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Abstract
This paper aims at solving numerically the 1-D weakly coupled system of singularly
perturbed reaction–convection–diffusion partial differential equations with two small
parameters and discontinuous source terms. Boundary and interior layers appear in the
solutions of the problem for sufficiently small values of the perturbation parameters.
A numerical algorithm based on finite difference operators and an appropriate piece-
wise uniform mesh is constructed and its characteristics are analyzed. The method is
confirmed to reach almost first order convergence, independently of the values of the
perturbation parameters. Some numerical experiments are presented, which serve to
illustrate the theoretical results.
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1 Introduction

Perturbation theory comprises a large collection of mathematical techniques devoted
to achieving an estimated solution to problems that have no closed-form of the exact
solutions. These types of problems contain small positive parameters which make that
the solution changes abruptly in some regions of the problem domain and gradually
in other parts. The internal region where the solution changes quickly is called the
inner region. It is a familiar fact that the singularly perturbed boundary value prob-
lem presents boundary and/or interior layers. Therefore, the development of efficient
numerical procedures for solving singularly perturbed differential equations is a com-
putational challenge.

Those kind of problems arise in various branches of applied areas related to Chem-
istry. In fact, these types of problems occur in the kinetics of a catalyzed reaction, in
EnzymeKinetics, in the Belousov-Zhabotinskii reaction in Chemical andBiochemical
Reaction Theory [1–4]. In fluid mechanics, they can serve to model a noticeable per-
formance at the Viscous Boundary Layer of a Flat Plate, Viscous Flow Past a Sphere,
a piston problem, a Variable-Depth Korteweg–de Vries Equations for Water Waves
[5–7]. Further, it plays an important role in Semi and Superconductors theory, Light
Propagation through a Slowly Varying Medium, Raman Scattering, Quantum Jumps
in the Ion Trap, Low-Pressure Gas Glow through a Long Tube, Drilling by Laser,
Meniscus on a Circular Tube, Van Der Pol (Rayleigh) Oscillator, a Diode Oscillator
with a Current Pump, Klein–Gordon Equation, Slow Decay of a Satellite Orbit, Ein-
stein Equation forMercury, Planetary Rings or Thermal Runaway, among others areas
[8].

InVigo-Aguiar andNatesan [9] proposed a numerical scheme for solving singularly
perturbed two-point boundary-value problems. They handled the adaptation of mul-
tistep algorithms with the combination of a classical finite difference scheme and the
exponentially fitted difference scheme, which are applied to solve a converted initial
value problem system. Natesan et al. [10] implemented a parallel domain decom-
position method to solve a class of singularly perturbed two-point boundary value
problems. Moreover, Natesan et al. [11] proposed an appropriate piecewise uniform
mesh and applied the classical finite-difference scheme to solve the turning point prob-
lem. All these works refer to singularly perturbed problems, with the presence of a
perturbation parameter.

In the literature, there are differentworks on ordinary singularly perturbed problems
involving two perturbation parameters. Riordan and Pickett [12] discretized a singu-
larly perturbed problem with two parameters using the classical upwind differences.
They showed that the scaled derivatives were parameter uniformly convergent to the
scaled first derivatives of the solution, measuring the sharpness of the numerical esti-
mates in a suitably weighted C1 norm. In Prabha et al. [13], the numerical technique
handled the combination of the five-point second-order scheme at the interior layer and
the central, midpoint and upwind standard difference schemes for separate regions, to
produce a nearly second-order convergence for a two-parameter singularly perturbed
convection–diffusion equation with a discontinuous source term. Chandru et al. [14],
utilized a hybrid monotone difference scheme and the method of averaging technique
at the point of discontinuity to obtain a parameter-uniform error bound for the numeri-
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cal approximations. In [15] an adaptive Shishkin-type mesh is considered for solving a
parabolic problem with discontinuities in the convection and source terms. Moreover,
other works scrutinized the two-parameter singularly perturbed ordinary differential
equation with smooth-data [16–18] and non-smooth data [19,20].

Riordan et al. [21] developed a parameter uniform numericalmethod to solve a class
of singularly perturbed parabolic equations with two small parameters and provided
parameter explicit theoretical bounds on the derivatives of the solutions. Das et al. [22]
introduced a newmesh-adaptive upwind scheme for 1-Dconvection-diffusion-reaction
problems and conferred the parameter uniform convergence despite the parameters
being zero. Motivated by the above works we have constructed a numerical technique
for the two-parameter parabolic type of two-coupled system of singularly perturbed
differential equations with discontinuous source terms.

The framework of the article is as follows: Sect. 2 derives a minimum principle,
presents a stability theorem and a priori bounds for the solution and its derivatives
considering the decomposition of the solution into the interior and layer components.
In Sect. 3, a numerical scheme for solving the problem presented and the theoretical
analysis of the order of convergence are addressed. Finally, in Sect. 4, a numerical
example is presented to confirm the theoretical results.

The maximum norm defined as

‖υ‖Ḡ = max
(x,t)∈Ḡ

{|υ1(x, t)|, |υ2(x, t)|} , (1)

where υ is any function defined on a domain Ḡ ⊂ R
2, will be used in the theoretical

analysis. The corresponding discrete maximum norm is denoted as

‖U‖Ḡ N ,M = max
(xi ,t j )∈Ḡ N ,M

{|U1(xi , t j )|, |U2(xi , t j )|
}
,

where, Ḡ N ,M denotes the discretized version of Ḡ and Uk(xi , t j ), i = 1, 2 stand for
discrete approximations of the components of υ. If the set on which any of the norms
is applied is clear enough, we will simply use the notation ‖ · ‖.

As it is usual, the notation u ≤ v means that ui ≤ vi , i = 1, 2. Throughout
the article, C will be used to indicate a general positive constant independent of the
parameters ε, μ and of the discrete dimensions N , M .

