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Abstract
In this study, a new extension of the concept of the homotopy perturbation method 
is presented. Based on the proposed method, the nonlinear partial differential equa-
tions of fractional order that appeared in the applied chemistry are investigated. The 
fractional derivative is described in the Ji Huan He sense and the uniqueness of the 
solution and convergence of the proposed method is proved. Finally, some numeri-
cal examples are investigated. The obtained results are in good agreement with the 
existing ones in open literature and it is shown that the present method is very effec-
tive and accurate.

Keywords  Fractional nonlinear partial differential equations · Ji Huan He 
derivative · Extended homotopy perturbation method

1  Introduction

Recently, it has turned out that many phenomena in engineering and other areas of 
science can be successfully modeled by the use of fractional derivatives [1–5]. The 
motivation of this paper is to extend the application of the homotopy perturbation 
method [6–11] to solve the nonlinear partial differential equations with time frac-
tional coordinate derivatives.

1.1 � Background on fractional derivatives

The fractional calculus may be considered an old and yet novel topic. It is an old 
topic because, starting from some speculations of Leibniz (1695, 1697) and Euler 
(1730), it has been developed progressively up to now. However, it may be consid-
ered a novel topic as well. Only since the Seventies, the fractional calculus has been 

 *	 K. Sayevand 
	 ksayehvand@yahoo.com; ksayehvand@malayeru.ac.ir

1	 Faculty of Mathematical Sciences, Malayer University, Malayer, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-020-01130-5&domain=pdf


1292	 Journal of Mathematical Chemistry (2020) 58:1291–1305

1 3

the object of specialized conferences and treatises. It is an emerging field in math-
ematics that has profound applications in all disciplines related to science and engi-
neering. Some results have been reported in various books or related review articles 
[12–14]. However, we are still beginning to use this very powerful tool in many field 
of research. It is also a new powerful tool recently used to model complex systems 
with nonlinear behavior and long-term memory.

1.2 � Preliminaries and notations

There are several definitions for fractional differential equations. These definitions 
include Grunwald–Letnikov, Riemann–Liouville, Caputo, Weyl, Marchaud, Riesz 
fractional derivatives, Nishimoto fractional operator, Jumarie’s definitions and so on 
[15, 16]. This subsection is devoted to a description of the operational properties in 
order to be acquainted with sufficient fractional calculus theory and enable us to fol-
low the solutions of the problems given in this paper.

Definition 1  The Mittag–Leffler function E�,�(z) with 𝛼 > 0 , 𝛽 > 0 is defined by 
the following series representation, valid in the whole complex plane

For � = 1 , we obtain the Mittag–Leffler function in one parameter:

Definition 2  The Riemann–Liouville fractional integral operator of order � ≥ 0 of 
a function f is defined as

in particular I0�(t) = �(t).

Definition 3  The Caputo fractional derivative of order � is defined as

where the parameter � is the order of the derivative and is allowed to be real or 
even complex.

With this definition, a fractional derivative would be defined for differentiable 
function only [1]. Recently, to overcome this limitation and in order to deal with 
non-differentiable functions, the following definitions was proposed by Ji Huan He 

(1)E�,�(z) =

∞∑
n=0

zn

Γ(n� + �)
, z ∈ ℂ.

(2)E�,1(z) =

∞∑
n=0

zn

Γ(n� + 1)
≡E�(z).

(3)I𝛼𝜉(t) =
1

Γ(𝛼) ∫
t

0

(t − x)𝛼−1𝜉(x)dx, 𝛼 > 0, x > 0,

(4)

CD𝛼
t
𝜉(t) =

⎧⎪⎨⎪⎩

1

Γ(m−𝛼)
∫ t

0
(t − 𝜏)m−𝛼−1𝜉(m)(𝜏)d𝜏, 𝛼 > 0, t > 0, m − 1 < 𝛼 < m, m ∈ ℕ,

dm

dtm
𝜉(t), 𝛼 = m,
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[17]. This modification was successfully applied in the probability calculus, frac-
tional Laplace problems, fractional variational equations and many other types of 
linear and nonlinear fractional differential equations [18].

