊳ and ⊳−1 
become identical, the arrows disappear in Fig. 14, and we color with involutory 
quandles instead. This simplifies things as we only have one operation to con-
sider instead of two.

Fig. 13   Quandle conditions that 
must be satisfied at a crossing

Fig. 14   The quandle relations guarantee the Reidemeister moves respect the labels
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5 � Quandles and singularities

In order to allow for singularities in knots, the authors of [4] introduced the singquan-
dle. We first consider the singquandle for an unoriented knot, which will be an involu-
tory quandle that satisfies additional conditions.

An arc in a singular knot projection is a strand that begins and ends at either an 
under-crossing or a singularity. Given an involutory quandle coloring of the arcs of a 
projection, we require the labels to satisfy conditions at the singular crossings as in 
Fig. 15, where R1(x, y) and R2(x, y) are maps from X × X to X yet to be specified.

Since the diagram in Fig. 15 can be rotated by 90◦ , 180◦ and 270◦ clockwise and the 
relation between the top pair of labels and the bottom pair of labels must be maintained, 
we immediately obtain certain relations that must be satisfied:

In [4], the authors show that in the presence of singularities, the only additional Rei-
demeister moves necessary are those coming from sliding a separate vertical strand 
on the left to the right behind or in front of a singularity, or flipping a singularity as 
in Fig. 16.

These moves generate the additional relations:

(1)x = R2(R2(x, y),R1(x, y)) (rotate 180◦)

(2)y = R1(R2(x, y),R1(x, y)) (rotate 180◦)

(3)x = R1(y,R2(x, y)) (rotate 270◦)

(4)R1(x, y) = R2(y,R2(x, y)) (rotate 270◦)

(5)y = R2(R1(x, y), x) (rotate 90◦)

(6)R2(x, y) = R1(R1(x, y), x)) (rotate 90◦)

(7)(y ⊳ z) ⊳ R2(x, z) = (y ⊳ x) ⊳ R1(x, z)

Fig. 15   Labels at a singularity
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Definition 5.1  A singquandle is an involutory quandle, with a choice of R1(x, y) 
and R2(x, y) that satisfy all of the additional relations (1)–(11).

But the singularities we wish to consider for proteins are not of this type. In 
our case, we have bonds across two parallel strands, as in Fig. 17.

Such a bond does not have a four-fold rotational symmetry, but only a two-fold 
rotational symmetry. Thus, we have the following definition:

Definition 5.2  An involutory bondle is an involutory quandle that satisfies the rela-
tions (1), (2), (7), (8), (9), (10) and (11).

Although this choice allows us to incorporate bonds into our quandle, we do 
not yet have a way to represent �-pleated sheets. To deal with them, we replace a �
-pleated sheet by a sequence of independent adjacent singular crossings as follows.

(8)R1(x, y) = R2(y ⊳ x, x)

(9)R2(x, y) = R1(y ⊳ x, x) ⊳ R2(y ⊳ x, x)

(10)R1(x ⊳ y, z) ⊳ y = R1(x, z ⊳ y)

(11)R2(x ⊳ y, z) = R2(x, z ⊳ y) ⊳ y

Fig. 16   Reidemeister moves for 
a singularity

Fig. 17   Labels at a bond
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We have already assigned positive and negative integer values to the strands in 
a �-pleated sheet from the subscripts of the Gauss code. Therefore, if we define the 
direction of the zero strand as downwards, we can define the relative heights of the 
individual singularities replacing a �-pleated sheet to be strictly increasing as the 
numbering increases, as shown in Fig. 18. The bonds appear as a set of stairs, either 
rising to the right or left, depending on which is the positive side of the labels on the 
�-pleated sheet. This transformation of a �-pleated sheet into adjacent singularities 
is called a segmentation of the �-pleated sheet.

With this, we can still perform the Type IV and Type V moves on multi-singular 
crossing utilizing a sequence of Reidemeister moves on order two singularites, as 
shown in Fig. 19. Thus, no multi-singularity Reidemeister moves are needed. How-
ever, this choice for how to represent a �-pleated sheet does mean that we cannot 
distinguish between a protein with a �-pleated sheet and an identical one that has the 
corresponding sequence of bonds in place of the �-pleated sheet. Bondle invariants 
will be equivalent for the diagrams in Fig. 20.

