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Abstract
This paper considers a generalized (2+1) dimensional nonlinear evolution equation 
depending on two nonzero arbitrary constants. We derive the Lie point symmetry 
generators and Lie symmetry groups. This symmetry analysis leads us the reduc-
tions equations, through one of which we obtain solutions. We also get the low-order 
conservation laws of the equation that have been obtained using the corresponding 
symmetries of the family. We will present a classification of conservation laws for 
this equation and we will apply Lie symmetry analysis to the equation in order to 
obtain exact solutions.
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1  Introduction

Studies on nonlinear partial differential equations are significant because these equa-
tions describe multiple behaviours in various sciences such as fluid dynamics, chem-
istry, condensed matter, biophysics, plasma physics, biogenetics, optical fibers, biol-
ogy and other areas of engineering. Several methods have been developed to find exact 
solutions of nonlinear partial differential equations such as the symmetry methods [2, 3, 
4, 17], the homogeneous balance method [25], the sine–cosine method [21], the hyper-
bolic tangent method [12], sub-equation method [13], multiple exp-function method 
[11], the non-clasical method [3], the variational principle, the simple-equation method 
[7, 8] and others methods.

The Lie group method or symmetry analysis is one of the most efficient methods of 
studying differential equations. A symmetry group of a system of differential equations 
transforms solutions of the system to other solutions. Once one has determined the 
symmetry group of a system of differential equations, a number of applications become 
available.

In this paper, we consider a generalized (2+1)-dimensional nonlinear evolution 
equation given by

with a and b nonzero arbitrary constants. For a = 4 and b = 4 we obtain the 
(2+1)-dimensional Bogoyavlenskii’s breaking soliton equation

For a = 4 and b = 2 derive in the (2+1)-dimensional Calogero–Bogoyavlen-
ski–Schif equation

which is an well-known nonlinear evolution equation in mathematical physics and 
have been paid attention by a lot of researchers.

Some special cases of (1) have been studied by several authors [1, 16, 20]. In [20] 
the authors applied the multiple exp-function to Eq. (1), defining solvable differential 
equations, transforming nonlinear PDEs and solve algebraic systems. Also in [1] the 
modified simple equation method is applied using a the nonlinear evolution equation.

The study of nonlinear evolution equations is of great importance in the theory of 
solitary waves [22], which appear in many scientific and engineering fields with appli-
cation in physical and chemical processes [15, 23, 24]. The (2+1)-dimensional Burgers 
equation

where a and b are constants that define the kinematic viscosities, is a nonlinear evo-
lution equation that incorporates both convection terms uux and uuy and dissipation 
terms uxx and uyy.

The (2+1)-dimensional Kadomtsev–Petviashvili–Burgers equation

(1)utx + auxuxy + buxxuy + uxxxy = 0,

utx + 4uxuxy + 4uxxuy + uxxxy = 0.

utx + 4uxuxy + 2uxxuy + uxxxy = 0,

ut + uux − auxx + buxxx = 0
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where a and b are constants, is a nonlinear equation derived from nonlinear wave 
models of fluid in an elastic tube, liquid with small bubbles and turbulence and it 
describes for the dust acoustic waves in dusty plasmas.

This paper is organized as follows: In the first section we perform a study of Lie 
symmetries of a generalized (2 + 1)-dimensional nonlinear evolution equation and we 
establish our main results about it. We deal the point symmetries clasification and the 
commutators table of Lie algebra. In Sect. 2, we employ the similarity variable and 
similarity solution to obtain symmetry reductions [6, 18], we reduce the generalized 
(2+1)-dimensional equation to partial differential equations and ordinary differential 
equations, some of them with exact solutions. In the following section, by using the 
generators calculated previously, we study the Lie symmetry groups with new solutions 
[9, 10, 26] that we obtain using these groups. Finally, the low-order local conserva-
tion laws [5, 14, 19] admitted by (1) on the whole solution space will be presented in 
Sect. 4.

2 � Lie symmetries

According to the Lie theory, to obtain Lie symmetries of the generalized (2+1)-dimen-
sional nonlinear evolution Eq. (1), we consider a one-parameter Lie group of infinitesi-
mal transformations acting on independent and dependent variables

where � is the group parameter and �, �1 , �2 and � are the infinitesimal of the trans-
formations for the independent and dependent variables respectively.The infinitesi-
mal generator V associated with the group of transformations can be written by

where

The solutions space of (1) is invariant under the point transformation group (2) pro-
vided the invariance condition

(ut + 3(u2)x + uxxx + �uxx)x + �uyy = 0

(2)

t̂ = t + 𝜀𝜏(t, x, y, u) + O(𝜀2),

x̂ = x + 𝜀𝜉1(t, x, y, u) + O(𝜀2),

ŷ = y + 𝜀𝜉2(t, x, y, u) + O(𝜀2),

û = u + 𝜀𝜂(t, x, y, u) + O(𝜀2).