2 Continuous problem

Consider that u(x, t) = (u1(x, t), u2(x, t)) ∈ C2,4(G). Our primary intention is to
construct a numericalmethodwhich generates ε, μ-uniformly convergent approximate
solutions on the domain G = (

Ω− ∪ Ω+) × (0, T ], being G− = Ω− × (0, T ],
G+ = Ω+ × (0, T ], Ω = (0, 1), Ω− = (0, d), Ω+ = (d, 1), with d ∈ (0, 1),
G∗ = Ω × (0, T ] and Ḡ = [0, 1] × [0, T ], of the problem given by

Lu(x, t) ≡ εuxx (x, t) + μAux (x, t) − Bu(x, t) − D ut(x, t) = f(x, t) (2)
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u(x, 0) = g1(x), ∀x ∈ Ω− ∪ Ω+,

u(0, t) = g2(t), u(1, t) = g3(t) ∀t ∈ [0, T ]. (3)

where

A =
(

a1(x, t) 0
0 a2(x, t)

)
, B =

(
b11(x, t) b12(x, t)
b21(x, t) b22(x, t)

)
,

D =
(

d1(x, t) 0
0 d2(x, t)

)
.

Here, ε and μ are two small parameters such that 0 < ε 
 1, 0 < μ ≤ 1, the
source term f(x, t) = ( f1(x, t), f2(x, t))T and the components of matrices A, B and
D are assumed to be sufficiently smooth on the domains G and Ḡ respectively. A
single jump discontinuity is supposed to be located at a point d ∈ Ω . It is beneficial
to add the usual notation for a jump of any function at a given point, and thus we have
[u](d, t) = u(d+, t) − u(d−, t), [ux ](d, t) = ux (d+, t) − ux (d−, t).

The differential operator L may be expressed as

L ≡ ε

⎛

⎜
⎝

∂2

∂x2
0

0
∂2

∂x2

⎞

⎟
⎠ + μ A

⎛

⎜
⎝

∂

∂x
0

0
∂

∂x

⎞

⎟
⎠ − B − D

⎛

⎜
⎝

∂

∂t
0

0
∂

∂t

⎞

⎟
⎠ ,

while the boundary conditions can be written in matrix form as

u(x, 0) =
(

u1(x, 0)
u2(x, 0)

)
=
(

g11(x)

g12(x)

)
,

u(0, t) =
(

u1(0, t)
u2(0, t)

)
=
(

g21(t)
g22(t)

)
, u(1, t) =

(
u1(1, t)
u2(1, t)

)
=
(

g31(t)
g32(t)

)
.

On the other hand, we consider natural assumptions of positivity and diagonal
dominance of the entries as follows

{
a1(x, t) > α1 > 0,

a2(x, t) > α2 > 0,

{
d1(x, t) > γ1 > 0,

d2(x, t) > γ2 > 0,
(4)

{
b11(x, t) ≥ b12(x, t) ≥ 0,

b11(x, t) + b12(x, t) ≥ β1(x, t) > 0,

{
b22(x, t) ≥ b21(x, t) ≥ 0,

b21(x, t) + b22(x, t) ≥ β2(x, t) > 0.

(5)

If μ = 1, the problem in (2) behaves like the well known convection-diffusion
problem, and when μ = 0, it behaves like the reaction-diffusion problem (see [12,19,
21,23]).
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We denote

α = min{α1, α2}, β = min
(x,t)∈Ḡ

{β1(x, t), β2(x, t)},

ρ1 = min
(x,t)∈Ḡ

{
b11(x, t) + b12(x, t)

a1(x, t)

}
, ρ2 = min

(x,t)∈Ḡ

{
b21(x, t) + b22(x, t)

a2(x, t)

}
,

and ρ = min{ρ1, ρ2}.
In the present analysis, we will consider two excluding cases to study the problem,

as in [21,23]:

– If
√

αμ ≤ √
ρε, then layers of width O(

√
ε) appear in the neighborhoods of

x = 0, x = 1 and to both sides of x = d.
– If

√
αμ >

√
ρε, then layers of widthO( ε

μ
) in a neighborhood of x = 0 and to the

right side of x = d and layers of width O(μ) in a neighborhood of x = 1 and to
the left of x = d, can be predicted.

The following symbolic notations are introduced to specify the boundaries: Γ0 =
{(x, 0)|x ∈ Ω− ∪ Ω+}, Γ1 = {(0, t)|t ∈ [0, T ]}, Γ2 = {(1, t)|t ∈ [0, T ]}, Γ =
Γ0 ∪ Γ1 ∪ Γ2.

3 Bounds on the solution and its derivatives

This section establishes some a priori bounds for the solution and its derivatives.
These bounds will be used in the error analysis part. Further, bounds for the regular
and singular components of the continuous solution will be derived separately.

Lemma 1 The problem (2)–(3) has a solution

u(x, t) ∈ C1,4(G) ∩ C2,4(G− ∪ G+).

Proof Let us consider the same procedure formulated in [14] and construct a function
u satisfying the statement. We take u∗ and u∗∗ whose components satisfy respectively
the following equations

{
εu∗

1xx + μa1u∗
1x − b11u∗

1 + b12u∗
2 − d1u∗

1t = f11, ∀(x, t) ∈ G−,

εu∗∗
1xx + μa1u∗∗

1x − b11u∗∗
1 + b12u∗∗

2 − d1u∗∗
1t = f21, ∀(x, t) ∈ G−,

(6)

{
εu∗

2xx + μa2u∗
2x + b21u∗

1 + b22u∗
2 − d2u∗

2t = f12, ∀(x, t) ∈ G+,

εu∗∗
2xx + μa2u∗∗

2x + b21u∗∗
1 + b22u∗∗

2 − d2u∗∗
2t = f22, ∀(x, t) ∈ G+.