The next issue we need to consider is the endpoints of the protein model. When 
considering proteins, we can view them as knot segments, with the ends free to 
move. Although in the physical realization of a protein, ends are sometimes tucked 
inside the protein or are subject to constraints and are therefore not free to move, in 
our model, we allow them to slide past strands in any given projection. Even for a 
fixed rigid conformation, as we change our projection direction, the endpoints in the 
projections can slide past strands, eliminating or creating crossings. Therefore, we 
treat the end strands as insignificant until they reach the first bond. We think of the 
ends as only being relevant in defining the first and last bonds, and ignoring them 
otherwise, as in Fig. 21.

The final structure we need to consider is the �-helix. We view it as a sequence 
of n kinks, where n is the number of full rotations that the helix contains, all 
having either + or − crossings depending on whether it is a clockwise or coun-
terclockwise �-helix, as in Fig. 22. These kinks are referred to as residues. Just 
as we are unable to distinguish a segmented �-pleated sheet from a sequence of 
adjacent bonds, we cannot distinguish an �-helix from a sequence of kinks.

Fig. 18   A �-pleated sheet before and after segmentation
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When coloring a protein with a quandle, the �-helix becomes invisible 
because the Reidemeister Type I move in Fig. 14 allows for the removal of kinks. 
However, there is a generalization of a quandle called a rack that does not allow 
for the removal of kinks, and therefore does see the existence of an �-helix. A 
rack is simply a set that satisfies the second and third axioms of a quandle but 
not the first. We will not pursue racks further here.

Fig. 19   Reidemeister moves on a segmented �-pleated sheet

Fig. 20   Three indistinguishable protein models
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6 � The oriented bondle

Since proteins do have a natural orientation, we should also consider the oriented 
version of the bondle. The oriented singquandle was defined in [3]. The authors 
showed that in addition to the four traditional Reidemeister moves on oriented 
diagrams that were shown in [21] to suffice for oriented links (appearing as the 
first four in Fig. 23), the 14 possible Reidemeister moves involving singularities 
for oriented links can be reduced to the three depicted in Fig. 23. Thus seven Rei-
demeister moves suffice for equivalency of singular diagrams.

Inserting our labels as in Fig.  15 (but with both strands pointing downward) 
into these three possibilities, we obtain a set of axioms to go with our three tradi-
tional quandle axioms coming from the non-singular moves.

Definition 6.1  Let (X,⊳) be a quandle. Then if R1 and R2 are two maps from X × X 
to X satisfying the following relations, we say that (X,⊳) is an oriented singquandle.

(12)R1(x⊳
−1y, z) ⊳ y = R1(x, z ⊳ y)

(13)R2(x⊳
−1y, z) = R2(x, z ⊳ y)⊳−1y

Fig. 21   Reducing end arcs

Fig. 22   Replacing an �-helix with a sequence of kinks



1728	 Journal of Mathematical Chemistry (2020) 58:1711–1736

1 3

Note that for the oriented singquandle, there are no axioms coming from succes-
sive rotations by 90◦ of Fig. 15. The authors of [3] give the following two examples 
of singquandles.

Example 6.2  Let n be a positive integer, and let a be an invert-
ible element in ℤn and b any element in ℤn . Then the binary operations 
x ⊳ y = ax + (1 − a)y , x ⊳−1 y = a−1x + (1 − a−1)y , R1(x, y) = bx + (1 − b)y and 
R2(x, y) = a(1 − b)x + [b + (1 − b)(1 − a)]y make the triple (ℤn,⊳,R1,R2) satisfy 
the conditions to be an oriented singquandle.

Example 6.3  Let X = G be a non-abelian group with the binary operation 
x ⊳ y = y−1xy . Then, for n ≥ 1 , the following families of maps R1 and R2 make 
(X,⊳,R1,R2) into an oriented singquandle: 

1.	 R1(x, y) = x(xy−1)n and R2(x, y) = y(x−1y)n,
2.	 R1(x, y) = (xy−1)nx and R2(x, y) = (x−1y)ny,

3.	 R1(x, y) = x(yx−1)n+1 and R2(x, y) = x(y−1x)n.

In the case of proteins, we would like to consider bonds rather than singularities. 
There are two distinct types of oriented bonds, one where the orientations on the 
two strands are parallel and one where they are anti-parallel, as in Fig. 24.