Definition 4  The Ji Huan He’s fractional derivative of order � is defined as [17]

He [17] show that Eq. (5) for continuous and differentiable case and continuous and 
non-differentiable case respectively, is equivalent to

and

Furthermore, He [18, 19] defined another fractional derivative in the form:

The above definition of fractional derivative was introduced by the variational itera-
tion method [20, 21]. Variational principles play an important role in physics, math-
ematics, and engineering science because they bring together a variety of fields, lead 
to novel results and represent a powerful tool of calculation. Several formulations of 
fractional variational principles were investigated and applied to problems of frac-
tional dynamics. Motivated by the above results and in order to describe better the 
complexity of the investigated problems, recently He [22, 23] proposed a formula-
tion of fractional variational principles with delay. For more details see [24, 25].

1.3 � Fractal calculus

Fractal geometry, fractal calculus and fractional calculus have been becoming hot 
topics in both mathematics and engineering for non-differential solutions. Fractal 
theory is the theoretical basis for the fractal space-time, El Naschie’s E-infinity the-
ory, and life science as well [26–28]. Fractional calculus was introduced in Newton’s 
time, and it has become a very hot topic in various fields, especially in mathemat-
ics and engineering for porous media, where classic mechanics becomes invalid to 
describe any phenomena on the porous size scale [29–32].

(5)
HD𝛼

t
𝜉(t) =

1

Γ(m − 𝛼)

dm

dtm �
t

t0

(𝜏 − t)m−𝛼−1

(
𝜉0(𝜏) − 𝜉(𝜏)

)
d𝜏, 𝛼 > 0, t > 0, m − 1 < 𝛼 ≤ m, m ∈ ℕ.

(6)
1

Γ(m − �)

dm

dtm ∫
t

t0

(� − t)m−�−1

(
m−1∑
i=0

1

i!
(� − t0)

i�(i)(t0) − �(�)

)
d�,

(7)
1

Γ(m − �)

dm

dtm ∫
t

t0

(� − t)m−�−1

(
m−1∑
i=0

(� − t0)
i

Γ(1 + i�)
�(i�)(t0) − �(�)

)
d�.

(8)VD�
t
�(t) =

1

Γ(m − �)

dm

dtm ∫
t

t0

(� − t)m−�−1�(�)d�.
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The fractal calculus is relatively new, it can effectively deal with kinetics, 
which is always called as the fractal kinetics, where the fractal time replaces the 
continuous time. Laurent Nottale revealed that time does be discontinuous in 
microphysics [33–35], that means that fractal kinetics takes place on very small 
time scale.

The fractal derivative (Hausdorff derivative) on time fractal is defined as 
[36–38]:

where � is the fractal dimensions of time.
A more general definition is given as follows

where � is the fractal dimensions of space.
There are other definitions for fractal derivative, and we will not discuss all 

definitions, because some definitions are of only mathematical interest. See 
[39–43] for more applications.

1.4 � The physical understanding of the fractional derivative

He [44] showed that fractional differential equations can best describe discon-
tinuous media, and the fractional order is equivalent to its fractional dimensions. 
Now consider a plane with fractal structure. The shortest path between two 
points A and B is not a line and we have

where dsE is the actual distance between two terminal points A and B, ds is the line 
distance between two points, � is the fractal dimension and k is a constant. Projec-
tion of the dsE into the horizontal direction yields Cantor-like sets, and its length can 
be expressed as

where �x are the fractal dimensions of the Cantor-like sets in the horizontal direc-
tion, kx is a constant.

Equation (11) means the following transform

Inspired by this concept of fractional derivative, we assume that the solution of the 
fractional differential equation can be expressed in terms of E�(t

�) and the Mit-
tag–Leffler function plays a fundamental role in our study of fractional equation.