(7)

Let us consider the vector function u, whose components are given by

u1(x, t) =
{

u∗
1(x, t) + (u1(0, t) − u∗

1(0, t))ζ ∗
1 (x, t) + �∗

1ζ
∗
2 (x, t), ∀(x, t) ∈ G−,

u∗
2 + �∗

2ζ
∗
1 (x, t) + (u1(1, t) − u∗

2(1, t))ζ ∗
2 (x, t), ∀(x, t) ∈ G+,

123



668 Journal of Mathematical Chemistry (2020) 58:663–685

u2(x, t) =
{

u∗∗
1 (x, t) + (u1(0, t) − u∗∗

1 (0, t))ζ ∗∗
1 (x, t) + �∗∗

1 ζ ∗∗
2 (x, t), ∀(x, t) ∈ G−,

u∗∗
2 + �∗∗

2 ζ ∗∗
1 (x, t) + (u1(1, t) − u∗∗

2 (1, t))ζ ∗∗
2 (x, t), ∀(x, t) ∈ G+,

where ζ ∗ =
(

ζ ∗
1

ζ ∗
2

)
and ζ ∗∗ =

(
ζ ∗∗
1

ζ ∗∗
2

)
are the solutions of the following two-parameter

singularly perturbed boundary value problems

{
εζ ∗

xx (x, t) + μAζ ∗
x (x, t) − Bζ ∗(x, t) − D ζ ∗

t (x, t) = 0, ∀(x, t) ∈ G,

ζ ∗(0, t) = 1, ζ ∗(1, t) = 0, ζ ∗(x, 0) = 0,
(8)

{
εζ ∗∗

xx (x, t) + μAζ ∗∗
x (x, t) − Bζ ∗∗(x, t) − D ζ ∗∗

t (x, t) = 0, ∀(x, t) ∈ G

ζ ∗∗(0, t) = 1, ζ ∗∗(1, t) = 0, ζ ∗∗(x, 0) = 0.
(9)

The constants �∗
1, �∗

2, �∗∗
1 and �∗∗

2 are chosen in such a way that the solution
u ∈ C1,4(G). Also, 0 < ζ ∗

i (x, t) < 1 and 0 < ζ ∗∗
i (x, t) < 1 for i = 1, 2 on G.

Hence, ζ ∗
1 , ζ ∗

2 , ζ ∗∗
1 and ζ ∗∗

2 cannot have a maximum or a minimum at the interior
points of the domain. Therefore, the first derivative with respect to the space variable
of ζ ∗

1 , ζ
∗
2 , ζ

∗∗
1 and ζ ∗∗

2 can never be zero.
In order to assure that u(x, t) ∈ C1,4(G) it is imposed that

u(d−, t) = u(d+, t) and ux (d
−, t) = ux (d

+, t),

and the following relations are true for the existence of the constants �∗
1 and �∗

2

∣∣∣∣
ζ ∗
2 (d, t) −ζ ∗

1 (d, t)
ζ ∗
2x

(d, t) −ζ ∗
1x

(d, t)

∣∣∣∣ �= 0 and

∣∣∣∣
ζ ∗∗
2 (d, t) −ζ ∗∗

1 (d, t)
ζ ∗∗
2x

(d, t) −ζ ∗∗
1x

(d, t)

∣∣∣∣ �= 0.

This follows from ζ ∗
2x

(d, t) ζ ∗
1 (d, t)−ζ ∗

1x
(d, t) ζ ∗

2 (d, t) > 0 and ζ ∗∗
2x

(d, t) ζ ∗∗
1 (d, t)−

ζ ∗∗
1x

(d, t) ζ ∗∗
2 (d, t) > 0, and the proof is complete. ��

The differential operator L also satisfies the following continuous minimum prin-
ciple on Ḡ.

Lemma 2 (Minimum principle) Let us suppose that a function u ∈ C0(Ḡ) ∩ C2(G)

satisfies u(x, t) ≥ 0 on Γ and Lu(x, t) ≤ 0, ∀(x, t) ∈ G and [ ∂u
∂x ](d, t) ≤ 0.

Also let b12(x, t) ≤ 0 and b21(x, t) ≤ 0 on Ḡ. Then, if there exists a function p =
(p1, p2) ∈ C0(Ḡ) ∩ C2(G) such that p(x, t) > 0 on Γ , Lp(x, t) ≤ 0 ∀(x, t) ∈ G
and [ ∂p

∂x ](d, t) ≤ 0, then u(x, t) ≥ 0, ∀(x, t) ∈ Ḡ.

Proof Let be

ψ1 = max
(x,t)∈Ω̄×(0,T ]

(
− u1

p1

)
(x, t), ψ2 = max

(x,t)∈Ω̄×(0,T ]

(
− u2

p2

)
(x, t)

and ψ = max

{
ψ1, ψ2

}
.
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Let, (x∗, t∗) ∈ G∗ such that u(x∗, t∗) attains its minimum value in Ω̄ × (0, T ] with
the assumptions on the boundary values. It is clear that (x∗, t∗) ∈ G or (x∗, t∗) = (d, t).
Assume that the lemma is not true. The proof is completed by showing that this
leads to a contradiction. Let be u(x, t) < 0, then ψ(x, t) > 0 and there exist a
point (x∗, t∗) ∈ G∗ such that either ψ1 = ψ or ψ2 = ψ or ψ1 = ψ2 = ψ and
(u + ψp)(x, t) ≥ 0, ∀(x, t) ∈ Ω̄ × (0, T ].

Case(i): Consider that (x∗, t∗) ∈ G and ψ1 = (− u1
p1

)(x∗, t∗) = ψ and (u1 +
ψ p1)(x∗, t∗) = 0. This shows that (u1 + ψ p1) attains its minimum value at (x, t) =
(x∗, t∗). Hence, it is

L(u + ψp)(x∗, t∗) = ε
∂2

∂x2
(u1 + ψ p1)(x∗, t∗) + μa1(x∗, t∗)

∂

∂x
(u1 + ψ p1)(x∗, t∗)

− b11(x∗, t∗)(u1 + ψ p1)(x∗, t∗) − b12(x∗, t∗)(u2 + ψ p2)(x∗, t∗)

− d1(x∗, t∗)
∂

∂t
(u + ψ p1)(x∗, t∗) ≥ 0,

which is contradiction. Similarly, a contradiction would be reached if we consider
(x∗, t∗) ∈ G∗ and ψ2 = (− u2

p2
)(x∗, t∗) = ψ .

Case (ii): Consider that (x∗, t∗) = (d, t1) and ψ1 = (− u1
p1

)(x∗, t∗) = ψ . Here
again, it is (u1 + ψ p1)(x∗, t∗) = 0, and (u1 + ψ p1) attains its minimum value at
(x, t) = (x∗, t∗). Hence, we have

0 <

[
∂

∂x
(u1 + ψ p1)

]
(x∗, t∗) =

[
∂u1

∂x

]
(d, t∗) + ψ

[
∂

∂x
p1

]
(d, t∗) ≤ 0,

which is a contradiction. Similarly, a contradiction is reached if we choose ψ2 =
(− u2

p2
)(x∗, t∗) = ψ and (x∗, t∗) = (d, t1).

