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Abstract
Thin film arises in various applications from electrochemistry to nano devices, many
mathematical tools were adopted to study the problem, e.g. Lie symmetries and con-
servation laws, however, the variational approach is rare. This paper shows that the
semi-inverse method is an effective approach to establishment of a variational formu-
lation for the thin film equation. A detailed derivation process is given, a special skill
for construction of a heuristic trial-functional is elucidated.

Keywords Variational theory · Special function · Trial-functional · Nanoscale
adhesion · Coating · Wetting

1 Introduction

Variational principle plays a key role in both numerical and analytical analyses of a
practical problem, it suggests an energy conservation for the whole solution domain,
and a variational-based numerical algorithm guarantees the energy conservation at
each point, while a variational-based analytical solution is an optimal one for a given
trial-solution and valid for the whole solution domain.

Recently Recio et al. [1] studied the following equation

ut + ( f (u)uxxx + g(u)ux )x + h(u) � 0 (1)

where f, g and h are functions of u.
Equation (1) can describe a thin film problem, which can be found widely applica-

tions in electrochemistry [2], cell culture [3], fiber fabrication [4], nanoscale adhesion
[5], coating [6], wetting [7] and micro/nano devices [8]. Many analytical methods and

B Ji-Huan He
hejihuan@suda.edu.cn

1 School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China

2 Qujing Normal University, Sanjiang Avenue, Economic Development Zone, Qujing, Yunnan, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-019-01063-8&domain=pdf
http://orcid.org/0000-0002-1636-0559


2076 Journal of Mathematical Chemistry (2019) 57:2075–2081

numerical methods were applied to study such problems [9–15]. This paper aims at
establishing a variational formulation for Eq. (1) by the semi-inverse method [16–27].

2 The semi-inverse method and the variational formulation

The semi-inverse method [16–19] is to establish a variational principle directly from
governing equations. In order to effectively use the method, we write Eq. (1) in a
conservation form

ut + [(F(u))xxx + (G(u))x + H (u)]x � 0 (2)

where F, G and H satisfy the following relationships

(F(u))xxx � f (u)uxxx (3)

(G(u))x � g(u)ux (4)

(H (u))u � h(u) (5)

According to Eq. (2), we can introduce a special function ϕ, satisfying the following
relations

∂ϕ

∂x
� u (6)

∂ϕ

∂t
� −[(F(u))xxx + (G(u))x + H (u)] (7)

The defined special function (ϕ) is potential-like function. By the semi-inverse
method [16–19], we can establish a trial functional in the form

J (u, ϕ) �
¨

{uϕt + [(F(u))xxx + (G(u))x + H (u)]ϕx + σ }dxdt (8)

where σ is an unknown function of u and its derivatives. The advantage of the above
trial-functional is the stationary condition with respect to ϕ is Eq. (2), but we can not
identify σ , so we modify Eq. (8) in the form

J (u, ϕ) �
¨

{auϕt + bϕxϕt + [(F(u))xxx + (G(u))x + H (u)]ϕx + σ }dxdt (9)

where a and b are constants to be further determined.
The Euler–Lagrange equations of Eq. (9) are

−aut − 2bϕxt − [(F(u))xxx + (G(u))x + H (u)]x � 0 (10)

aϕt − ∂F

∂u
ϕxxxx − ∂G

∂u
ϕxx +

∂H

∂u
ϕx +

δσ

δu
� 0 (11)
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where δσ/δu is the variational derivative. In this paper it can be written in the form

δσ

δu
� ∂σ

∂u
− ∂

∂x
(
∂σ

∂ux
) − ∂3

∂x3
(

∂σ

∂uxxx
) (12)

In view of Eq. (6), we can write Eq. (10) in the form

(a + 2b)ut + [(F(u))xxx + (G(u))x + H (u)]x � 0 (13)

which should be Eq. (2), so we have

a + 2b � 1 (14)

In view of Eqs. (6) and (7), we can write Eq. (11) in the form

−a[(F(u))xxx + (G(u))x + H (u)] − f uxxx − gux + hu +
δσ

δu
� 0 (15)

or

−a[ f (u)uxxx + g(u)ux + H (u)] − f uxxx − gux + hu +
δσ

δu
� 0 (16)

In order to identify σ in Eq. (16), we set

a � −1 (17)

Equation (16) becomes

δσ

δu
� −H (u) − h(u)u (18)

From Eq. (18) we can determine σ easily, which satisfies the following relation

∂σ

∂u
� −H (u) − h(u)u (19)

We, therefore, obtain the following variational formulation

J (u, ϕ) �
¨

{−uϕt + ϕxϕt + [(F(u))xxx + (G(u))x + H (u)]ϕx + σ }dxdt (20)

where σ is defined in Eq. (19).

Remark if a � 1 as suggested in Eq. (8), we have difficulty in identifying σ from
Eq. (16).
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3 An example

We consider a special case of Eq. (1)

ut + (uxxx + uux )x + u2 � 0 (21)

Hereby f (u) � 1, g(u) � u,h(u) � u2, F(u) � u,G(u) � 1
2u

2, H (u) � 1
3u

3, and

∂ϕ

∂x
� u (22)

∂ϕ

∂t
� −(uxxx + uux +

1

3
u3) (23)

∂σ

∂u
� −H (u) − h(u)u � −1

3
u3 − u3 � −4

3
u3 (24)

From Eq. (24) σ can be identified as

σ � −1

3
u4 (25)

We, therefore, obtain the following variational principle for Eq. (21):

J (u, ϕ) �
¨ {

−uϕt + ϕxϕt +

[
uxxx +

1

2
(u2)x +

1

3
u3

]
ϕx − 1

3
u4

}
dxdt (26)

which is subject to the constraint of Eq. (22).

Proof The stationary conditions of Eq. (26) with respect to ϕ and u are

ut − 2ϕxt −
[
uxxx +

1

2
(u2)x +

1

3
u3

]
x

� 0 (27)

−ϕt − ϕxxxx − uϕxx + u2ϕx − 4

3
u3 � 0 (28)

In view of Eq. (22), we find Eqs. (27) and (28) are equivalent to Eq. (21) and
Eq. (23), respectively.

4 Discussion and conclusion

A suitable construction of a trial functional is of great importance for the establishment
of a variational principle. Equation (8) does not work, because if we set a� 1, Eq. (16)
becomes

−[ f (u)uxxx + g(u)ux + H (u)] − f uxxx − gux + hu +
δσ

δu
� 0 (29)
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or

−2 f (u)uxxx − 2g(u)ux − H (u) + hu +
δσ

δu
� 0 (30)

In Eq. (30), we have difficulty in identification of σ due to the terms involving uxxx
and ux .

We can easily determineσ for all even-order derivatives from the following equation

δσ

δu
� m(u) + αuxx + βuxxxx+δuxxxxxx (31)

whereα,β, and δ are constants,m is a function of u. FromEq. (31) σ can be determined
as

σ � M(u) − 1

2
α(ux )

2 +
1

2
β(uxx )

2 − 1

2
δ(uxxx )

2 (32)

where M is defined as

∂M

∂u
� m (33)

In this paper, we find that the semi-inverse method provides an effective tool to
finding a needed variational principle for a practical problem, the derivation process
is explained step by step, so that it can be easily followed. Recently Wang et al. [27]
successfully applied the semi-inverse method to fractal calculus [28, 29], and obtained
a variational principle for wave traveling in a fractal space.

The variational principle is a foundation of the variational iterationmethod [30, 31],
which is now widely applied in fractional calculus, and the present paper might give a
hint for an effective identification of Lagrange multiplier in the fractional variational
iteration method [30–36].
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