(9)
�T

�t�
= lim

tB→xA

T(tB) − T(tA)

(tB)
� − (tA)

�
,

(10)
��T

�t�
= lim

tB→xA

T�(tB) − T�(tA)

(tB)
� − (tA)

�
,

(11)dsE = k ds� ,

(12)ΔxAB = kxdx
�x ,

(13)sE = k s� .
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2 � Homotopy perturbation method

Consider the following nonlinear differential equation, to illustrate the main ideas of 
the homotopy perturbation method

with boundary conditions

where A and B are respectively, a general differential operator and a boundary opera-
tor, f(r) is a known analytic function, Γ is the boundary of the domain Ω.

In general, the operator A can be divided into two parts L and N, where L is linear 
and N is nonlinear. Equation (14) therefore can be rewritten as follows:

By the homotopy technique [45, 46], we construct a homotopy 
�(r, p) ∶ Ω × [0, 1] → ℝ which satisfies

or

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of Eq. 
(14), which satisfies the boundary conditions. Obviously, from Eqs. (17) and (18), 
we have

the changing process of p from zero to unity is just that of �(r, p) from u0(r) to u(r). 
In topology, this is called deformation, and L(�) − L(u0) , A(�) − f (r) are called 
homotopic.

Now, assume that the solution of (17) and (18) can be expressed as:

Setting p = 1 results in the approximate solution of Eq. (14):

In these years, some rather extraordinary virtues of the homotopy perturbation 
method (HPM) have been exploited. The method has eliminated limitations of the 
traditional perturbation methods. On the other hand it can take full advantage of the 

(14)A(u) − f (r) = 0, r ∈ Ω,

(15)B
(
u,

�u

�n

)
= 0, r ∈ Γ,

(16)L(u) + N(u) − f (r) = 0.

(17)
H(�, p) = (1 − p)[L(�) − L(u0)] + p[A(�) − f (r)] = 0, p ∈ [0, 1], r ∈ Ω,

(18)H(�, p) = L(�) − L(u0) + pL(u0) + p[N(�) − f (r)] = 0,

(19)H(�, 0) = L(�) − L(u0) = 0,

(20)H(�, 1) = A(�) − f (r) = 0,

(21)� = �0 + p�1 + p2�2 +⋯ .

(22)u = lim
p→1

� = �0 + �1 + �2 +⋯ .
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traditional perturbation techniques so there has been a considerable deal of research 
in applying homotopy technique for solving various strongly nonlinear equations, 
[47–51] furthermore the differential operator L does not need to be linear [52].

3 � Extended homtopy perturbation method

To illustrate the basic ideas of the extended homotopy perturbation method 
(MHPM) as a special category of new analytical methods [53] for fractional dif-
ferential equations, we consider the following problem [54]

subject to the initial and boundary conditions

Assume now that

where TMS is a modification of Eq. (23) which is defined in [55]:

and L is a linear operator, g is a known analytical function and denotes the fractional 
derivative in the Ji Huan He sense. � is assumed to be a causal function of time, i. 
e., vanishing for t < 0 . Also, �(i)(x, t) is the ith derivative of �, ci, i = 0, 1,… ,m − 1 
are the specified initial conditions and B is a boundary operator. In view of He’s 
homotopy perturbation technique, we can construct the following simple homotopy

The homotopy parameter always changes from zero to unity. In case p = 0 , Eq. (27) 
becomes

where p = 1 , Eq. (27) turns out to be the original fractional differential equation. In 
view of homotopy perturbation method, we use the homotopy parameter p to expand 
the solution in the following form

(23)HD𝛼
t
𝜉(x, t) = f (𝜉(x, t)), m − 1 < 𝛼 < m, m ∈ ℕ, t ≥ 0, x ∈ ℝ,

(24)�(i)(0, 0) = ci, i = 0, 1,… , n, B

(
�,

��

�x
,
��

�t

)
= 0.

