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Abstract
This paper provides exact solution of Arrhenius equation for non-isothermal kinetics
at constant heating rate and nth-order of reaction instead of using numerical methods.
This model is built to be capable of solving one and multi-order of reaction which
is based on natural chemical components and other additives. We note that the pre-
sented solution can be useful to give more significant physical description than the
previous approximation methods under the same values of the activation energy and
pre-exponential factor parameters, and more generally the method may enable us to
control parameters which is deterministic but unknown.
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1 Introduction

In respect of non-isothermal chemical processes, these processes were designed by
developing empirical functional relationships according to the kinetic variables and
parameters such as time, temperature, sample size, heating rate, pre-exponential factor,
activation energy, etc [1,2].

During last decades, the thermal methods of non-isothermal procedures have been
extensively investigated to discuss several types processes. These thermal techniques
have been successfully developed to study physical or/and chemical changes in inves-
tigated ensembles over a temperature scale at an arbitrary heating rate. Hence, the
empirical or mathematical functional relationships were formulated based on the ther-
mal techniques inmathematical, statistical andnumerical tools in order tofind adequate
interpretations for various physical and chemical states in gases, liquids and solids
[4,5]. Moreover, the knowledge of exact values of kinetic variables are important for
the progression of the realistic thermal chemical models [6,7].

Some of the governing thermal relations have been described in the differential
equations over time and temperature domains for non-isothermal kinetics as Arrhenius
equation.

More than a century ago, the thermal chemical reaction has been an example for
one of the chemical reactions which has been taken into account to be studied by Van’t
Hoff in 1884. He suggested notes about the thermal chemical reaction [8]. In 1889,
Arrhenius formulated an equation about the thermal decomposition by the heat accord-
ing to Van’t Hoff’s notes, namely, Arrhenius equation [9,10]. Arrhenius equation was
introduced as a functional relationship for the dependence of temperature-chemical
reaction rate of the mass conversion fraction [8–10]. In the non-isothermal process, if
an arbitrary material ensemble dissolved thermally, then the mass conversion fraction
of degradable ensemble χ would be described in what follows:

χ = m0 − m (t)

m0 − m∞
, (1)

wherem0,m (t) andm∞ are the initial mass, degradable mass at a time t, and terminal
mass of a degradable ensemble respectively. The residual mass fraction of degradable
ensemble 1 − χ was expressed as:

1 − χ = m (t) − m∞
m0 − m∞

, (2)

Hence, the Arrhenius equation (AE), the rate of mass conversion fraction of degrad-
able ensemble χ with respect to time, in the kinetic analysis of data for ensemble
decomposition, is described by [9,10]:

dχ

dt
= A exp

(
− E

RT

)
(1 − χ)n . (3)
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where A is pre-exponential factor (unit time−1) which refers to the process of breaking
chemical bonds in molecules per minutes, E is the least amount energy required to
activate atoms or molecules to begin in a chemical reaction namely activation energy
(kJ/mol) for ensemble, R is a gas constant (kJ/mol.K.), T is an absolute temperature
(K) and n is the reaction order. AE is linear if n = 1 and otherwise, is nonlinear. Many
researches have attempted to solve Arrhenius equation but it has not been yet solved.
Therefore, they have focused to evaluate the activation energy, pre-exponential factor
and order of reaction parameters with different numerical methods.

These kinetic parameters were computed from rate-conversion data by the thermo-
gravimetric in order to be useful in the explanation of degradation mechanisms. In
what follows, these variables and parameters were estimated from experimental data
by some different methods which are presented in brief forms. In 1949, and 1955,
Murray and White worked to derive a relationship from AE to determine the kinetic
parameters for a linear order of reaction, n = 1. According to Murray–White the
govern equation was expressed as [11–13]:

d

(
ln

(
1

T 2
m

dT

dt

))

d

(
1

Tm

) = − E

R
. (4)

where the maximum deflection value
dχ

dt
occurred at the maximum temperature Tm

and
dT

dt
is heating rate. In 1956, Kissinger performed the series of experiments to

verify Murray–White equation experimentally at the peak temperatures for different
heating rate values tomeasure kinetic constants [14]. In 1957,Kissinger deduced a new

equation for the linear order of reaction n = 1, at constant heating rate β = dT

dt
and

maximum peak temperature Tm to describe exothermic reaction. Kissinger equation
was described by [15]:

ln

(
β

T 2
m

)
= ln

(
AR

E

)
− E

RTm
. (5)

