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Abstract
The computational treatment of detailed kinetic reaction mechanisms for combustion
is expensive, especially in the case of biodiesel fuels. In this way, great efforts in
the search of techniques for the development of reduced kinetic mechanisms have
been observed. As Methyl Butanoate (MB, C3H7C O OC H3) is an essential model
frequently used to represent the ester group of reactions in saturated methyl esters of
large chain, this paper proposes a reduction strategy and uses it to obtain a reduced
kinetic mechanism for the MB. The reduction strategy consists in the use of artificial
intelligence to define themain chain and produce a skeletalmechanism, apply the tradi-
tional hypotheses of steady-state and partial equilibrium, and justify these assumptions
through an asymptotic analysis. The main advantage of the strategy employed here is
to reduce the work required to solve the system of chemical equations by two orders
of magnitude for MB, since the number of reactions is decreased in the same order.
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1 Introduction

Energy is important for all people and combustion is one of the most widely used
energy conversion processes. For this reason, researchers have explored computational
methods to develop practical combustion models, especially concerning the reduction
of the emission of pollutants into the atmosphere [1]. Chemical kinetic modelling has
become an important tool for interpreting and understanding combustion phenomena
[2], leading to the development of many detailed and reduced reaction mechanisms
for the combustion of different chemical compounds.

Even today, fuels are predominantly derived from oil and coal, whose combus-
tion leads to environmental pollution, greenhouse gas emissions and problems with
energy security [3]. But the high global demand of energy and the economical and
environmental constraints led to the search for renewable sources of energy, such as
biodiesel.

Biodiesels are usually produced by transesterification of soybean and rapeseed oils
with methanol [4,5]. Biodiesel is an oxigenated fuel containing about 10–15% oxygen
byweight. Due to extra oxygen atoms, lowerCO emissions can be obtained, producing
a cleaner combustion than ordinary diesel [6]. Extra oxygen also reduces particulate
matter and hydrocarbon emissions.

Typical biodiesel fuels consist of mixtures of saturated and unsaturated methyl
esters containing extensive carbon chains [7,8], and such complexity and the size of
their constituent molecules lead to a limited study of direct detailed kinetic modeling.
For example, there is a detailed chemical kinetic reaction mechanism for soy and
rapeseed biodiesel fuels in which more than 4800 species and 20,000 reactions are
involved [9]. Methyl oleate (MO, C19H36O2) generated by the EXGAS software
would have more than 6000 species among 50,000 reactions, making simulation of
biodiesel fuels difficult [10]. The number of radicals and isomers increases with the
size and asymmetry of the molecule. The number of possible reactions and species
grows nonlinearly [5].

Biodiesel derived from soybean or rapeseed oil is composed of some principal fatty
acid methyl esters: methyl oleate, methyl linoleate, methyl palmitate, methyl stereate
and methyl linolenate. It has energy density, cetane number, stoichiometric air–fuel
ratio and heat of vaporization comparable to mineral diesel.

Biodiesel can be used in existing diesel engines without significant changes in
their design, and with reduced emissions of pollutants. Unsaturated oxygenated fuels
produce more NOx than saturated oxygenated fuels due to the higher adiabatic flame
temperature [11]. Long ignition delay increases NOx formation [10]. For biodiesel,
total NOx increases about 10% compared to that of diesel fuel combustion [12]. Most
of the thermal NOx is formed after the end of the combustion. Thermal NOx formation
can often be decoupled from the main combustion reaction mechanism [13].

Combustion of biofuels in the diesel engine reduces the production of particle mat-
ter, unburned hydrocarbons, sulphur oxydes, volatic organic compounds and carbon
monoxide [10]. The main advantages of biodiesel compared to petrodiesel are:
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– is sulphur free,
– increases the ignition quality and the lubricity of the petrodiesel, when mixed with
it,

– has a higher flash point, which means it is easy to handle.
On the other hand, biodiesel has some disadvantages in relation to petrodiesel: it,

– has poorer properties at low temperature, creating problems in cold climates,
– has higher viscosity, making it difficult to atomize the fuel spray,
– is less stable to exposure to air and temperature and can accelerate engine corrosion.

Methyl esters of lower chains than methyl butanoate (MB, C3H7C O OC H3,
C5H10O2) can not be used as biodiesel surrogates. MB contains the essential chemi-
cal structure of large chain fatty acids [14]. However, the carbon chain length of MB
is much smaller than typical biodiesel fuels, facilitating numerical simulation. Larger
chain methyl esters, includingMB, are prone to form twomajor intermediates, C H2O
and C2H4. They exhibit reactivity similar to that of n-alkanes of similar size [10,15].

Fuels such as methyl butanoate, n-heptane (nC7H16) and methyl decanoate (MD,
C11H22O2) have similar chemical reactivity at high temperature. Both, methyl
butanoate and n-heptane exhibit similar resistance to extinction. Methyl decanoate
reasonably predicts the molar fraction and reactivity of most species of biodiesel
with substantial decrease in computational time. Only esters with long-aliphatic main
chains exhibit the cool flame behavior, which is a characteristic of biodiesels.

Brakora et al. [16] constructed a biodiesel reaction mechanism of two compo-
nents composed of MB and n-heptane. Ng et al. [17] developed a compact reaction
mechanism for biodiesel–diesel composed byMethyl Crotonate MC (representing the
unsaturated methyl ester), MB (representing the saturated methyl ester) and n-heptane
(representing the straight chain hydrocarbons).