(25)f = L�(x, t) + (TMS)J(�(x, t)) − g(x, t),

(26)

(TMS)J(�(x, t)) = (�0(x, t) +
1

2
�0(x, t)(�1(x, t))

2)

+ p
(
�0(x, t)�1(x, t)

)
+ p2

(
�0(x, t)�2(x, t)

)
+

+
1

6
p3
(
(�0(x, t))

2(�3(x, t))
2�2(x, t)

)
+ …
⏟⏟⏟
Jtimes

,

(27)HD�
t
�(x, t) + pf = 0, p ∈ [0, 1].

(28)HD�
t
�(x, t) = 0,
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Applying the inverse operator and considering the initial and boundary conditions, 
the terms of the series solution can be given by

Hence, we get an accurate approximate solution by adding the components of Eq. 
(30.

Define that (C(ℝ2), ‖.‖) is the Banach space, the space of all continuous func-
tions on ℝ2 with the norm

Definition 5  A function f ∶ ℝ
2
→ ℝ is said to satisfy the Lipschitz condition if 

there is a constant P such that

The smallest constant P satisfying (32) is called a Lipschitz constant.

Theorem 1  Let f satisfy the Lipschitz condition (32), M = max0≤�≤t,0≤t≤T |(t − �)�−1| 
and � = [

PMT

Γ(�)
].

1

n!
 , then the problem (23) has a unique solution �(x, t) , whenever 

0 < 𝛾 < 1.

Proof  Let y and z be two different solutions of (30) for all t ∈ [0, T] and � ∈ [0, t] . 
Then,

In other words

Hence, one will set

(29)
�j(x, t) ≈

�(x, t) −
j−1∑
i=0

pi�i(x, t)

pj
, p ≠ 0,

(30)

�1(x, t) =
n−1∑
i=0

ci
ti

i!
, − I�

t
(L�0(x, t)) − I�

t
(�0(x, t)) + I�

t
g(x, t),

�j(x, t) = − I�
t
(L�j−1(x, t)) − I�

t
(TMS)j−1(�0(x, t), �1(x, t),… , �j−1(x, t)), j = 2, 3,… .

(31)‖f (x, t)‖ = max
∀x,t

�f (x, t)�.

(32)|f (X) − f (Y)| ≤ P|X − Y|, ∀X,Y ∈ ℝ
2.

y − z = −I�
t
(Ly(x, t)) − I�

t
(TMS)j−1(y0(x, t), y1(x, t),… , yj−1(x, t))

− I�
t
(Lz(x, t)) − I�

t
(TMS)j−1(z0(x, t), z1(x, t),… , zj−1(x, t)).

y − z = −I�
t
(L(y(x, t) − z(x, t)) − I�

t
(TMS)j−1((y0(x, t), y1(x, t),… , yj−1(x, t))

− (z0(x, t), z1(x, t),… , zj−1(x, t))).
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and

Consequently

or

Since 1 − � ≠ 0 , then ‖y − z‖ . Therefore y = z and this completes the proof. � □

Theorem 2  Let �n(x, t) and �(x, t) be defined in Banach space (C([0, T]), ‖.‖) . Then, 
the series solution {�n(x, t)}∞n=1 defined by (30) converges to the solution of (25), if 
0 < 𝛾 < 1.

Proof  Suppose that {sn} is the sequence of partial sums of the series (30) and we 
need to show that sn(t) is a Cauchy sequence in Banach space (C([0, T]), ‖.‖) . For 
this, we consider

Now, for every n,m ∈ N, n ≥ m there are two arbitrary partial sums sn and sm ; by 
using (35) and triangle inequality successively, we have

Since 0 < 𝛾 < 1 , we have (1 − 𝛾n−m) < 1 ; then

Since �0 is bounded,

|y − z| = | 1

Γ(�) ∫
t

0

(t − �)�−1L(y(x, �) − z(x, �))d�

−
1

Γ(�) ∫
t

0

(t − �)�−1(TMS)j−1((y0(x, t), y1(x, t),… , yj−1(x, t))

− (z0(x, t), z1(x, t),… , zj−1(x, t)))d�|,

max |y − z| ≤ P

Γ(�)
max�

t

0

|(t − �)�−1||y − z|d�.