In 2002,Vyazovkin indicated that theKissinger equation is only applicable for positive
heating rate (heating process) while for negative heating rate (cooling process) it is
not valid [16]. In 2009, Pere-Jordi solved Kissinger equation analytically [17]. Šesták,
Holba and Živković deduced that the derivation of Kissinger equation was based on
the false assumption because the heat inertia term was omitted from the true balance
of heat flux. Consequently, this decisive mistake deformed Kissinger equation and
the values of activation energies were shifted from the accurate values [18]. In 1958,
Freeman-carroll [19] formed a relation by taking the natural logarithm for AE at

different values of
dχ

dT
which occurred at arbitrary temperatures T as follows:
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ln

(
dχ

dT

)
= ln

(
A

β

)
− E

RT
+ n ln(1 − χ). (6)

It is noted that there are critical considerations about Freeman–Carroll method which
are taken into account for its application on experimental data to obtain accurate
results. These critical considerations were discussed in details for many manuscripts
like [20,21]. From 1961 to 1965, Doyle promoted several works about the kinetic
analysis of thermogravimetric data [22–25]. Coats and Redfern [26] formulated a
relation for evaluating the kinetic parameters which was experessd as:

ln

(
1 − (1 − χ)1−n

(1 − n) T 2

)
= ln

(
AR

βE

)(
1 − 2RT

βE

)
− E

2.303RT
for n �= 1. (7)

ln

(− ln (1 − χ)

T 2

)
= ln

(
AR

βE

)(
1 − 2RT

βE

)
− E

2.303RT
for n = 1. (8)

In 1964, Friedmann [27] suggested a method to determine the activation energy based

on distinguishability of different loss rates
dχ

dt
for the values mass conversion fraction

χ at different heating rates which was described by

ln

(
dχ

dt

)
= ln

(
A (1 − χ)n

) − E

RT
. (9)

This is a linear relation between ln(
dχ

dt
) against − 1

T
where − E

R
is the slope which is

determined according to experimental data. In 1965 and 1970, Ozawa discussed the
idea of how to determine the kinetic parameters [28,29]. He presented a simplemethod
to analyze thermogravimetric data in order that the activation energy is measured
directly from (1 − χ)n versus temperature T as follows:

ln (1 − χ)n = ln

(
AE

R

)
− ln β − 2.315 − 0.4567E

RT
. (10)

where
E

RT
> 20 according to Doyle’s approximation [22]. In 1966 and 1980 Flynn-

Wall developed a method to detemine the kinetic parameters especially activation
energy [30–32]. They proposed a relation based on two peak temperatures Tm1 and
Tm2 at two different heating rates β1 and β2 for mass conversion fraction χm1 and χm2
respectively to calculate the activation energy in what follows:

E = R

(
Tm1Tm2

Tm1 − Tm2

)
ln

[(
β1

β2

) (
1 − χ2m

1 − χ1m

)n−1 (
T2m
T1m

)2
]

. (11)

Thus, several famous methods were proposed to treat Arrhenius equation in order to
determine the kinetic parameters [11–33]. Arrhenius equation plays an important role
in many applications in various fields of life as in pyrolysis process [34–44]. pyrolysis
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process is used to recycle wastes, as rubber tires, to reproduce new useful products
[45–51], as well as wood treatment [52] and also for designing battery packs (Nickel
Metal Hydride (NiMH)cells) [53].

In this study, we introduce significant theoretical work which is applicable for dif-
ferent kinetic analysis of non-isothermal decomposition experiments. The solution of
Arrhenius equation is posed as the problem which has not been yet solved mathemat-
ically since 1889, because of the integral

∫
y−2e−ydy has not yet been evaluated in

closed form. Consequently, the results are always approximated. The main aim of this
work is devoted to determine the exact solution of Arrhenius equation at a constant
heating rate. In fact, the manuscript focuses on the mathematical treatment which
supports physical and chemical meaning. Hence, the exact solution of the Arrhenius
equation completes the missing mathematical part and adds new values to previous
physical and chemical approaches. The exact solution may be confirmed via different
decomposition experiments for fixed values of kinetic physical parameters like tem-
perature. Here, the values of the kinetic parameters do not represent a certain material
rather they represent a generalized descriptionwhichmay help us to study the relations
of residual mass with temperature. In section one, we consider an arbitrary ensemble
of material which is thermally dissolved in the non-isothermal process at a constant
heating rate where the temperature depends linearly on time. The activation energy is
redefined in terms of an activation temperature. Also, the pre-exponential factor and
the constant heat rate are also redefined together in terms of an expansion temperature.
The integral