(14)(y⊳−1R1(x, z)) ⊳ x = (y ⊳ R2(x, z))⊳
−1z

(15)R2(x, y) = R1(y, x ⊳ y)

(16)R1(x, y) ⊳ R2(x, y) = R2(y, x ⊳ y)

Fig. 23   A generating set of Reidemeister moves for oriented singular knots
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Each of the fourteen moves involving singularities from [3] yields two possibili-
ties corresponding to whether the singularity is replaced with a vertical or horizon-
tal bond. However, it is still true that for each of a vertical or horizontal bond, the 
fourteen moves reduce to three. So in addition to the four non-singular Reidemeister 
moves, we have six more moves to consider.

The first three correspond to bond diagram (A) in Fig.  24, and we inherit the 
same set of relations as for the singquandle, namely (12)–(16).

Considering bond diagram (B) from Fig.  24, we pick up two more functions 
R3(x, y) and R4(x, y) . But note that rotation by 180◦ switches the roles of x and y and 
the roles of R3 and R4 . Thus, it is always the case that R4(x, y) = R3(y, x) . We will 
use this to eliminate R4(x, y) from all subsequent relations.

From Fig. 25, we obtain four additional relations.

Definition 6.4  An oriented bondle is a quandle with operation ⊳ and choices for 
functions R1(x, y),R2(x, y) and R3(x, y) such that they satisfy relations (12)–(16) and 
the additional relations:

Note that the maps R3(x, y) = x and R3(x, y) = y do always satisfy the relations 
(17), (18), (19) and (20) for any quandle (X,⊳) . We call these trivial solutions as 
they do not recognize the existence of the bond.

Since we already have examples of the desired maps R1 and R2 for both Exam-
ple 6.2 and Example 6.3, we would like to find some solutions for the map R3 satis-
fying relations (17), (18), (19) and (20).

Lemma 6.5  Let n be a positive odd integer greater than or equal to 3 and let  a be 
an invertible element of ℤn. Consider the quandle  (ℤn,⊳) with x ⊳ y = ax + (1 − a)y 
and inverse operation x ⊳−1 y = a−1x + (1 − a−1)y. Let m be an element in ℤn and 

(17)R3(y, x ⊳
−1 z) = R3(y ⊳ z, x) ⊳−1 z

(18)R3(x, y ⊳ z) = R3(x ⊳
−1 z, y) ⊳ z

(19)(z ⊳−1 R3(x, y)) ⊳ x = (z ⊳−1 y) ⊳ R3(y, x)

(20)R3(x, y) ⊳
−1 y = R3(x ⊳

−1 R3(y, x), y).

Fig. 24   Labels at bonds with 
parallel and anti-parallel strands

(A) (B)
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let R3 be given by R3(x, y) = mx + (1 − m)y. Then the map R3 satisfies the Eqs.  (17), 
(18), (19)  and  (20)  if and only if m(m − 1) = 0 ∈ ℤn.

Proof  Direct computations show that the map R3 given by R3(x, y) = mx + (1 − m)y 
satisfies the three Eqs. (17), (18), (19). Now substituting R3 in Eq. (20) and simpli-
fying gives the condition m(m − 1)(x − y) = 0 , for all x, y ∈ ℤn , and thus yields the 
condition m(m − 1) = 0 ∈ ℤn . 	�  ◻

We then have the following corollary

Corollary 6.6  Let   n = pq where p and q are odd primes. Assume fur-
ther that x ⊳ y = ax + (1 − a)y and x ⊳−1 y = a−1x + (1 − a−1)y ,  for 

Fig. 25   Relations from oriented bonds
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invertible element a in ℤn. For any fixed element  b in ℤn, let R1(x, y) = bx + (1 − b)y ,  
R2(x, y) = a(1 − b)x + [b + (1 − a)(1 − b)]y and R3(x, y) = mx + (1 − m)y .  Then 
(ℤn,⊳,R1,R2,R3) is an oriented bondle if and only if p divides m and q divides 
(m − 1) or  p divides (m − 1)  and q divides m.

The following is a list of some (n, m) satisfying Corollary 6.6. 