(3)V = �(t, x, y, u)
�

�t
+ �1(t, x, y, u)

�

�x
+ �2(t, x, y, u)

�

�y
+ �(t, x, y, u)

�

�u
,

𝜏 =
dt̂

d𝜀

||||𝜀=0, 𝜉1 =
dx̂

d𝜀

||||𝜀=0, 𝜉2 =
dŷ

d𝜀

||||𝜀=0, 𝜂 =
dû

d𝜀

||||𝜀=0.

(4)pr(4)V(Δ) = 0 si Δ = 0,
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where Δ = utx + auxuxy + buxxuy + uxxxy and pr(4)V  is the fourth prolongation of the 
vector field (3)

where

with J = (j1,… , jk), 1 ≤ jk ≤ 3 and 1 ≤ k ≤ 4.

2.1 � Point symmetries clasification

A point symmetry of the generalized (2+1)-dimensional nonlinear evolution 
Eq. (1) is a one-parameter Lie group of transformations on (t, x, y, u) generated 
by a vector field of the form (3), whose prolongation leaves invariant Eq. (1).

The condition for a vector field (3) to generate a point symmetry of Eq.  (1) 
is given by (4), that splits with respect to the x,  y and t derivatives of u giv-
ing an overdetermined linear system of equations for the infinitesimals �(t, x, y, u), 
�1(t, x, y, u), �2(t, x, y, u) y �(t, x, y, u) and the parameters a, b. Solving this system 
we obtain the next theorem:

Theorem  1  (Point Symmetries Classification Theorem:) The point symmetries 
admitted by Eq. (1) are generated by:

1.	 In the case a ≠ 2b , the generators

2.	 In the case a = 2b , the generators

Proof  The condition (4) leads to a linear system of determining equations. When 
a ≠ 2b , by simplifying the system, we obtain

(5)pr(4)V = V +
∑
J

�J(t, x, y, u(4))
�

�uJ
,

(6)�J(t, x, y, u(4)) = DJ(� − �ut − �1x + �2y) + �uJt + �1uJx + �2uJy,

(7)

V1 = �t, V2 = �x, V3 = �y, V4 = t�t + y�y,

V5 = − 2t�t − x�x + u�u, V6 = at�y + x�u,

V1,F1(t)
= F1(t)�u, V2,F2(t)

= F2(t)b�x + F�
2
(t)y�u

(8)

V1 = �t, V2 = �x, V3 = �y, V4 = t�t + y�y,

V5 = − 2t�t − x�x + u�u, V6 = 2bt�y + x�u,

V7 = 2bt2�t + bt�x + 2bty�y + (xy − btu)�u

V1,F1(t)
= F1(t)�u, V2,F2(t)

= F2(t)b�x + F�
2
(t)y�u
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and in the case a = 2b , we obtain

The solutions of systems (9) and (10) lead the generators obtained in both cases. 	� ◻

2.2 � Commutator table of Lie algebra

It is easy to check that the vector field in the general case (7) and in the case a = 2b 
(8) , are closed under the Lie bracket. Thus the symmetry generators form a closed Lie 
algebra. The commutation relationships of Lie algebras determined by the symmetry 
generators (7) and (8) are shown in Table 1, where

and [Vi,Vj] is the commutator for the Lie algebra defined by

(9)

�t,x = 0, �t,u[ ] = 0, �x,x = 0, �x,y = 0, �x,u[ ] = 0, �y,y = 0, �2y,y = 0,

�1y = 0, �2x = 0, �y = 0, �u[ ] = 0, �1u[ ] = 0, �2u[ ] = 0, �y,u[ ] = 0, �u[ ],u[ ] = 0

�t = − 2�u[ ] + �2y, �1t = �yb, �2t = �xa, �x = 0, �1x = −�u[ ],

(10)

�t,x = 0, �x,x = 0, �x,u[ ] = 0, �y,y = 0, �2y,y = 0,

�1y = 0, �2x = 0, �y = 0, �u[ ] = 0, �1u[ ] = 0, �2u[ ] = 0,

�y,u[ ] = 0, �u[ ],u[ ] = 0

�t,u[ ] = − �x,y = 0, �t = −2�u[ ] + �2y, �1t = �yb, �2t

= 2�xb, �x = 0, �1x = −�u[ ],

(11)

F1 = F1(t),

F2 = F2(t),

F3 = F3(t) = −F1(t) − 2tF�
1
(t)

F4 = F4(t) = F2(t) − 2tF�
2
(t)

[Vi,Vj] = ViVj − VjVi.