∫
y−2e−ydy is expressed in two equivalent closed forms and have the

same equivalent solution. In what follows, the residual mass fraction is studied for dif-
ferent values of activation and expansion temperatures and higher orders of chemical
reaction respectively by various two-dimension graphs which are done by Mathemat-
ica. Beside each graph there is a table which includes the temperatures corresponding
to values of the residual mass fraction at less than 0.5, 0.25, 0.1 and 0.01 respectively.
Section 3 presents the results and discussion.

2 Themodel

In order to solve Arrhenius equation, one has to take into account the temperature
which is a function of time and how to evaluate the integral analytically. A simple but
sufficient condition is to consider the heating rate of reaction to be constant. Therefore,

we consider the heating rate is
dT

dt
= β. It is clear that the temperature varies linearly

with time for different orders of reaction which is consistent with the experiments.
Hence, the parameter β is determined by:

β = T f − T0
τ

, (12)

where T0 is the initial absolute reaction temperature, T f is the final absolute reaction
temperature for non-isothermal process and τ is the non-isothermal process time from
T0 to T f . Hence, temperature is going linearly time dependent with the slope β i.e.

123



Journal of Mathematical Chemistry (2020) 58:922–938 927

T = βt + T0. (13)

where 0 ≤ t ≤ τ. Thus, Eq. (3) is rewritten as the temperature rate of mass conversion
fraction in the form:

dχ

dT
= 1

α
e−δ/T (1 − χ)n , (14)

where α = β/A and δ = E/R are scalar parameters and have the same unit of an
absolute temperature (Kelvin). The twoparametersα and δ are interpretedphysically as
absolute temperatures. Firstly, a temperature parameter α depends on two parameters
β and A and can be so-called the expansion temperature. It is clear that the pre-
exponential parameter A is constant for each material but the constant heating rate
β must vary depending on the value of α. The expansion temperature α depends on
β and A. Secondly δ is proportional to an activation energy E and can be called the
activation temperature. In other words, the minimal value of activation energy Emin is
the required lowest energy in order to start a non-isothermal process that corresponds
to the minimal activation temperature Tmin. Similarly, the maximal activation energy
requires the greatest energy E∞ which corresponds to T∞ and occurs when the non-
isothermal process has finished completely. In the end, the constant heating rate and the
activation energy are expressed in terms of the expansion and activation temperatures
respectively. Equation (14) is treated by the method of separation of variables as:

1

α

∫ T

T0
e−δ/T dT =

∫ χ

0

dχ

(1 − χ)n
(15)

In order to solve Eq. (15) analytically, the substitution y = δ

T
is used. Consequently,

Eq. (15) is formulated in terms of 1 − χ and y as:

δ

α

∫ y

y0

e−y

y2
dy =

⎧⎪⎨
⎪⎩
ln (1 − χ) if n = 1,

1
n−1

{
1

(1−χ)n−1 − 1
}
if n �= 1,

, (16)

A simple technique is applied to manipulate the second problem which is evaluating
the integral analytically in two closed forms. Generally, the idea of the integral is based
on the expansion of the integrand about zero in terms of Maclurin series to separate
singular terms for non-singular terms. Thus, the non-singular terms are rewritten in
terms of a confluent hypergeometric function 1F1. Hence, the integral of singular
terms is simply evaluated and the integral of a confluent hypergeometric function is
evaluted in terms of generalized hypergeometric function 2F2 in Appendix A. Hence,
the differential Eq. (6) is solved analytically and the exact solution is expressed as:

1 − χ =
⎧⎨
⎩
exp

[
Pj (T )

]
, if n = 1, j = 1, 2 and T0 ≤ T ,

1
n−1
√
1 − (n − 1) Pj (T )

, if n �= 1, j = 1, 2 and T0 ≤ T ,
, (17)
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where the definite integral of the right hand side of Eq. (15), Pj (T )’s are functions in
temperature T and are described by:

P1 (T ) =T0 − T

α
+ δ

α
ln

(
T

T0

)
+ δ2

2αT
2F2

(
1, 1; 3, 2;− δ

T

)

− δ2

2αT0
2F2

(
1, 1; 3, 2;− δ

T0

)
. (18)