Hence, it is u(x, t) ≥ 0 ∀(x, t) ∈ Ω̄ × (0, T ].
Considering similar arguments as those presented in [21] and the above Lemmas 1

and 2, the following results about the boundedness of the solution and its derivatives
can be established. ��

Theorem 1 (Stability result) Let u(x, t) be the solution of (2)–(3). Then

‖ u ‖Ḡ≤ max

{
‖ u ‖Γ , ‖ t

β
f ‖G∗

}
.

Lemma 3 The derivatives of the solutionu(x, t) of (2)–(3) satisfy the following bounds
for all non-negative integers k, m, such that 1 ≤ k + 2m ≤ 3:
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– If μ2 ≤ Cε, then

∥∥∥∥
∂k+mu
∂xk∂tm

∥∥∥∥ ≤ C√
ε

k
max

⎧
⎨

⎩
‖u‖ ,

2∑

i+2 j=0

(
√

ε)i
∥∥∥∥

∂ i+ j f
∂xi∂t j

∥∥∥∥ ,

4∑

i=0

∥∥∥∥
dig1
dxi

∥∥∥∥
Γ0

+
[ ∥∥∥∥

dig2
dti

∥∥∥∥ +
∥∥∥∥

dig3
dti

∥∥∥∥

]

Γ1∪Γ2

}

,

– If μ2 ≥ Cε, then

∥∥∥∥
∂k+mu
∂xk∂tm

∥∥∥∥ ≤ C
(μ

ε

)k
(

μ2

ε

)m

max

⎧
⎨

⎩
‖u‖ ,

2∑

i+2 j=0

(
ε

μ

)i (
ε

μ2

) j+1 ∥∥∥∥
∂ i+ j f
∂xi∂t j

∥∥∥∥ ,

4∑

i=0

∥∥∥∥
dig1
dxi

∥∥∥∥
Γ0

+
[ ∥∥∥∥

dig2
dti

∥∥∥∥ +
∥∥∥∥

dig3
dti

∥∥∥∥

]

Γ1∪Γ2

}

,

for p = 1, 2, where C depends only on the coefficients A, B, D and their derivatives.

Corollary 1 The second order time derivative of the solution of (2)–(3) satisfies the
bound

‖ut t (x, t)‖ ≤
{

C, if μ ≤ C
√

ε,

C μ4

ε2
, if μ > C

√
ε.

Proof It can be readily obtained by using the results in [21] and in Lemma 3. ��

3.1 Decomposition of the solution

To obtain sharper bounds in the error analysis, the solution u(x, t)will be decomposed
into a regular component r(x, t), and two singular components, sl(x, t) and sr (x, t),
as follows

u(x, t) = r(x, t) + sl(x, t) + sr (x, t).

We will use the following notations in order to differentiate if r(x, t) is considered
defined to the left or to the right of x = d:

(r)−(x, t) = r(x, t), ∀(x, t) ∈ G−,

(r)+(x, t) = r(x, t), ∀(x, t) ∈ G+.
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Similarly, we will use the following notations to differentiate when the singular com-
ponents are defined to the left or to the right of x = d, respectively:

(sl)
−(x, t) = sl(x, t), ∀(x, t) ∈ G−,

(sl)
+(x, t) = sl(x, t), ∀(x, t) ∈ G+,

and

(sr )
−(x, t) = sr (x, t), ∀(x, t) ∈ G−,

(sr )
+(x, t) = sr (x, t), ∀(x, t) ∈ G+.

It is inevitable to split the analysis into two cases, depending on the ratio of μ to√
ε according to

√
αμ ≤ √

ρε or
√

αμ >
√

ρε, which is related to the presence of
layers of different widths. In what follows, we analyze these two possibilities.

1. Case
√

αμ ≤ √
ρε:

In this case the regular component r(x, t) satisfies

Lr(x, t) = f(x, t) ∀(x, t) ∈ G,

r(x, t) = u(x, t) on Γ0, r(x, t) = 0 on Γ1 ∪ Γ2,

[r](d, t) = 0, [rx ](d, t) = 0. (10)

which according to [25,26] can be written in the form r = r0 + √
ε r1 + √

ε r2
where the ri verify respectively the following problems

⎧
⎪⎨

⎪⎩

−Br0(x, t) − D ∂r0
∂t (x, t) = f(x, t), r0(x, t) = u(x, t) on Γ0

−Br1 − D ∂r1
∂t (x, t) = ∂r0

∂x2
(x, t), r1(x, t) = 0 on Γ0

Lr2(x, t) = ∂r1
∂x2

, r2(x, t) = 0, ∀(x, t) ∈ Ḡ\G∗.
(11)

Similarly, the singular components sl(x, t), sr (x, t) satisfy the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lsl(x, t) = 0 on G∗, sl(x, t) = 0 on Γ0 ∪ Γ2,

sl(x, t) = u(x, t) − r(x, t) on Γ1

Lsr (x, t) = 0 on G∗, sr (x, t) = 0 on Γ0 ∪ Γ1,

sr (x, t) = u(x, t) − r(x, t) on Γ2.

(12)

Considering the above we have that

[sr ](d, t) = −[r](d, t) − [sl ](d, t)

and

[
∂

∂x
sr

]
(d, t) = −

[
∂

∂x
r
]

(d, t) −
[

∂

∂x
sl

]
(d, t),
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while the solution of (2)–(3) may be expressed as

u =

⎧
⎪⎨

⎪⎩

(r)− + (sl)
− + (sr )

− for x < d, t ∈ (0, T ],
(r)− + (sl)

− + (sr )
− = (r)+ + (sl)

+ + (sr )
+ for x = d, t ∈ (0, T ],

(r)+ + (sl)
+ + (sr )

+ for x > d, t ∈ (0, T ].
From (11)–(12) it can be quickly obtained the upper bounds of the derivatives of

regular and singular components based on similar idea given in [21,25]. These results
are declared in the following lemmas.