Table 1   commutator table of Lie algebra (7) and (8)

[Vi,Vj] V1 V2 V3 V4 V5 V6 V7 V1,F1
V2,F2

V1 0 0 0 V1 −2V1 aV3 −V5 + 2V4 V1,F′
1

V2,F′
2

V2 0 0 0 0 −V2 V1,F1=1
V2,F2=1

0 0
V3 0 0 0 V3 0 0 V6 0 V1,F′

2

V4 −V1 0 −V3 0 0 0 V7 V1,tF′
1

V2,tF′
2

V5 2V1 V2 0 0 0 −2V6 −2V7 V1,F3
V2,F4

V6 −aV3 −V1,F1=1
0 0 2V6 0 0 0 V1,−bF2

V7 V5 − 2V4 −V2,F2=1
−V6 −V7 2V7 0 0 −V1,−F3bt

−V2,−F4bt

V1,F1
−V1,F�

1

0 0 0 −V1,F3
0 V1,−F3bt

0 0
V2,F2

−V2,F�
2

0 −V1,F�
2

−V2,F�
2

−V3,F4
−V1,−bF2

V2,−F4bt
0 0
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Then we build the adjoint table for each pair of elements Vi and Vj , with 
i, j = 1,… , 7 , where

We will use the adjoint representation to decompose all the subalgebras of the Lie 
algebra in equivalence classes of conjugated subalgebras. From the action attached 
infinitesimal of a Lie algebra over itself, we can rebuild the adjoint representation to 
the underlying Lie group adding the Lie series (Table 2). 

We use now elements of the optimal system of subalgebras to calculate the reduc-
tions of the Eq. (1). An optimal system of subalgebras is a list of subalgebras that are not 
equivalent or conjugated. Also, any other subalgebra of the Lie algebra is conjugated 
or equivalent whith it. The generators of the optimal one-dimensional system when 
a ≠ 2b are given by: �1V1 + �2V2 + �3V3, �V2 + V4, �V3 + V5, �1V2 + �2V4 + V6 
and V4 ± V5 . When a = 2b the optimal system is given by: 
�V3 + V5, V4 ± V5, �1V2 + �2V2 + V7 and �1V2 + �2V4 + V6.

3 � Symmetry reductions

In this section, we mainly use the optimal system of one-dimensional subalgebras com-
puted in the previous subsection and obtain symmetry reductions of the generalized 
(2+1)-dimensional nonlinear evolution equation.

Reduction 1 By using the generator �V2 + V4 , we obtain the similarity variables 
and similarity solution

and the PDE E1

Ad(exp(�Vi))Vj =

∞∑
n=0

�n

n!
(comVi)

n(Vj) = Vj − �[Vi,Vj] +
�2

2
[Vi, [Vi,Vj]] −⋯

(12)z1 = x − � ln t, z2 =
y

t
, u = h(z1, z2)

(13)− �hz1z1 − z2hz1z2 + ahz1hz1z2 + bhz2hz1z1 + hz1z1z1z2 = 0

Table 2   Adjoint table of the Lie algebra

[Vi,Vj] V1 V2 V3 V4 V5 V6 V7

V1 V1 V2 V3 V4 − �V1V5 + 2�V1 V6 − a�V3 V7 − �(V5 − 2V4)

V2 V1 V2 V3 V4 V5 − �V2 V6 − �V1,F1=1
V7 − �V2,F2=1

V3 V1 V2 V3 V4 − �V3V5 V6 V7 − �V6

V4 V1e
� V2 V3e

� V4 V5 V6 V7e
−�

V5 V1e
−2� V2e

−� 0 0 0 V6e
2� V7e

2�

V6 V1 + a�V3 V2 + �V1,F1=1
V3 V4 V5 − 2�V6 V6 V7

V7 V1 − �(V5 − 2V4)
V2 +

∞∑
n=1

𝜀

n!
V2,F̂

n

V3 + �V6 V4 + �V7V5 − 2�V7 V6 V7
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Reduction 2 By using the generator V1 + V2,F2(t)
 we obtain the similarity variables 

and similarity solution

and the PDE E2

Reduction 3 By using the generator V7 in the case a = 2b, we obtain the similarity 
variables and similarity solution

and the PDE E3

Reduction 4 By using the generator �V2 + V4 + V6 we obtain the similarity vari-
ables and similarity solution

and the PDE E4

Reduction 5 By using the generator �V3 + V5 , we obtain the similarity variables and 
similarity solution

and the PDE E5

Reduction 6 By using the generator V4 + V5 , we obtain the similarity variables and 
similarity solution

and the PDE E6

(14)z1 = x − b∫ F2(t)dt, z2 = y, u = h(z1, z2) + yF2(t)