P2 (T ) =T0
α
e−δ/T0 − T

α
e−δ/T + δ

α
ln

(
T

T0

)
+ δ2

αT
2F2

(
1, 1; 2, 2;− δ

T

)

− δ2

αT0
2F2

(
1, 1; 2, 2;− δ

T0

)
. (19)

where Pj (T ) is dimensionless because all terms are dimensionless. Thus, the exact
analytical solution is obtained for Arrhenius equation at constant heating rate and for
different order of reaction. The solution shows the effects of the activation energy and
pre-exponential factor for non-isothermal kinetics. According to Eq. (1), the residual
mass fraction of degradable ensemble represents the ratio between two changes in the
mass. The first mass-change (in numerator) is from the initial mass to the arbitrary
mass at time t, during the non-isothermal process. The secondmass-change (in denom-
inator) is also from the initial mass to the terminal mass. Thus, in the numerator, the
mass difference is always less than or equal to the mass difference in the denominator.
The residual mass fraction 1 − χ of the ensemble has a range between zero and one
starting from initial absolute reaction temperature T0 to the maximal absolute reaction
temperature T f . Also, the residual mass ratio is a monotonic decreasing function in
the same domain of the absolute temperature, which is always positive. Consequently,
for an arbitrary temperature over a temperature scale from T0 to T f , the residual mass
of ensemble m (T ) in Eq. (2) is determined by:

m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m0
(
r + (1 − r) exp

[
Pj (T )

])
, if n = 1,T0 ≤ T , and j = 1, 2

m0

(
r + (1 − r)

n−1
√
1 − (n − 1) Pj (T )

)
, if n �= 1,T0 ≤ T , and j = 1, 2

.

(20)
where r = m∞/m0, is the ratio between the terminal mass to the initial mass and is
always enclosed between zero and one. Especially, at the end of the non-isothermal
process, the initial mass is converted into new products while the degradable mass is
expressed as:.

m =

⎧⎪⎪⎨
⎪⎪⎩

m0 exp
[
Pj (T )

]
, if n = 1,T0 ≤ T , and j = 1, 2

m0
n−1
√
1 − (n − 1) Pj (T )

, if n �= 1,T0 ≤ T , and j = 1, 2
. (21)
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Fig. 1 Temperature T versus residualmass fraction 1 − χ and constant heating rateβ against pre-expeontial
factor A for δ = 2686.7K, E = 24kJ/mol, n = 1 and α = 0.0067K, 0.0443K, 0.1611K

3 Results and discussion

In this section, a behavior of the non-isothermal process is discussed in details by
the residual mass fraction of the degradable ensemble 1 − χ. Arrhenius Eq. (14),
treated mathematically at a constant heating rate to find the exact analytical solution of
Arrhenius Eqs. (17–19). The behavior of non-isothermal process is studied at different
values of expansion and activation temperatures α’s and δ’s and orders of reaction n
respectively. In two following figures, the residual mass fraction 1 − χ is plotted
versus absolute temperature T and the pre-exponential factor A = β/α is plotted
against the constant heating rate β which varies from zero to 50 K/min in a linear
relationship where its slope is equal to the reciprocal of the expansion temperature
α. All figures are plotted in two dimensions and are done by Mathematica. Also two
functions P1 (T ) and P2 (T ) are used to evaluate the same figures and tables in order
to confirm their validity. The initial temperature T0 of the system is 300 K. All residual
mass fraction curves have the maximum value at T0 = 300 K which is one and the
minimum value which is zero if temperature approaches infinity. They are monotonic
decreasing functions with inflection points.

In Fig. 1, the temperature varies from 300 to 700K for the values n = 1,
E = 24kJ/mol, δ = 2686.7K, and α = 0.0067K, 0.0443K and 0.1611K. In
Table 1, the residual mass fraction is equal to half if the temperatures are raised by
338.05655K, 399.8878K and 463.185K for α = 0.0067K, 0.0443K and 0.1611K
respectively. The residual mass fraction is equal to 0.25 with increasing the tempera-
ture to 356.7911K, 431.4807K and 506.0065K respectively. Temperatures is raised
by 373.39522K, 458.0967K and 542.261K for the same values of α−parameter, the
residual mass fraction deceases to 0.1. The residual mass fraction becomes equal to
0.01 at higher temperatures 400.0897K, 500.00312K and 600.0081K respectively. It
is clear that the curve at (α = 0.0067K) thermally decomposes up to half the original
mass while the curve (α = 0.1611K) requires a temperature about 125. 13 ◦ C extra
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Table 1 Residual mass fraction
at different values and
corresponding temperatures for
n = 1 and E = 24 kJ/mol