1.	 If n = 15 then m = 6 or m = 10.
2.	 If n = 21 then m = 7 or m = 15.
3.	 If n = 33 then m = 12 or m = 22.
4.	 If n = 35 then m = 15 or m = 21.

Now we consider the case when the quandle is a group G with conjugation. First 
recall that the commutator of two elements x and y in a group G is given by 
[x, y] ∶= xyx−1y−1 . We have the following Lemma.

Lemma 6.7  Let X = G be a non-abelian group and let the quandle operation on  
G be given by x ⊳ y = y−1xy, so that x ⊳−1y = yxy−1.  Assume that R3 is given by 
R3(x, y) = xpyq ,  where p and q are integers, then

1.	 The map R3 satisfies both Eqs. (17) and  (18) for any integers p and  q.
2.	 If for all x, y ∈ G , xp−1yq = x−qy1−p then R3 satisfies Eq. (19).
3.	 Let p be an integer. If for all x, y ∈ G, the commutator [xp, y1−p] = 1, then R3 satis-

fies Eq.  (20).

Proof  Assume that R3 has the form R3(x, y) = xpyq , then 

1.	 One can see that Eq. (17) is satisfied for all integers p and q from the following. 

 Similarly, one has 

 showing that Eq. (18) is satisfied also for all integers p and q.
2.	 Now we check Eq. (19). Assume that the equation xp−1yq = x−qy1−p holds in G. 

Now we compute both the left hand side (LHS) and the right hand side (RHS) of 
Eq. (19). 

R3(y, x ⊳
−1z) =yp(zxz−1)q = ypzxqz−1 = zz−1ypzxqz−1

=R3(y ⊳ z, x) ⊳−1z.

R3(x, y ⊳ z) =xpz−1yqz = z−1zxpz−1yqz = R3(x ⊳
−1z, y) ⊳ z,

LHS = (z⊳−1R3(x, y)) ⊳ x = x−1 xpyq z y−qx−px

= xp−1yq z y−qx1−p,

RHS = [R3(y, x)]
−1yzy−1R3(y, x) = (ypxq)−1yzy−1ypxq

= x−qy1−p z yp−1xq.
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 Since xp−1yq = x−qy1−p , then LHS = RHS giving the result.
3.	 We finish by checking Eq. (20). Here also we compute separately the LHS and 

the RHS. We thus have 

 Now since the commutator [xp, y1−p] = 1 , then we have xpy1−p = y1−pxp . Multi-
plying this equation by yp from the left and by yq−1 from the right gives the equa-
tion ypxpyq−p = yxpyq−1 , thus we have RHS = LHS giving Eq. (20).

	�  ◻

In order to give a more explicit example of a non-abelian group with a map R3 
satisfying Eqs. (19) and (20), we use the group of symmetries of a square.

Definition 6.8  Given a square with vertices labeled by 1, 2, 3 and 4, let G be the set 
of all rigid motions of the square that send vertices to vertices. Under composition, 
this set forms a non-abelian group called the dihedral group of order 8 and denoted 
D4 . Precisely, D4 = {1, r, r2, r3, s, sr, sr2, sr3} , where the permutation r = (1 2 3 4) is 
the clockwise rotation of 90◦ and s is the reflection s = (1 2)(3 4).

Recall that in D4 , the elements r and s satisfy the relations r4 = 1 = s2 
and srs = r−1 . By iterating this last identity, we obtain sris = r−i , for 
0 ≤ i ≤ 3 . The square of any element of D4 is either the identity element 1 
or r2 . Then we see that r2 commutes with any other element of D4 , since 
sri r2 = (sri+2s) s = r−i−2s = r4−i−2s = r2−is = r2(sris)s = r2 sri.

Corollary 6.9  In the dihedral group D4, the maps R3(x, y) = x2y−1 and  
R3(x, y) = x−1y2 both satisfy Eqs.  (19)  and  (20).

We thus obtain the following family of bondles.