(15)ahz1hz1z2 + bhz2hz1z1 + hz1z1z1z2 = 0

(16)z1 =
x√
t
, z2 =

y

t
, u =

1

x
h(z1, z2) +

xy

2bt

(17)
− 6hz2 − 3z2

1
hz1z1z2 + 6z1hz1z2 − 4bz1hz1hz2 − 2bz1hhz1z2

+ 2bz2
1
hz1hz1z2 + bz2

1
hz2hz1z1 + z3

1
hz1z1z1z2 = 0

(18)z1 = x − � ln t, z2 =
y

t
− a ln t, u = h(z1, z2) +

x

2�

(19)
b

�
hz2 − �hz1z1 +

(
a

�
z1 − z2 − a

)
hz1z2 + ahz1hz1z2

+ bhz2hz1z1 + hz1z1z1z2 = 0

(20)z1 = xt−1∕2, z2 = y +
�

2
ln t, u = h(z1, z2)t

−1∕2

(21)− hz1 −
z1

2
hz1z1 +

�

2
hz1z2 + ahz1hz1z2 + bhz2hz1z1 + hz1z1z1z2 = 0

(22)z1 =
x

t
, z2 = yt, u =

1

t
h(z1, z2)
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Reduction 7 By using the generator �1V1 + �2V2 + �3V3 , we obtain the similarity 
variables and similarity solution

and the PDE E7

3.1 � Symmetry reductions to ODE’s and exact solutions

The reduced PDE’s in (1 + 1) variables admit symmetries which lead to further 
reductions to ODE’s, we shall use again the techniques of Lie group theory. 

1.	 Equation �
�
 , admits the following symmetries 

 By using ��11 + �13 we obtain the similarity variable and similarity solutions 

 and the ODE 

 Integrating once with respect to w Eq. (28) can be reduced to the following sec-
ond order ODE 

 By multiplying by g′′ in the case a = 2b and then integrating once respect to w 
we get 

 with c1 and c2 constants of integration.The solutions of this equation when 
c1 = c2 = 0 are given by 

(23)− 2hz1 − z1hz1z1 + z2hz1z2 + ahz1hz1z2 + bhz2hz1z1 + hz1z1z1z2 = 0

(24)z1 = �1x − �2t, z2 = �1y − �3t, u = h(z1, z2)

(25)
− �1�2hz1z1 − �1�3hz1z2 + a�3

1
hz1hz1z2

+ b�3
1
hz2hz1z1 + �4

1
hz1z1z1z2 = 0

(26)�11 =
�

�z1
, �12 =

�

�h
, �13 =

�

�z2
+

z1

a

�

�h
,

(27)w = z1 − �z2, h = g(w) +
z2
1

2a�
,

(28)− �g���� − �(a + b)g�g�� − (� + w)g�� −
b

a
g� −

�

a�
= 0.

(29)−�g��� −
�

2
(a + b)(g�)2 − (� + w)g� +

(
1 −

b

a

)
g −

�

a�
w = 0.

(30)(g��)2 = −b(g�)3 −
�

�
(g�)2 −

1

�
gg� −

�

b�2
(g�w − g) + c1g + c2
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 where k is a constant of integration. Thus, solutions of (1) are given by 

 In Fig. 1 we considere y = 0, 3, � = 1, 5,� = −1, b = −0, 1k = 2, 3.
2.	 Equation �

�
 , admits the following symmetries 

 where �(z2) is an arbitrary function of z2 . By using �1�21 + �2�22 + �� we 
obtain the similarity variable and similarity solutions 

 and the ODE 

 Integrating once with respect to w, by multiplying by g′′ and integrating again 
respect to w, Eq. (34) can be reduced to the following second order ODE 

 where c1 and c2 are constants ot integration. The solutions of this equation when 
c1 = c2 = 0 are 

g(w) = −
�

b�
w + k

(31)u(t, x, y) = −
�

b�

(
x − � ln t − �

y

t

)
+

(x − � ln t)2

4b�
+ k.

(32)bfv21 =
�

�z1
, �22 =

�

�h
, �23 = z1

�

�z1
− h

�

�h
, �� = �(z2)

�

�z2
,

(33)w = z1 − �1 ∫
1

�(z2)
dz2, h = g(w) + �2 ∫

1

�(z2)
dz2,

(34)− a�1g
�g�� − b�1g

�g�� + b�2g
�� − �1g

���� = 0.

(35)(g��)2 = −
a + b

3
(g�)3 + b

�2

�1

(g�)2 + c1g
� + c2

Fig. 1   Exact solution of (31)
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 and 

 where k, k1 and k2 are constants of integration. Hence, for Eq.  (1) we give 
respectively the followings solutions 

 and for �(t) = F2(t) the following solution 

 In Fig.  2 we considere k = 1,�2 = 1,�1 = 1, y = 1, a = 3, b = 1, 5,

F1(x) = x3,F2(x) = x2 and �2 = 1,�1 = 1, k1 = 1, k = 1, y = t, b = 1, a = 2,

F1(x) = x,F2(x) = x2 respectively.