Lemma 4 The derivatives of the regular component r(x, t) satisfy the following
bounds

∥∥∥∥
∂k+mr
∂xk∂tm

∥∥∥∥
Ḡ

≤ C(1 + ε1−k/2), 0 ≤ k + 2m ≤ 4, (13)

where C is a constant independent of ε, μ.

Lemma 5 The derivatives of the singular components sl(x, t) and sr (x, t) satisfy the
following bounds with 0 ≤ k + 2m ≤ 4,

∥∥∥∥
∂k+msl

∂xk∂tm

∥∥∥∥{x}×(0,T ]
≤ Cε−k/2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e
−

√
ρα√
ε

x

, x ∈ Ω− (14)

e
−

√
ρα√
ε

(x−d)

, x ∈ Ω+ (15)

∥∥∥∥
∂k+msr

∂xk∂tm

∥∥∥∥{x}×(0,T ]
≤ Cε−k/2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e
−

√
ρα√
2ε

(d−x)

, x ∈ Ω− (16)

e
−

√
ρα√
2ε

(1−x)

, x ∈ Ω+ (17)

where C is a constant independent of ε, μ.

2. Case
√

αμ >
√

ρε:
Now, the regular component r(x, t) satisfies

Lr(x, t) = f(x, t) ∀(x, t) ∈ G,

r(x, t) = u(x, t) on Γ0 ∪ Γ2, r(x, t) = 0 on Γ1,

[r](d, t) = 0, [rx ](d, t) = 0,

which according to [25,26] can be written in the form r = r0 + εr1 + ε2r2, where
the ri verify the following problems

⎧
⎪⎨

⎪⎩

Ar0 − Br0(x, t) − D ∂r0
∂t (x, t) = f(x, t), r0(x, t) = u(x, t) on Γ0 ∪ Γ2,

Ar1 − Br1 − D ∂r1
∂t (x, t) = ∂r0

∂x2
(x, t), r1(x, t) = 0 on Γ0 ∪ Γ2,

Lr2(x, t) = ∂r1
∂x2

, r2(x, t) = 0, ∀(x, t) ∈ Ḡ\G∗.
(18)
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Similarly, the singular components sl(x, t), sr (x, t) satisfy the following problems

⎧
⎪⎨

⎪⎩

Lsl(x, t) = 0 on G, sl(x, t) = 0 on Γ0 ∪ Γ2,

sl(x, t) = u(x, t) − r(x, t) on Γ1,

Lsr (x, t) = 0 on G∗, sr (x, t) = 0 on Γ0 ∪ Γ1 ∪ Γ2.

(19)

Considering the above we have that

[sr ](d, t) = −[r](d, t) − [sl ](d, t)

and
[

∂

∂x
sr

]
(d, t) = −

[
∂

∂x
r
]

(d, t) −
[

∂

∂x
sl

]
(d, t).

From (18)–(19), the results for the upper bounds of the derivatives of regular and
singular components in the following lemmas can be proven easily, using a similar
procedure to that used in [21,25].

Lemma 6 The derivatives of the regular component r(x, t) satisfy the following
bounds

∥∥∥∥
∂k+mr
∂xk∂tm

∥∥∥∥
G

≤ C

(
ε

μ

)2−k

, (20)

where C is a constant independent of ε, μ and 0 ≤ k + 2m ≤ 3.

Lemma 7 The derivatives of the singular components sl(x, t) and sr (x, t) satisfy the
following bounds with 0 ≤ k + 2m ≤ 4

∥∥∥∥
∂k+msr

∂xk∂tm

∥∥∥∥{x}×(0,T ]
≤ Cμkε−k

{
e− αμ

ε
x , x ∈ Ω− (21)

e− αμ
ε

(x−d), x ∈ Ω+ (22)

∥∥∥∥
∂k+msl

∂xk∂tm

∥∥∥∥{x}×(0,T ]
≤ Cμ−k

{
e− ρ

2μ (d−x)
, x ∈ Ω− (23)

e− ρ
2μ (1−x)

, x ∈ Ω+ (24)

where C is a constant independent of ε, μ.

4 Numerical scheme

In this section, the numerical approximation of (2)–(3) on a discrete mesh specifically
designed is addressed.

The interior points of the mesh in space are denoted by

Ω N = (Ω−)N ∪ (Ω+)N ∪ {d}, (25)
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(Ω−)N =
{

xi : 1 ≤ i ≤ N

2
− 1

}
, (Ω+)N =

{
xi : N

2
+ 1 ≤ i ≤ N − 1

}
,

(26)

Ω̄ N = Ω N ∪ {0, 1}, (27)

while the uniform mesh in time is denoted by

ω̄M = {kτ, 0 ≤ k ≤ M, τ = T /M}. (28)

On Ω̄ N a piecewise uniformmesh of N mesh intervals is broken into parts resulting
the space domain as

[0, 1] = [0, σ1] ∪ [σ1, d − σ2] ∪ [d − σ2, d] ∪ [d, d + σ1]
∪[d + σ1, 1 − σ2] ∪ [1 − σ2, 1].

On each of the four sub-intervals [0, σ1], [d − σ2, d], [d, d + σ1], [1 − σ2, 1] a
uniform mesh with N/8 mesh scale is considered, whereas the two sub-intervals
[σ1, d − σ2] and [d + σ1, 1 − σ2] have a uniform mesh with N/4 mesh scale.

In this way we get a discrete domain Ḡ N ,M = Ω̄ N × ω̄M , as it is shown in Fig. 1.
The transition points are taken to be

σ1 =

⎧
⎪⎪⎨

⎪⎪⎩

min

{
d

4
, 2
√

ε

ρα
ln N

}
, if αμ2 < ρε

min

{
d

4
,
2ε

μα
ln N

}
, if αμ2 ≥ ρε

σ2 =

⎧
⎪⎪⎨

⎪⎪⎩

min

{
d

4
, 2
√

ε

ρα
ln N

}
, if αμ2 < ρε

min

{
d

4
,
2μ

ρ
ln N

}
, if αμ2 ≥ ρε .