Example 6.10  Let X = D4 be the quandle with operation x ⊳ y = y−1xy , then the fol-
lowing families of maps R1,R2 and R3 make (X,⊳,R1,R2,R3) into a bondle: 

1.	 R1(x, y) = x(xy−1)n , R2(x, y) = y(x−1y)n and R3(x, y) = x2y−1

2.	 R1(x, y) = (xy−1)nx , R2(x, y) = (x−1y)ny and R3(x, y) = x2y−1

3.	 R1(x, y) = x(yx−1)n+1 , R2(x, y) = x(y−1x)n and R3(x, y) = x2y−1.

Note that this example still holds if we change R3(x, y) = x2y−1 to R3(x, y) = x−1y2.

LHS = R3(x, y) ⊳
−1y = yxpyqy−1 = yxpyq−1

RHS = R3(x ⊳
−1R3(y, x), y) = (ypxqxx−qy−p)pyq

= ypxpy−pyq = ypxpyq−p.
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7 � Examples

Given two projections of proteins and a choice of bondle, we can count the number 
of distinct colorings of each projection by that bondle, and if those numbers are dis-
tinct, we know the two proteins are not topologically equivalent. This provides an 
opportunity for the categorization of proteins into distinct topological types. In the 
following we give two examples demonstrating the use of oriented bondles to topo-
logically distinguish proteins with bonds.

Example 7.1  In this example (Fig. 26), we use the oriented bondle (ℤ15,⊳,R1,R2,R3) 
from Corollary  6.6 with a = 8 . Since 8 × 2 is congruent to 1 modulo 15 then 
a−1 = 2 . We set b = 2 and then use this oriented bondle to distinguish the topologi-
cal type of the following two two proteins P1 and P2.

Precisely, x ⊳ y = 8(x + y), x ⊳−1 y = 2x − y , R1(x, y) = 2x − y and 
R2(x, y) = 7x − 6y . Note that we do not need to define R3(x, y) because there are no 
anti-parallel bonds in the diagrams.

A coloring of P1 gives the following equation

which simplifies to

So if 5 divides y − x , we obtain a nontrivial coloring. Thus, the total number of col-
orings, including the trivial colorings, is 45.

On the other hand, a coloring of P2 gives the following equation

which simplifies to

Since 11 is invertible in ℤ15 , we see that x = y , implying that P2 has only trivial col-
orings, of which there are 15. Thus P1 and P2 are distinct.

R2(y, x) = y

6(y − x) = 0

R2(y, x) ⊳
−1 R1(y, x) = y

11(y − x) = 0.

Fig. 26   Distinguishing P
1
 from P

2
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Example 7.2  In this example (Fig.  27), we include anti-parallel bonds. We utilize 
the bondle ℤ15 with a = 7 , a−1 = 13 = −2 (modulo 15), b = 8 and m = 6 . Thus, 
x ⊳ y = 7x − 6y and x ⊳−1 y = −2x + 3y , R1(x, y) = 8x − 7y , R2(x, y) = −4x + 5y 
and R3(x, y) = 6x − 5y.

At the crossing with a hollow dot in P1 , we obtain the relation:

This yields 0 = 5(x − y) , implying that there are nontrivial colorings correspond-
ing to when 3 divides x − y . So we obtain a total of 75 colorings.

But at the crossing with a hollow dot in P2 , we obtain the relation:

This yields 0 = 7(y − x) , and as 7 is invertible, we only obtain the 15 trivial color-
ings corresponding to y = x . Thus, the two proteins must be topologically distinct.

8 � Conclusion

When intra-chain interactions are included for linear molecules, a rich knot theory 
is possible. Utilizing some of the standard tools of knot theory extended to this new 
paradigm, including generalized Reidemeister moves and Gauss codes, it is possible 
to catalog the various knotted structures that result. To that end, the extension of 
quandles to bonded linear segments, called bondles, allows for the differentiation 
of the topological structures that can appear. This approach could be mechanized, 
allowing for computers to search for the parameters for the appropriate bondle to 
distinguish between the topological types of two proteins, for instance. There are 
many avenues for further research in these directions.

y = [R2(𝛼,R3(x, y) ⊳
−1 R1(𝛼,R3(x, y)] ⊳

−1 R3(y, x)

y = R2(𝛽,R3(x, y) ⊳ 𝛽) ⊳ [R1(𝛽,R3(x, y) ⊳ 𝛽) ⊳ R2(𝛽,R3(x, y) ⊳ 𝛽)]]

Fig. 27   Distinguishing P
1
 from P

2
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