By using �23 + �� we obtain the similarity variable and similarity solutions

and the ODE

 

3.	 Equation �
�
 admits symmetries (33) and 

g(w) =
3b�2

�1(a + b)
w + k

g(w) =
6b�2√

b�1�2(a + b)
tanh

�√
b�1�2

2�1

(w + k1)

�
+ k2

(36)
u(t, x, y) =

3b�2

�1(a + b)

(
x − b∫ F2(t)dt − �1 ∫

1

�(y)
dy

)

+ �2 ∫
1

F2(y)
dy + yF2(t) + k

(37)

u(t, x, y) =
6b�2√

b�1�2(a + b)

tanh

�√
b�1�1

2�1

�
x − b∫ F2(t)dt − ∫

1

F2(y)
dy

�
+ k1

�

+ �2 ∫
1

F2(y)
dy + yF2(t) + k.

(38)w = z1e
− ∫ 1

�(z2 )
dz2 , h = g(w)e

− ∫ 1

�(z2 )
dz2 ,

(39)ag�g��w + 2a(h�)2 + bg��g�w + bg��g + 4g��� + h����w = 0

(40)�31 = z1
�

�z1
, �32 = z1

�

�h
, �33 =

�

�z1
+

h

z1

�

�h
, �� = �(z2)

�

�z2
.
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 By using �32 + ��33 + �� we obtain the similarity variable and similarity 
solutions 

 and the ODE 

 Integrating (42), by multiplying by g′′ and integrating again with respect to w 
we arrive to the following second order ODE 

 The solutions of this equation when c1 = c2 = 0 are 

(41)w = z1 − � ∫
1

�(z2)
dz2, h = g(w)z1 +

z2
1

�

(42)−�g���� − 2bg�� − 3b�g�g�� = 0.

(43)(g��)2 = −
2b

�
(g�)2 − b(g�)3 + c1g

� + c2

Fig. 2   Exact solution of (36) 
and (37) respectively given by 
equation E2
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 and 

 where k, k1 and k2 are constants of integration. Thus, for Eq. (1) we give respec-
tively the followings solutions 

 and 

	   In Fig.  3 we considere y = t2, n = 1, b = 1, k = 0, 2 for the first solution, 
y = −2.1,� = 0.5, n = 1, b = 1, k = 1 for the second solution and finally 
y = 3,� = 3, n = 1, b = −1, k = 1, k1 = 1, k2 = 2,F1(t) = t.

	   By using �33 + �� we obtain the similarity variable and similarity solutions 

 and the ODE 

 Integrating (48), by multiplying by g′′ and integrating again with respect to w 
we arrive to the following second order ODE 

g(w) = k,

g(w) = −
2

�
w + k

g(w) = −
2
√
2√

�b
tan

�√
2b�

2�
(k1 + w)

�
+ k2

(44)u(t, x, y) =
1

x

�
k
x√
t
+

1

n

x2

t

�
+

xy

2bt
,

(45)

u(t, x, y) =
1

x

⎛
⎜⎜⎜⎝
−
2

�

⎛
⎜⎜⎜⎝
x√
t
−

�

t ∫
1

F1

�
y

t

�dy+

+�y∫
1

t2F1(
y

t
)
dt + k

�
x√
t
+

1

n

x2

t

�
+

xy

2bt

(46)

u(t, x, y) =

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
−
2
√
2√

�b
tan

⎛
⎜⎜⎜⎝

√
2b�

2�

⎛
⎜⎜⎜⎝
k1 +

x√
t
−

�

t ∫
1

F1

�
y

t

�dy+

+�y∫
1

t2F1(
y

t
)
dt + k

��
+ k2

�
x√
t
+

1

�

x2

t

�
1

x
+

xy

2bt

(47)w = z1 − ∫
1

�(z2)
dz2, h = g(w)z1

(48)g���� − 3bg�g�� = 0.
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Fig. 3   Exact solution of (44), 
(45) and (46) respectively given 
by equation E2
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 The solutions of this equation when c1 = c2 = 0 are 

 and 

 where k, k1 and k2 are constants of integration. Thus, for Eq. (1) we give respec-
tively the followings solutions 

 and 

 In Fig.  4 we considere y = 4, n = 1, b = 1 and 
y = x2, n = 0, 1, b = 0, 8, k = 2, k1 = 0, k2 = 0, F1(t) = t respectively.

	   By using �31 + �� we obtain the similarity variable and similarity solutions 

 and the ODE 

4.	 Equation �
�
 admits symmetries 

 By using �42 + ��43 we obtain the similarity variable and similarity solutions 

(49)(g��)2 = −b(g�)3 + c1g
� + c2

g(w) = k

g(w) =
4

b
(
w + k1

) + k2

(50)u(t, x, y) =
k√
t
+

xy

2bt

(51)
u(t, x, y) =

1

x

⎛⎜⎜⎜⎝
4

b

⎛⎜⎜⎜⎝
x√
t
−

1

t ∫
1

F1

�
y

t

�dy + y∫
1

t2F1(
y

t
)
dt + k1

⎞⎟⎟⎟⎠

−1

+k2
� x√

t
+

xy

2bt
.