0 d 1

T/M

2T/M2T/M

T/M
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Fig. 1 Mesh description of the domain Ḡ N ,M
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In view of this, the mesh points of the spatial variable are given by

xi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ih1 for 0 ≤ i ≤ N/8
σ1 + (i − N/8)H1 for N/8 ≤ i ≤ 3N/8
(d − σ2) + (i − 3N/8)h2 for 3N/8 ≤ i ≤ N/2
d + (i − N/2)h1 for N/2 ≤ i ≤ 5N/8
d + σ1 + (i − 5N/8)H2 for 5N/8 ≤ i ≤ 7N/8
(1 − σ2) + (i − 7N/8)h2 for 7N/8 ≤ i ≤ N

where the step sizes are given by

h1 = 8σ1
N

, H1 = 4(d − σ1 − σ2)

N
, h2 = 8σ2

N
, H2 = 4(1 − σ2 − d − σ1)

N
.

(29)

On this piecewise uniform mesh, we use the following finite difference scheme

L N ,MUi, j ≡ (εδ2x + μAi j D+
x − Bi j − Di j D−

t )Ui, j = f(xi , t j ), ∀(xi , t j ) ∈ G N ,M ,

(30)

where f(xi , t j ) = (
f1(xi , t j ), f2(xi , t j )

)T , and Ui, j denotes the approximations of
the true values u(xi , t j ).

On the other hand, it is D+
x U(xi , t j ) = D−

x U(xi , t j ) if i = N/2, with

{
U0, j = g2(t j ), UN , j = g3(t j ), j = 0, 1, . . . , M;
Ui,0 = g1(xi ), i = 0, 1, . . . , N ,

(31)

where,

Ai j =
(

a1(xi , t j ) 0)
0 a2(xi , t j )

)
, Bi j =

(
b11(xi , t j ) b12(xi , t j )

b21(xi , t j ) b22(xi , t j )

)
,

Di j =
(

d1(xi , t j ) 0)
0 d2(xi , t j )

)
.

We use the notations

G N ,M = (Ω N− ∪ Ω N+) × ω̄M

= {
(xi , t j ) : 1 ≤ i ≤ N/2 − 1, N/2 + 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M

}
,

Ḡ N ,M = Ω̄ N × ω̄M = {
(xi , t j ) : 1 ≤ i ≤ N , 1 ≤ j ≤ M

}
,

Ω N− = {
xi : 1 ≤ i ≤ N/2 − 1

}
,

Ω N+ = {
xi : N/2 + 1 ≤ i ≤ N − 1

}
,

ω̄M = {
t j : 1 ≤ j ≤ M

}
,
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while the discrete differential operators D+
x , D−

x , D−
t , and δ2x are defined as follows

D−
t Ui, j = Ui, j − Ui, j−1

τ
, D+

x Ui, j = Ui+1, j − Ui, j

xi+1 − xi
,

D−
x Ui, j = Ui, j − Ui−1, j

xi − xi−1
, δ2xUi, j =

(
D+

x Ui, j − D−
x Ui, j

)

(xi+1 − xi−1)/2
.

The following notations will be used for the boundaries:

Γ
N ,M
0 = {

(xi , 0)|xi ∈ (Ω− ∪ Ω+)N}, Γ
N ,M
1 = {

(0, t j )|t j ∈ ω̄M}
,

Γ
N ,M
2 = {

(1, t j )|t j ∈ ω̄M}
, Γ N ,M = Γ

N ,M
0 ∪ Γ

N ,M
1 ∪ Γ

N ,M
2 .

Lemma 8 (Discrete Minimum principle) Let, L N ,M be the discrete operator given in
(30). Suppose u(xi , t j ) ≥ 0 on Γ N ,M ⋂

Ḡ N ,M , L N ,Mu(xi , t j ) ≤ 0 on G
⋂

Ḡ N ,M

and D+
x u(xN/2, t j ) − D−

x u(xN/2, t j ) ≤ 0 for t j ∈ ω̄M . Also let be b12(xi , t j ) ≤ 0,
b21(xi , t j ) ≤ 0. Then, if there exist a mesh function p(xi , t j ) such that p(xi , t j ) ≥
0 on Γ N ,M ⋂

Ḡ N ,M , L N ,Mp(xi , t j ) ≤ 0 in G
⋂

Ḡ N ,M and D+
x p(xN/2, t j ) −

D−
x p(xN/2, t j ) ≤ 0 then u(xi , t j ) ≥ 0 for all (xi , t j ) ∈ Ḡ N ,M .

Proof

ψ = max

{

ψ1 = max
(xi ,t j )∈Ḡ N ,M

(
− u1

p1

)
(xi , t j ), ψ2 = max

(xi ,t j )∈Ḡ N ,M

(
− u2

p2

)
(xi , t j )

}

Let be (x∗
i , t∗j ) ∈ G N ,M such that u(x∗

i , t∗j ) attains its minimum value in Ḡ. From

the assumptions on the boundary values it is clear that (x∗
i , t∗j ) ∈ G N ,M or (x∗

i , t∗j ) =
(d, t j ). Assume that the Lemma is not true. The proof is completed by showing that
this leads to a contradiction. Let be u(xi , t j ) < 0, then it is ψ(xi , t j ) > 0 and there
exist a point (x∗

i , t∗j ) ∈ G N ,M such that either ψ1 = ψ or ψ2 = ψ or ψ1 = ψ2 = ψ

and (u + ψp)(xi , t j ) ≥ 0, ∀(xi , t j ) ∈ Ḡ N ,M .

Case(i): Consider, (x∗
i , t∗j ) ∈ G N ,M and ψ1 = (− u1

p1
)(x∗

i , t∗j ) = ψ and (u1 +
ψ p1)(x∗

i , t∗j ) = 0. This shows that (u1+ψ p1) attains its minimum value at (xi , t j ) =
(x∗

i , t∗j ). Hence, we have

L(u + ψp)(x∗
i , t∗j ) = εδ2x (u1 + ψ p1)(x∗

i , t∗j ) + μa1(x∗
i , t∗j )D+

x (u1 + ψ p1)(x∗
i , t∗j )

− b11(x∗
i , t∗j )(u1 + ψ p1)(x∗

i , t∗j ) − b12(x∗
i , t∗j )(u2 + ψ p2)(x∗

i , t∗j )
− d1(x∗

i , t∗j )D−
t (u + ψ p1)(x∗

i , t∗j ) ≥ 0,

which is a contradiction. Similarly, a contradiction would be reached if we consider
(x∗

i , t∗j ) ∈ G N ,M and ψ2 = (− u2
p2

)(x∗
i , t∗j ) = ψ .