n = 1, E = 24 kJ/mol,

α= 0.0067 K α= 0.0443 K α = 0.161 K

T (K) 1 − χ T (K) 1 − χ T (K) 1 − χ

338 0.5 400 0.5 363 0.5

357 0.25 431 0.25 506 0.25

373 0.1 458 0.1 542 0.1

400 0.01 500 0.01 600 0.01

Fig. 2 Temperature T versus residual mass fraction 1−χ and constant heating rate β against pre-expeontial
factor A for δ = 5773.39K, E = 48kJ/mol, n = 2 and α = 6.061 × 10−9 K, 7.199 × 10−7 K

above to have the same decomposition. The α−parameter is represented by the linear
slope between the pre-exponential factor A, and the constant heating rate. The value
of α−parameter varies depending on the ratio A/β.

In Fig. 2, the temperature changes from 300 to 1000K for the values n = 2,
E = 48kJ/mol, δ = 5773.39K, and α = 6.061 × 10−9 K and 7.199 × 10−7 K. In
Table 2, the residual mass fraction is equal to 0.5 for temperatures 425.346K and
609.6663K and α = 6.061 × 10−9 K and 7.199 × 10−7 K respectively. For raised
temperatures 457.7023K and 674.6496K and α = 6.061 × 10−9 K and 7.199 ×
10−7 K respectively, the material is thermally decomposed to 0.25. It is obvious that
the material is degraded to be equal to 0.1 at higher temperatures 495.0375K and
753.58K and α = 6.061 × 10−9 K and 7.199 × 10−7 K respectively. The residual
mass fraction reaches 0.01 for raised temperatures 599.999K and 1000.0019K and
α = 6.061×10−9 K and 7.199×10−7 K respectively. Clearly, thematerial is degraded
from 0.1 to 0.01 over the temperature differences 104. 96 ◦C and 246.42 ◦C and
α = 6.061× 10−9 K and 7.199× 10−7 K respectively. Thus, the material is degraded
with 0.9 over the temperature difference 27.35K and 63.59K for α = 6.061×10−9 K
and 14.13K respectively. It is obvious that the material is degraded from 0.90026 to
0.99 over the temperature difference 272.65K and 636.41K for α = 6.061× 10−9 K
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Table 2 Residual mass fraction
at different values and
corresponding temperatures for
n = 2 and E = 48 kJ/mol

n = 2, E = 48 kJ/mol,

α = 6.061 × 10−9 K α = 7.199 × 10−7 K

T (K) 1 − χ T (K) 1 − χ

425 0.5 610 0.5

457 0.25 675 0.25

495 0.01 754 0.01

600 0.01 1000 0.01

and 7.199× 10−7 K respectively. In contrast by comparing Figs. 1 and 2, the residual
mass fraction curves are geometrically similar but the temperature domains are very
far as shown in Tables 1 and 2.

4 Conclusion

An ensemble of material is dissolved thermally at constant heating rate of nth-order
of reaction in a non-isothermal process according to Arrhenius equation where the
temperature is linearly dependent on time. Arrhenius equation is solved analytically
to find the exact solution of the residual mass fraction as a function of temperature at
constant heating rate and different orders of reaction Eqs. (17–19). The exact solution
is described by two equivalent closed forms of the integral

∫
y−2e−ydy. This exact

solution is more reliable than numerical methods for a non-isothermal process. It is
noted that the residual mass fraction is monotonically decreasing from one to zero as
shown in Figs. 1 and 2. The solution describes the relationship between these param-
eters which control the non-isothermal process; activation energy, pre-exponential
factor, the order of reaction and a constant heating rate. Therefore, these parameters
were investigated. The activation energy is expressed in terms of an activation tem-
perature. Also, the pre-exponential factor and constant heating rate were expressed
together in terms of an expansion temperature. Also, the residual mass is obtained by
Eqs. (20–21). The activation energy, order of reaction and expansion temperature are
investigated in different graph. The residual mass fraction needs higher temperatures
to descend through the ratios of 0.5, 0.25, 0.1, 0.01 and 0.001 as the values of α

increases as shown in Tables 1 and 2. Finally, Arrhenius equation used in the analysis
of thermal decomposition has been considered a dark chapter in chemical reaction
because they are developed empirically, without an understanding of the underlying
physics. In order to make better use of the non-thermal process in industries in the
future, the discussing mathematical model of the exact solution would assist a better
understanding of the physical principles behind the experiments. The exact solution
of the Arrhenius equation may be taken into account by others to deduce new compu-
tational methods which determine the activation energy, pre-exponential factor, and
order of reaction.
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Appendix A