(52)
w = z1e

− ∫ 1

�(z2)
dz2

, h = g(w)

(53)−w4g���� + 2bw2(g�)2 + 2bw2gg�� − 2bwgg� − 3bw3g�g�� = 0.

(54)�41 =
�

�h
, �42 =

�

�z1
+

z1

�

�

�h
, �43 =

�

�z2
−

z1

a

�

�h
.

(55)w = z1 −
z2

�
, h = g(w) +

z2
1

2

(
1

�
−

�

a

)



789

1 3

Journal of Mathematical Chemistry (2020) 58:775–798	

 and the ODE 

 Integrating (56)we arrive to the following second order ODE 

 By using �43 we obtain the similarity variable and similarity solutions 

 and the ODE 

(56)−g���� − (�� + a)g�� − �wg�� − (a + b)g�g�� +
(�
a
−

2

�

)
bg� +

��2

a
− � = 0.

(57)
− g��� − (�� + a)g� + �wg� −

(
a + b

2

)
(g�)2+

+

(
2b

�
+

�b

a
− �

)
g +

(
��2

a
− �

)
w = 0.

(58)w = z1, h = g(w) −
1

a
z1z2

Fig. 4   Exact solution of (50) 
and (51) respectively
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 Integrating (59) we arrive to the following first order ODE 

 The solutions of this equation when c1 = c2 = 0 are 

 where k, k1 and k2 are constants of integration. Thus, for Eq. (1) we give respec-
tively the followings solutions 

 In Fig. 5 we considere y = x, � = 1, b = −1, a = 3, k1 = 1.

5.	 Equation �
�
 , for � = 0 , admits symmetries 

 By using ��51 + �53 we obtain the similarity variable and similarity solutions 

(59)
(
� +

b

a
w
)
g�� + g� +

(
b

a�
−

1

�

)
w − 1 = 0.

(60)
(
� +

b

a
w
)
g� +

(
1 −

b

a

)
g +

1

2

(
b

a�
−

1

�

)
w2 − w + c1 = 0.

g(w) =
1

2�
(
a2 − b2

)
(
2�k1

(
a2 − b2

)
(�a + bw)1−

a

b + 4
(
�a +

w

2
(b − a)

)2
)

(61)

u(t, x, y) =
x2

2�
−

1

a
(x − � ln t)

(y
t
− a ln t

)

+
1

2�
(
a2 − b2

)
(
2�k1

(
a2 − b2

)
(�a + b(x − � ln t))1−

a

+ 4
(
�a +

1

2
(x − � ln t)(b − a)

)2
)

(62)
�51 =

�

�z2
, �52 =

�

�h
, �53 = 2b

�

�z1
+ z2

�

�h
,

�54 = − z1
�

�z1
+ 2z2

�

�z2
+ h

�

�h
.

Fig. 5   Exact solution of (61)
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 and the ODE 

 Integrating we arrive to the following third order ODE 

 The solution of this equation when a = −b is given by 

 where k1 , k2 and k3 are constants of integration. Thus, for Eq. (1) we give respec-
tively the followings solutions 

 where f (t) = t−3∕2
�
(ln (t) + 2)

√
t − x

�3

 . In Fig. 6 we considere y = 1 and b = 1.
	   By using ��54 we obtain the similarity variable and similarity solutions 

 and the ODE 

6.	 Equation �
�
 , for � = 0 , admits symmetries 

(63)w = z1 −
2b

�
z2, h = g(w) +

1

2�
z2
2

(64)4bg���� + 4b(a + b)g�g�� + �wg�� + 2�g� = 0.

(65)4bg��� + 2b(a + b)(g�)2 + �wg� + �g = 0.

(66)

u(t, x, y) k1w
2hypergeom

�
[1],

�
4

3
,
5

3

�
,−

x3n

36b

�

+ k2BesselI

⎛
⎜⎜⎜⎝
−
1

3
,

�
−

x3n

b

3

⎞
⎟⎟⎟⎠

�
−
x3n

b

� 1

6

+ k3BesselI

⎛⎜⎜⎜⎝

1

3
,

�
−

x3n

b

3

⎞⎟⎟⎟⎠

�
−
x3n

b

�−
1

6

(67)

u(t, x, y) =
1

t3∕2f (t)1∕6

�
(−2x(ln (t) + 2)

√
t + t ln (t)2 + 4t ln (t)

+ x2 + 4t) ⋅ f (t)1∕6hypergeom
�
[1],

�
4

3
,
5

3

�
,
1

36
f (t)

�

− 3(−
√
tx + t(2 + ln (t)))BesselI

�
1

3
,
1

3

√
f (t)