Case (ii): Consider, (x∗
i , t∗j ) = (d, t1) and ψ1 = (− u1

p1
)(x∗

i , t∗j ) = ψ . Here again,
it is (u1 + ψ p1)(x∗

i , t∗j ) = 0, and (u1 + ψ p1) attains its minimum value at (xi , t j ) =
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(x∗
i , t∗j ). Hence, we have

0 <

[
∂

∂x
(u1 + ψ p1)

] (
x∗

i , t∗j
)

=
[
∂u1

∂x

] (
d, t∗j

)
+ ψ

[
∂

∂x
p1

] (
d, t∗j

)
≤ 0,

which is a contradiction. Similarly, a contradiction is reached if we choose ψ2 =(
− u2

p2

) (
x∗

i , t∗j
)

= ψ and (x∗
i , t∗j ) = (d, t1).

Hence, it is u(xi , t j ) ≥ 0 ∀(xi , t j ) ∈ Ḡ N ,M .
The following stability result can obtained as an immediate consequence of the

discrete maximum principle. ��
Theorem 2 (Discrete stability result) Let U(xi , t j ) be the solution of (30)–(31), then
it holds that

‖ U(xi , t j ) ‖Ḡ N ,M ≤ max

{
‖ U(xi , t j ) ‖Γ N ,M , ‖ t

β
f(xi , t j )‖G N ,M

}
.

4.1 Truncation error analysis

The solution U(xi , t j ) of the discrete problem is decomposed in an analogous manner
to the above decomposition of the solution u(x, t) of (2)–(3). Thus, we may write

U(xi , t j ) = V(xi , t j ) + WL(xi , t j ) + WR(xi , t j ), ∀(xi , t j ) ∈ Ḡ N ,M ,

where V(xi , t j ) is the solution of the inhomogeneous problem

L N ,MV(xi , t j ) = f(xi , t j ), V(xi , t j ) = r(xi , t j ) inΓ N ,M ,

with

[V](xN/2, t j ) = [r](xN/2, t j ),

whileWL(xi , t j ) andWR(xi , t j ) are respectively solutions of the homogeneous prob-
lems

L N ,MWL(xi , t j ) = 0 in G N ,M ; WL(xi , t j ) = sl(xi , t j ) in Γ N ,M ,

L N ,MWR(xi , t j ) = 0 in G N ,M ; WR(xi , t j ) = sr (xi , t j ) in Γ N ,M ,

being

[WR](d, t j ) = [sr ](d, t j ), [WL ](d, t j ) = [sl ](d, t j ),[
∂

∂x
WR

]
(d, t j ) =

[
∂

∂x
sr

]
(d, t j ),

[
∂

∂x
WL

]
(d, t j ) =

[
∂

∂x
sl

]
(d, t j ).
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From the above, the discrete solution may be written as

U(xi , t j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
V− + WL

− + WR
−) (xi , t j ) for xi < d, t j ∈ (0, T ],

(
V− + WL

− + WR
−) (xi , t j )

= (
V+ + WL

+ + WR
+) (xi , t j ) for xi = d, t j ∈ (0, T ],

(
V+ + WL

+ + WR
+) (xi , t j ) for xi > d, t j ∈ (0, T ].

Lemma 9 The regular component, V, of the discrete solution satisfies the following
estimate

‖V − r‖Ḡ N ,M \(d,t j )
≤ C N−1 + C M−1,

where r is the regular component of the continuous solution u(x, t).

Proof Applying similar arguments as those used to get the bounds in (13) and (20),
we have that for (xi , t j ) ∈ Ḡ N ,M\(d, t j ) it is

‖L N ,M (V− − r−)(xi , t j )‖ ≤ C N−1(ε‖r−
xxx‖ + μ‖r−

xx‖) + C M−1‖r−
t t ‖

≤ C N−1 + C M−1

‖L N ,M (V+ − r+)(xi , t j )‖ ≤ C N−1(ε‖r+
xxx‖ + μ‖r+

xx‖) + C M−1‖r+
t t ‖

≤ C N−1 + C M−1.

Now, applying the barrier function technique and Lemma (8), it can be verify that the
truncation error of the regular component verifies that

‖V − r‖Ḡ N ,M \(d,t j )
≤ C N−1 + C M−1.

��

Lemma 10 The truncation errors of the singular components satisfy

‖W−
L − s−l ‖Ḡ N ,M \(d,t j )

≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1 ln N + C M−1 if μ > C
√

ε,
(32)

‖W+
L − s+l ‖Ḡ N ,M \(d,t j )

≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1(ln N )2 + C M−1 if μ > C
√

ε,
(33)

‖W−
R − s−r ‖Ḡ N ,M \(d,t j )

≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1(ln N )2 + C M−1 if μ > C
√

ε,
(34)

‖W+
R − s+r ‖Ḡ N ,M \(d,t j )

≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1 ln N + C M−1 if μ > C
√

ε.
(35)
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Proof Applying similar arguments as those used to get the bounds in (14) and (23),
we have that for (xi , t j ) ∈ Ḡ N ,M\(d, t j ) it is

∥∥∥L N ,M (
W−

L − s−l
)
(xi , t j )

∥∥∥ ≤ C N−1 (ε‖s−lxxx‖ + μ‖s−lxx‖
) + C M−1‖s−lt t‖.

Similarly, having in mind (15) and (24), we have

∣∣∣L N ,M (
W+

L − s+l
)
(xi , t j )

∣∣∣ ≤ C N−1 (ε‖s+lxxx‖ + μ‖s+lxx‖
) + C M−1

∥∥s+lt t
∥∥ .