In this Appendix, the integral
∫
y−2e−ydy is evaluated in two closed forms with two

different techniques. Two closed forms are mainly expressed in terms of the general-
ized hypergeometric functions 2F2 with different arguments and other functions like
a natural logarithm and rational functions. Two techniques depend essentially on the
expansion of the integrable function in terms of Maclaurin’s series in order to separate
between the singular terms and non-singular terms. Singular terms are integrated to
evaluate a natural logarithm and rational functions. Non-singular terms are integrated
to evaluate the generalized hypergeometric function 2F2. In the beginning, the general-
ized hypergeometric function mFn are defined. In Proposition 1, the indefinite integral
of generalized hypergeometric function mFn is evaluated in terms of y m+1Fn+1. In
Proposition 2, the integrable function y−1e−y is expanded in terms of Maclaurin’s
series to be formulated in terms of the a rational function y−1 and the confluent hyper-
geometric function 1F1. In Proposition 3, the first technique includes the integrating
by parts as the first step for the integral

∫
y−2e−ydy to evaluate a function y−1e−y

and the new integral
∫
y−1e−ydy. The integral

∫
y−1e−ydy is evaluated according to

Proposition 2 and Proposition 1 respectively in terms of the natural logarithm ln y and
the generalized hypergeometric function 2F2. In Proposition 4, the integrable func-
tion y−2e−y is directly expanded by Maclaurin’s series to find the singular terms y−1

and y−2 and non-singular terms which is described by the confluent hypergeometric
function 1F1. In Proposition 5, the second technique of the integral

∫
y−2e−ydy is

evaluated in terms of the rational function y−1, the natural logarithm ln y and the gen-
eralized hypergeometric function 2F2. In Proposition 6, two closed forms are proved
to be equivalent. Hence, the integral

∫
y−2e−ydy is evaluated in two closed forms as

shown in the following Eq. (22).

∫
e−y

y2
dy =

⎧⎪⎨
⎪⎩

− e−y

y − lny + y 2F2(1, 1; 2, 2;−y) + c.

− 1
y − lny + y

2 2F2(1, 1; 3, 2;−y) + c.

(22)

Definition 1
Consider the generalized hypergeometric function mFn which is defined by [54]:

mFn

(
α1, α2, . . . , αm; x
β1, β2, . . . , βn;

)
=

∞∑
k=0

(α1)k (α2)k . . . (αm)k

(β1)k (β2)k . . . (βn)k

xk

k! . (A1)

where (ξ)k = Γ (ξ + k) /Γ (ξ) is Pochhammer symbol and Γ (z) is a gamma func-
tion. If ξ = r + 1 is an integer, then (r + 1)k = (k + r)!.
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Proposition 1 The indefinite integral of generalized hypergeometric function m

Fn (α1, α2, . . . , αm;β1, β2, . . . , βn; λy) is evaluated as follows:

∫
mFn

(
α1, α2, . . . , αm; λy
β1, β2, . . . , βn;

)
dy = y m+1Fn+1

(
α1, α2, . . . , αm, 1; λy
β1, β2, . . . , βn, 2;

)
+ c.

(A2)

Proof

∫
mFn

(
α1, α2, . . . , αm; λy
β1, β2, . . . , βn;

)
dy =

∫ ( ∞∑
k=0

(α1)k (α2)k . . . (αm)k

(β1)k (β2)k . . . (βn)k

(λy)k

k!

)
dy

=
∞∑
k=0

(α1)k (α2)k . . . (αm)k

(β1)k (β2)k . . . (βn)k

λk

k!
yk+1

(k + 1)
+ c

= y
∞∑
k=0

(α1)k (α2)k . . . (αm)k

(β1)k (β2)k . . . (βn)k

k!
(k + 1)!