��
−
x3n

b

� 1

6

+ 2tf (t)1∕3BesselI
�
−
1

3
,
1

3

√
f (t)

�
+

1

16
(ln (t) + 2)2

�

(68)w = z1z
1∕2

2
, h = g(w)z

1∕2

2

(69)wg���� + 4g��� + (a + b)wg�g�� + bgg�� − wg�� + 2a(g�)2 − 2g� = 0.
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 By using ��63 we obtain the similarity variable and similarity solutions 

 and the ODE 

4 � Lie symmetry groups

In this part, by solving the following initial problems, we can get the Lie symmetry 
group from the related symmetries. Considering the infinite symmetry generators, 
we can observe that

Theorem 2  The one-parameter Lie symmetry groups gi , i = 1,… , 6, which are gen-
erated through Vi , i = 1,… , 6 , respectively are given by

(70)�61 =
�

�h
, �62 =

�

�z1
+

z2

b

�

�h
, �63 = z1

�

�z1
− 2z2

�

�z2
− h

�

�h
.

(71)w = z1z
1∕2

2
, h = g(w)z

1∕2

2

(72)−wg���� − 4g��� + (a + b)wg�g�� + bgg�� + wg�� + 2a(g�)2 + 2g� = 0.

(73)
time-translation:

g1 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t + 𝜖, x, y, u)

(74)
space-translation along the x-axis:

g2 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t, x + 𝜖, y, u)

(75)
space-translation along the y-axis:

g3 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t, x, y + 𝜖, u)

Fig. 6   Exact solution of (67)
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The groups g1,F1(t)
 and g2,F2(t)

 generated through V1,F1(t)
 and V2,F2(t)

 respectively are 
given by

And finally for V7 with a = 2b , the Lie symmetry group is given by the shift g7

where � is the group parameter.

Proof  To calculate the one-parameter Lie symmetry group g(t,  x,  y,  u) generated 
through the general vector field (3), we consider

and we solve the following initial problems

(76)
time and space scaling group:

g4 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (te𝜖 , x, ye𝜖 , u)

(77)
nonhomogeneous scaling group:

g5 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (te−2𝜖 , xe−𝜖 , y, ue𝜖)

(78)
time and space dependent shift:

g6 ∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t, x, y + at𝜖, u + x𝜖)

(79)
time-dependent shift:

g1,F1(t)
∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t, x, y, u + 𝜖F1(t))

(80)
time-dependent shift:

g2,F2(t)
∶ (t, x, y, u) → (t̂, x̂, ŷ, û) = (t, x + b𝜖F2(t), y, u + y𝜖F�

2
(t))

(81)

g7 ∶ (t̂, x̂, ŷ, û) =

�
−

t

2b𝜖t − 1
,

ix√
2b𝜖t − 1

,−
y

2b𝜖t − 1
,

�
2 + 𝜋i + ln (2b𝜖t − 1)

2

�
u +

xy(i −
√
2b𝜖t − 1)

bt
√
2b𝜖t − 1

�

(82)g(t, x, y, u) = (t̂, x̂, ŷ, û)

(83)𝜕t̂

𝜕𝜖
= 𝜏(t, x, y, u)

(84)
𝜕x̂

𝜕𝜖
= 𝜉1(t, x, y, u)

(85)
𝜕ŷ

𝜕𝜖
= 𝜉2(t, x, y, u)



794	 Journal of Mathematical Chemistry (2020) 58:775–798

1 3

and

From (83)–(86) we obtain the corresponding Lie symmetry group. 	�  ◻

4.1 � New solutions

The theory of Lie assures that a group of symmetry transforms solution into solutions, 
then we can conclude that if u = f (t, x, y) represents a known solution of the differential 
Eq. (1), by applying the different group of symmetry we can calculate the new solu-
tions of (1).

By applying the above groups gi , (i = 1,… 6) we can obtain the corresponding new 
solutions:

The groups g1,F1(t)
 and g2,F2(t)

 give us the solutions:

and for the Lie symmetry group g7 we obtain the new solutions:

(86)
𝜕û

𝜕𝜖
= 𝜂(t, x, y, u)

(87)(t̂, x̂, ŷ, û)|𝜖=0 = (t, x, y, u).

(88)û1 = f (t − 𝜖, x, y)

(89)û2 = f (t, x − 𝜖, y)

(90)û3 = f (t, x, y − 𝜖, y)

(91)û4 = f (te−𝜖 , x, ye−𝜖)

(92)û5 = f (te2𝜖 , xe𝜖 , y)e𝜖

(93)û6 = f (t, x, y − a𝜖t) + x𝜖

(94)û1,F1(t)
= f (t, x, y) + 𝜖F1(t)

(95)û2,F2(t)
= f (t, x − F2(t)b𝜖, y) + y𝜖F�

2
(t)
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5 � Conservation laws

A local conservation law for the generalized (2+1)-dimensional nonlinear evolution 
Eq. (1) is a divergence expression

holding on the whole solution space � of Eq. (1). The conserved density T and the 
spatial fluxes X and Y are functions of t, x, y, u and derivatives of u. Here Dt , Dx and 
Dy denote the total derivative operators with respect t, x and y respectively.