(33)‖y − z‖ ≤
�
PMT

Γ(�)

�n
.
1

n!
‖y − z‖ ≤ �‖y − z‖,

(34)(1 − �)‖y − z‖ ≤ 0.

(35)
‖sn+1(t) − sn(t)‖ = ‖�n+1(t)‖ ≤ �‖�n(t)‖ ≤ �2‖�n−1(t)‖ ≤ ⋯ ≤ �n+1‖�0(t)‖.

(36)

‖sn − sm‖ = ‖(sn(t) − sn−1(t)) + (sn−1(t) − sn−2(t)) +⋯ + (sm+1(t) − sm(t))‖≤ ‖sn − sn−1‖ + ‖sn−1 − sn−2‖ +⋯ + ‖sm+1 − sm‖≤ [�n + �n−1 + �n−2 +⋯ + �m+1]‖�0(t)‖≤ �m+1[�n−m−1 + �n−m−2 +⋯ + � + 1]‖�0(t)‖
≤ �m+1

�
1−�n−m

1−�

�
‖�0(t)‖.

(37)‖sn − sm‖ ≤ �m+1

(1 − �)
max

∀t∈[0,T]
��0(t)�.
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Therefore, sn(t) is a Cauchy sequence in C[0, T] , so the series converges and the 
proof complete.� □

4 � Case studies in chemical phenomena

4.1 � Time fractional Burgers equation

The purpose of this example is to use the MHPM for solving time-fractional Burg-
ers equation. The fractional derivative is described in the Ji Huan He sense. In this 
schemes, the solutions take the form of a convergent series. The time-fractional 
Burgers equation with time-fractional derivative commonly used in traffic flow, 
acoustic transmission, shocks, boundary layer, the steepening of the waves and flu-
ids, thermal radiation, chemical reaction, gas dynamics and many other phenomena 
[56].

Example 1  Consider the following time-fractional Burgers equation [56]

where

We solved this equation for different values of � where �0 = �(x, 0) = 1 − tanh(
x

2v
) . 

By the same manipulation as Sect. 3, we get

Alam Khan and Ara [56] shows that the exact solution with � = 1 is

According to the (26) and based on a suitable approximation of (5) the approximate 
solution of the problem for several values of t, x, v = 0.5, � and the number of itera-
tion (NI) for the HPM and proposed method (MHPM) is represented in Table 1. In 
this case, acceptable agreement between �MHPM(x, t) and �Exact(x, t) are noticeable. 
In addition, Fig. 1 includes the absolute error between the exact, HPM and MHPM 
solution of time-fractional Burgers equation. The numerical results demonstrate 
the significant features, efficiency and reliability of the MHPM is more promising, 
convenient, and computationally attractive than other methods such HPM and the 

(38)lim
n,m→∞

‖sn(t) − sm(t)‖ = 0.

(39)HD𝛼
t
𝜉(x, t) = f (𝜉(x, t)), 0 < 𝛼 ≤ 1, 0 ≤ x ≤ 1, t > 0.

(40)f (�(x, t)) = �(x, t)
�

�x
�(x, t) + v

�2

�x2
�(x, t), v ∈ ℝ.

(41)�(x, t) = �0 +
t� sec h

(
x

2v

)

2vΓ(1 + �)
+

4t2� cosh3
(

x

2v

)
sinh

4
(

x

2v

)

v2Γ(1 + 2�)
+⋯ .

(42)�Exact =
(
1 − tanh

(
x − t

2v

))
.
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obtained results by using generalized differential transform method [56] and the ref-
erences therein.