(λy)k

k! + c

= y
∞∑
k=0

(α1)k (α2)k . . . (αm)k

(β1)k (β2)k . . . (βn)k

Γ (k + 1)

Γ (k + 2)

(λy)k

k! +c

= y
∞∑
k=0

(α1)k (α2)k . . . (αm)k (1)k
(β1)k (β2)k . . . (βn)k (2)k

(λy)k

k! + c

= y m+1Fn+1

(
α1, α2, . . . , αm, 1; λy
β1, β2, . . . , βn, 2;

)
+ c.

��

Proposition 2 A function
e−y

y
is expanded as follows:

e−y

y
= 1

y
− 1F1 (1; 2;−y) . (A3)

Proof

e−y

y
= 1

y

( ∞∑
k=0

(−1)k

k! yk
)

= 1

y
+

∞∑
k=1

(−1)k

k! yk−1

= 1

y
−

∞∑
k=0

(−1)k

(k + 1)! y
k

= 1

y
−

∞∑
k=0

Γ (k + 1)

Γ (k + 2)

(−y)k

k!
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e−y

y
= 1

y
−

∞∑
k=0

(1)k
(2)k

(−y)k

k!

= 1

y
− 1F1 (1; 2;−y) . ��

Proposition 3

The first closed form of the integrand
e−y

y2
is evaluated by [55]:

∫
e−y

y2
dy = −e−y

y
− ln y + y 2F2 (1, 1; 2, 2;−y) + c. (A4)

Proof

∫
e−y

y2
dy = −e−y

y
−

∫
e−y

y
dy

= −e−y

y
−

∫ (
1

y
− 1F1 (1; 2;−y)

)
dy

∫
e−y

y2
dy = −e−y

y
− ln y + y 2F2 (1, 1; 2, 2;−y) + c1. ��

Proposition 4

A function
e−y

y2
is expanded as follows:

e−y

y2
= 1

y2
− 1

y
+ 1

2
1F1 (1; 3;−y) . (A5)

Proof

e−y

y2
= 1

y2

( ∞∑
k=0

(−1)k

k! yk
)

= 1

y2
− 1

y
+

∞∑
k=0

(−1)k

(k + 2)! y
k

= 1

y2
− 1

y
+

∞∑
k=0

Γ (k + 1)

Γ (k + 3)

(−y)k

k!

= 1

y2
− 1

y
+ 1

2

∞∑
m=0

(1)k
(3)k

(−y)k

k!

= 1

y2
− 1

y
+ 1

2
1F1 (1; 3;−y) . ��

123



Journal of Mathematical Chemistry (2020) 58:922–938 935

Proposition 5

The second closed form of the integrand
e−y

y2
is evaluated by:

∫
e−y

y2
dy = −1

y
− ln y + y

2
2F2 (1, 1; 3, 2;−y) + c. (A6)

Proof

∫
e−y

y2
dy =

∫ (
1

y2
− 1

y
+ 1

2
1F1 (1; 3;−y)

)
dy

= −1

y
− ln y + y

2
2F2 (1, 1; 3, 2;−y) + c2. ��

Proposition 6
Two closed forms are equivalent.

Proof

l.h.s = −e−y

y
− ln y + y 2F2 (1, 1; 2, 2;−y) + c1

= −1

y
− ln y + 1F1 (1; 2;−y) + y 2F2 (1, 1; 2, 2;−y) + c1

It is clear that first two terms of the right hand side exist into the second closed
form. We have to prove that 1F1 (1; 2;−y) + y 2F2 (1, 1; 2, 2;−y) is equivalent to
y

2
2F2 (1, 1; 3, 2;−y) in what follows:

S = 1F1 (1; 2;−y) + y 2F2 (1, 1; 2, 2;−y)

=
∞∑
k=0

(1)k
(2)k

(−y)k

k! + y
∞∑
k=0

(1)k (1)k
(2)k (2)k

(−y)k

k!

=
∞∑
k=0

(−1)k (1)k
(2)k

yk

k! +
∞∑
k=0

(−1)k (1)k (1)k
(2)k (2)k

yk+1

k!

= 1 +
∞∑
k=1

(−1)kk!
(k + 1)!

yk

k! +
∞∑
k=0

(−1)k (k!) (k!)
(k + 1)! (k + 1)!

yk+1

k!

= 1 +
∞∑
k=1

(−1)k

(k + 1)! y
k −

∞∑
k=1

(−1)k(k − 1)!
k!k! yk

= 1 +
∞∑
k=1

(
1

(k + 1)! − (k − 1)!
k!k!