This method makes use of the concept of multiplier, that is, a function 
Q(t, x, y, u, ut, ux, …) which satisfies that (utx + auxuxy + buxxuy + uxxxy)Q is a diver-
gence expression for solutions of (1) and for any function u(t, x, y). All non-trivial 
conservation laws arise from multipliers. When we move off of the set of solutions 
of Eq. (1), every non-trivial local conservation law (97) is equivalent to one that can 
be expressed in the characteristic form

that vanishes on the set of solutions of Eq. (1) where (T̂ , X̂, Ŷ) differs from (T, X, Y) 
by a trivial conserved current.

We find all multipliers by solving the determining equation

where �
�u

 is the Euler–Lagrange operator Ê[u] given by

and the general form for a low-order multiplier for the generalized (2+1)-dimen-
sional nonlinear evolution Eq. (1) is given by

(96)

û7 =
(
1 +

i𝜋

2
+

1

2
ln
(
−

1

2b𝜖t + 1

))

f

(
t

2b𝜖t + 1
,−ix

√
−

1

2b𝜖t + 1
,

y

2b𝜖t + 1

)

+
x

bt

(
i

√
−

1

2b𝜖t + 1
+ 1)

)
y

(97)
(
DtT + DxX + DyY

)|� = 0

(98)
(
DtT̂ + DxX̂ + DyŶ

)
=
(
utx + auxuxy + buxxuy + uxxxy

)
Q

(99)
�

�u

(
utx + auxuxy + buxxuy + uxxxy

)
Q = 0

(100)

Ê[u] ∶=
𝜕

𝜕u
+
∑
s≥1

(−1)sDi1
⋯Dis

𝜕

𝜕ui1i2…is

=
𝜕

𝜕u
− Dt

𝜕

𝜕ut
− Dx

𝜕

𝜕ux
− Dy

𝜕

𝜕uy
+ D2

x

𝜕

𝜕uxx
+⋯
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The determining Eq.  (99) yields a linear determining system for the multipliers 
Q(t, x, y, u)

We solve this determining system and we get two multipliers

Theorem 3  The low-order local conservation laws admitted on the whole solution 
space �+ by the generalized (2+1)-dimensional nonlinear evolution Eq. (1) are given 
by

1.	 Corresponding to the multiplier Q1 we obtain the first conservation law

2.	 For the multiplier Q2 we obtain the second conservation law, with f(t) arbitrary 
function

Proof  For each of the conserved currents obtained, Eq.  (97) is satisfied when the 
generalized (2+1)-dimensional nonlinear evolution Eq.  (1) holds. By solving the 
determining Eq.  (99), the solution multipliers Q1 and Q2 give us these conserved 
densities and fluxes of Eq. (1) and they are the only conservation laws admitted by 
this equation. 	�  ◻

Q(t, x, y, u, ut, ux, uy, uxx, uxy, uxxx, uxxy).

(101)

Qx(t, x, y, u) = 0, Quy
(t, x, y, u) = 0, Quxy

(t, x, y, u) = 0,

Qy(t, x, y, u) = 0, Qt,ux
(t, x, y, u) = 0, Quxxx

(t, x, y, u) = 0,

Qu(t, x, y, u) = 0, Quxx(t, x, y, u) = 0, Quxxy
(t, x, y, u) = 0,

Qut
(t, x, y, u) = 0, Qu2

x
(t, x, y, u) = 0.

(102)
Q1 = ux,

Q2 = f (t).

(103)

T1 =
u2
x

2
,

X1 = − uxyuxx +
b

2
u2
x
uy,

Y1 =
2a − b

6
u3
x
+ uxuxxx +

1

2
u2
xx
.

(104)

T2 = f (t)ux,

X2 = bf (t)uxuy − f �(t)u,

Y2 =
1

2
f (t)

[
(a + b)u2

x
+ 2uxxx

]
.
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6 � Concluding remarks

In this paper, by using the Lie symmetry analysis method, we studied the general-
ized (2+1)-dimensional nonlinear evolution Eq.  (1). All the Lie point symmetries 
admitted by this equation is performed. We have construct an optimal system of sub-
algebras and used it to obtain symmetry reductions and exact solutions of (1). Fur-
thermore, we have determined the Lie symmetry groups and obtained new solutions. 
Finally by using the multipliers method we performed a clasification of low-order 
conservation laws.

Acknowledgements  The authors express their sincerest gratitude to the Plan Propio de Investigación de 
la Universidad de Cádiz.
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