4.2 � Concentration of reactants

As we know, at a fixed temperature and in the absence of catalyst, the rate of given 
reaction increases with increased concentration of reactants. With increasing con-
centration of the reactant the number of molecules per unit volume is increased, thus 
the collision frequency is increased, which ultimately causes increased reaction rate.

Example 2  The concentrations of three reactants are in the form of a system of non-
linear fractional differential equations as

Table 1   Numerical results of 
Example 1 for several values 
of t, x, �

t x � �
MHPM

�
HPM

NI
MHPM,HPM

�
Exact

0.01 0.05 0.10 0.962673 0.919437 3 0.977781
0.03 0.10 0.20 0.949682 0.914852 4 0.961131
0.05 0.15 0.30 0.936711 0.899186 4 0.944502
0.10 0.20 0.40 0.936701 0.899286 4 0.944502
0.20 0.25 0.50 0.975833 0.931153 4 0.972229
0.40 0.30 0.60 1.023289 0.981716 4 1.055513
0.60 0.35 0.70 1.147642 1.124318 4 1.138217
0.80 0.40 0.80 1.200535 1.172994 5 1.218644
1.00 0.45 0.90 1.271182 1.239865 4 1.296392

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

α

er
ro
r

HPM
MHPM

Fig. 1   The absolute error between the exact, HPM and MHPM solution for Example 1
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where

Again, according to the (26) and by setting the properties of (HD�) for every equa-
tion in (43) and using (44), we get the MHPM formula for concentration equations 
as follow

which for x = 1 and x = � = 1 is the same of solution in [57, 58] respectively. More-
over, Fig. 2 depicts the approximate solutions for different values of � . In comparing 
with [57, 58] the approximations obtained by the proposed method are uniformly 
valid not only for small parameters, but also for very large parameters. The number 
of iteration is very low and the numerical outputs indicate that MHPM is easy to 
implement and computationally very attractive.

5 � Conclusions

In this study, based on Ji Huan He’s derivative a new extended homotopy pertur-
bation method was performed and has been successfully applied to compute the 
approximate solution for some of the most famous mathematical chemistry equa-
tions of fractional orders and we will try to define the way in which the structure of a 
complicated chemical mechanism are associated with the mathematics formula. The 
uniqueness of the solution and convergence analysis of the proposed method have 
been discussed. The rise of nonlinear terms is vital to progress in many homotopy 
perturbation systems. In this work, we introduced a new reliable algorithm for the 
calculation of these polynomials. The algorithm can be elegantly used without any 
need to formulas other than elementary operations. Two complicated cases of non-
linearity forms were handled by the new algorithm using only at most 6 compo-
nents of the MHPM solution. In comparing with [56–58] the results are so promis-
ing. In the other word, in whole of defined domain the obtained results with a very 

(43)

⎧
⎪⎨⎪⎩

HD��1(x, t) = − 0.04�1(x, t) + 0.01�2(x, t)�3(x, t),
HD��2(x, t) = − 400�1(x, t) − 100�2(x, t)�3(x, t) − 30000(�2(x, t))

2,
HD��3(x, t) = 30(�2(x, t))

2,

(44)�1(0, 0) = 1, �2(0, 0) = �3(0, 0) = 0.

(45)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1(x, t) ≃ 1 −
xt�

25Γ(1 + �)
+

xt2�

6253Γ(1 + 2�)
−

xt3�

15625Γ(1 + 3�)
,

�2(x, t) ≃ −
400xt�

Γ(1 + �)
+

16xt2�

6253Γ(1 + 2�)
−

480000000xt3�

15625Γ(1 + 3�)2Γ(1 + 3�)
,

�3(x, t) ≃
4800000xt3�

Γ(1 + �)2Γ(1 + 3�)
,
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low complexity of calculations imply an elegant superiority of our new method. We 
point out that the corresponding analytical and numerical solutions were obtained 
using Mathematica.
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