Finally, to get the required results in (32) and (33), one can apply the same techniques
and idea followed by Riordan [21]. The results in (34) and (35) can be obtained
similarly. ��
Theorem 3 Let u(x, t) be the exact solution of problem (2)–(3) and U(xi , t j ) the
discrete solution of (30)–(31). Then, for N , M sufficiently large it is

‖U(xi , t j ) − u(xi , t j )‖ ≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1(ln N )2 + C M−1 if μ > C
√

ε,

where (xi , t j ) ∈ Ḡ N ,M , and C is a constant independent of ε, μ, N and M.

Proof Using the ideas in [21,23] and the results in Lemma 2, 9 and 10 we can obtain,
except for the point xN/2 = d, the following

‖U(xi , t j ) − u(xi , t j )‖ ≤
{

C N−1 ln N + C M−1 if μ ≤ C
√

ε,

C N−1 ln2 N + C M−1 if μ > C
√

ε.

To get the bounds concerning the point xN/2 = d, we consider the following discrete
barrier functions in the two exclusionary cases:
Case-(i): if μ ≤ C

√
ε,

we consider ψ(xi , t j ) = C N−1 ln N + C h√
ε
φ(xi , t j ) ± e(xi , t j ).

Here, φ(xi , t j ) is the solution of the problem

εδ2xφ(xi , t j ) + μα(xi , t j )D−
x φ(xi , t j ) − βφ(xi , t j ) = 0 ∀(xi , t j ) ∈ G N ,M ,

φ(0, t j ) = 0, φ(d, t j ) = 1, φ(1, t j ) = 0.

Note: Here, α and β are the same values that were defined for the continuous
problem.

Case-(ii): if μ > C
√

ε,
we consider

ψ(xi , t j ) = C N−1 ln2 N +

⎧
⎪⎪⎨

⎪⎪⎩

C N−1σ2(xi − d − σ2)

μ2 , ∀(xi , t j ) ∈ (d − σ2, d) × ω̄M ,

C N−1σ1μ
2(d + σ1 − xi )

ε2
, ∀(xi , t j ) ∈ (d, d + σ1) × ω̄M .
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Based on the procedure and techniques adopted in [23,24], applying Lemma 2 to the
above barrier functions we get the following results:

For μ ≤ C
√

ε,

‖U(d, t j ) − u(d, t j )‖ ≤ C N−1 ln N + C M−1 ∀t j ∈ ω̄M .

For μ > C
√

ε,

‖U(d, t j ) − u(d, t j )‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

C N−1σ 2
2

μ2 , ∀t j ∈ ω̄M

C N−1σ 2
1 μ2

ε2
, ∀t j ∈ ω̄M

≤ C N−1 ln2 N + C M−1.

��

5 Numerical results

To show the efficiency of the proposed scheme and the accuracy of the results con-
cerning the error analysis, we exhibit a numerical example with random discontinuous
points. For this test problem, the errors and the corresponding rates of convergence
are illustrated in the accompanying tables.

Example 3.1 Consider the system of partial differential equations given by

ε
∂2u1

∂x2
+ μ(2 + x)2

∂u1

∂x
− u1 − 0.5u2 − ∂u1

∂t
= f1(x, t), ∀(x, t) ∈ Ω− ∪ Ω+ × (0, T ],

ε
∂2u2

∂x2
+ μ(2x + 3)

∂u2

∂x
− u1 − 2u2 − ∂u2

∂t
= f2(x, t), ∀(x, t) ∈ Ω− ∪ Ω+ × (0, T ],

with the boundary conditions u(x, 0) = 0; u(0, t) = u(1, t) = 0, where

f1(x, t) =
{

(2x + 1)t if 0 ≤ x < d
−t if d < x ≤ 1

;

f2(x, t) =
{−(3x + 4)t if 0 ≤ x < d
3t + 2 if d < x ≤ 1.

As we do not know the exact solution of the example, the efficiency of the obtained
numerical approximations will be resolved by using a twice improved mesh, which
is known as the double mesh principle. For any fixed values of N , M , and specified
values of ε, μ, the maximum error E N ,M

ε,μ over all the grid points will be determined
by

E N ,M
ε,μ ≡ max

(xi ,t j )∈Ḡ N ,M

{∥∥∥U N ,M (xi , t j ) − Ū 2N ,2M (xi , t j )

∥∥∥
}

,
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where Ū 2N ,2M (xi , t j ) is the linear interpolant of the mesh function U 2N ,2M (xi , t j )

provided by the “interp” function in Matlab. In addition, the error and order of con-
vergence are computed by fixing μ and varying ε for a larger set. We have taken
Sε = {2−1, 2−2, . . . , 2−30}. The maximum of these values is denoted by

E N ,M
μ = max

ε∈Sε

E N ,M
ε,μ .

Using these values, one can estimate the order of convergence QN ,M
μ , through the

formula [22]

QN ,M
μ = log2

(
E N ,M

μ

E2N ,2M
μ

)

.

From the above defined formula, we display the values of E N ,M
μ and QN ,M

μ for some
values of ε = 2−i raging from i = 1 up to i = 30.We have chosen the number of mesh
points on the spatial and time-like components, N = 2M = 2 j , j = 5, . . . , 9 and
have presented three different cases according to the position of the point d ∈ (0, 1).
Specifically, we have taken d = 0.1, 0.5, 0.9, to analyze the performance of the
proposed method near the endpoints and in the middle of the interval (0, 1). We have
considered the time interval [0, 0.5] in all cases. The results obtained for a fixed value
of μ = 2−8 are shown in Table 1, where we have included the errors and approximate
orders of convergence for each component.

Similarly,we can estimate themaximumpoint-wise errors and order of convergence
for fixed ε as in Table 2where we have taken ε = 2−8 and Sμ = {2−1, 2−2, . . . , 2−30}.

Fig. 2 Surface plot the approximate solution for ε = 2−8, μ = 2−4, N = 2M = 128 and d = 0.5

Fig. 3 Surface plot of the approximate solution for ε = 2−4, μ = 2−8, N = 2M = 128 and d = 0.5

123



684 Journal of Mathematical Chemistry (2020) 58:663–685

This experiment serves to validate that themethod is almost first order convergent with
respect to the perturbation parameters.

Figures 2 and 3 show the approximate solution for d = 0.5. In this case one can see
the layers at the ends of the space integration interval aswell as around the discontinuity
point d.
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