)
(−y)k
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= 1 +
∞∑
k=1

(
k!k! − (k − 1)! (k + 1)!

(k + 1)!k!k!
)

(−y)k

= 1 +
∞∑
k=1

((
k2 − k(k + 1)

)
(k − 1)! (k − 1)!

(k + 1)!k!k!

)
(−y)k

= 1 −
∞∑
k=1

(
k! (k − 1)!
(k + 1)!k!k!

)
(−y)k

= 1 −
∞∑
k=1

(
(k − 1)!

(k + 1)!k!
)

(−y)k

= 1 −
∞∑
k=0

(
k!

(k + 2)!(k + 1)!
)

(−y)k+1

= 1 + y
∞∑
k=0

k!k!
(k + 2)!(k + 1)!

(−y)k

k!

= 1 + y

2

∞∑
k=0

(1)k (1)k
(3)k (2)k

(−y)k

k! = 1 + y

2
2F2 (1, 1; 3, 2;−y)

l.h.s = −1

y
− ln y + y

2 2
F2 (1, 1; 3, 2;−y) + 1 + c1

= −1

y
− ln y + y

2
2F2 (1, 1; 3, 2;−y) + c2. ��

References

1. G.B. Marin, G.S. Yablonsky, Kinetics of Chemical Reactions: Decoding Complexity (Wiley-VCH
Verlag, Weinheim, 2011)

2. K.J. Laidler, A glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl.
Chem. 68(1), 149–192 (1996)

3. Ida E. Akerblom, Dickson O. Ojwang, Jekabs Grins, Gunnar Svensson, A thermogravimetric study of
thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis. J. Thermal
Anal. Calorim. 129, 721–731 (2017)

4. Chung-Wei Huang, Teng-Chun Yang, Ke-Chang Hung, Xu Jin-Wei, Wu Jyh-Horng, The effect
of maleated polypropylene on the non-isothermal crystallization kinetics of wood fiber-reinforced
polypropylene composites. Polymers 10(4), 382 (2018)

5. Claudia Barile, Caterina Casavola, Paramsamy Kannan Vimalathithan, Marco Pugliese, Vincenzo
Maiorano, Thermomechanical andMorphological Studies of CFRP Tested in Different Environmental
Conditions. Materials 12(1), 63 (2019)

6. O. A. El Seoud, W. J. Baader, E. L. Bastos, Practical chemical kinetics in solution, in Encyclopedia of
Physical Organic Chemistry (eds Z. Wang, U. Wille and E. Juaristi) (2016). https://doi.org/10.1002/
9781118468586.epoc1012

7. C. Borgnakke, R.E. Sonntag, Fundamentals of Thermodynamics, 8th edn. (Wiley, New York, 2012)
8. J.H.V. Hoff, Etudes de Dynamique Chimique (F Muller and Co., Amsterdam, Holland, 1884)
9. S. Arrhenius, Uber die dissociationswarme und den einfluss der temperatur auf den dissociationsgrad

der elektrolyte. Z. Phys. Chem. 96, 187 (1889)
10. S. Arrhenius, Uber die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch sauren. Z.

Phys. Chem. 4U, 226 (1889). https://doi.org/10.1515/zpch-1889-0416

123

https://doi.org/10.1002/9781118468586.epoc1012
https://doi.org/10.1002/9781118468586.epoc1012
https://doi.org/10.1515/zpch-1889-0416


Journal of Mathematical Chemistry (2020) 58:922–938 937

11. P.Murray, J.White, Kinetics of the thermal dehydration of clays. Trans. Br. Ceram. Soc. 48, 187 (1949)
12. P. Murray, J. White, Kinetics of the thermal decomposition of clay. 2. isothermal decomposition of

clay minerals. Trans. Br. Ceram. Soc. 54, 151 (1955)
13. P. Murray, J. White, Kinetics of the thermal decomposition of clay. 4. interpretation of differential

analysis of clay. Trans. Brit. Ceram. Soc. 54, 204 (1955)
14. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res.

Nat. Bur. Stand. 57, 217–221 (1956)
15. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)
16. S. Vyazovkin, Is the kissinger equation applicable to the processes that occur on cooling? Macromol.

Rapid Commun. 23, 771 (2002)
17. P. Roura, J. Farjas, Analytical solution for the kissinger equation. J. Mater. Res. 24, 3095–3098 (2009)
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