Herbinet developed a model for MD combining the proposed mechanism for n-
heptane, iso-octane and MB [10]. The combustion behavior of other saturated methyl
esters is similar to that of MD [18].

Reduced mechanisms for blends of biofuels can be developed by combining the
reduced mechanisms of single (isolated) components [14]. Species having a peak
concentration less than 10−7 can be eliminated from the mechanism, since their con-
centration is insignificant [17].

Non-important species can be identified with the methods of principal component
analysis, sensitivity analysis, directed relation graph, and Jacobian analysis.Additional
reduction can be achieved using lumping of isomers, time-scale analysis, intrinsic low
dimensional manifold, computational singular perturbation, among other methods
[19].

Computational simulations with detailed kinetic mechanisms are complicated
because of the existence of highly reactive radicals. The greater number of reactions in
the combustion mechanisms of biodiesel generally limits the possibility of a complete
validation of their mechanisms and their direct applicability [4]. The investigations
of kinetics of smaller molecular species, namely surrogate fuels, which may behave
kinetically similar to the constituints of actual biodiesel, have been preferred [20].
Consequently, the oxidation of various esters has been analyzed by many researches.
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Due to the existence of highly reactive radicals and fast reactions in the detailed
mechanisms, the associated system of governing equations is stiff. One solution to
this problem is the reduction of variables, whose purpose is to replace the differential
equations by algebraic relations.

The reduction strategy proposed in this paper to obtain a reduced mechanism for
MB consists of defining the main chain by the use of artificial intelligence, applying
the hypotheses of partial equilibrium and steady-state, and justify the assumptions
through an asymptotic analysis.

The mechanism of methyl butanoate (C5H10O2) provides a useful first guideline
of kinetic rules to construct mechanisms for larger esters [4].

2 Mathematical tools for reducedmechanisms

For a set of nr elementary reactions, involving ns species, the rate of production
wS j = d S j/dt of species S j is [21,22]

wS j =
nr∑

i=1

(
ν′′

j i − ν′
j i

)
wi , (1)

where wi is the reaction rate i given by

wi = k f i

ns∏

j=1

[
S j

]ν′
j i − kri

ns∏

j=1

[
S j

]ν′′
j i , (2)

with [S j ] = c j representing the concentration of the species j and k f i and kri the
specific rates of reaction i (forward and backward, respectively).

Thus, a chemical kinetic problem can be written as

dc
dt

= f(c,k),with c(0) = c0, (3)

where c(t) is the concentration of species, k = AT ne−Ea/(RT ) the specific reaction rate
of a given reaction [23,24], A the frequency factor, T the temperature (in Kelvins),
n the temperature exponent, Ea the activation energy (in cal/mol) and R the gas
constant (in cal/(mol K )).

3 Numerical formulation

The mixture fraction is a useful variable in diffusion flame analysis, and represents the
ratio between the mass fraction of fuel in the unburned mixture to the mass fraction
in the original fuel stream. This variable plays a role similar to scalar G in premixed
combustion. The mixture fraction, Z = YF,u/YF,1, measures the mixture of reactants
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and is mainly related to large flow scales [25]. It can be written as

Z = υYF − YO2 + YO2,2

υYF,1 + YO2,2
, (4)

where υ = (υO2WO2)/(υF WF ), YO2,2 is themass fraction of O2 in the oxidant stream,
and Wi the molecular weight of the species i .

Consider a jet diffusion flame in which the fuel, supplied from a round nozzle
with diameter d and output velocity u0, mixes with the surrounding air by convection
and diffusion. The jet flame is chosen because it represents the class of nonpremixed
flames.

For this case, we have a problem governed by the equations of momentum, mass
fraction of species and energy. The Favre filtering becomes convenient to write the
equations for turbulent flows [26]. This average helps to avoid terms such as ρ′u′,
which comes from the time-average method. Therefore, the set of Favre averaged
equations is given by

∂ρṽi

∂t
+ ∂(ρṽi ṽ j )

∂x j
= − ∂ p

∂xi
+ ∂

∂x j

(
1

Re
σi j

)
+ S̃vi , (5)

∂ρỸi

∂t
+ ∂(ρṽ j Ỹi )

∂x j
= ∂

∂x j

(
ρμT

∂Ỹi

∂x j

)
+ ˜̇wi + S̃Yi , (6)

∂ρh̃

∂t
+ ∂(ρṽ j h̃)

∂x j
= ∂

∂x j

(
ρμT

∂ h̃

∂x j

)
+ S̃h, (7)

where ρ is the averaged density, ṽ the Favre averaged velocity, Ỹi the Favre averaged
mass fraction of species i , ˜̇wi the reaction rate of the species i , μ̄T the eddy viscosity,
h̃ the Favre averaged enthalpy.

The source terms S̃ui , S̃Yi and S̃h consider the overall effects of droplets for MB,
and are given by [27]

S̃vi = − 1

V

N∑

i=1

(
f1

md

τd
(ui − ud) + dmd

dt
ud,i

)
(8)

S̃Yi = − 1

YF,u V

N∑

i=1

dmd

dt
(9)

S̃h = − 1

V

N∑

i=1

(
1

2Ec

d

dt

(
mdud,i ud,i

) + Qd + dmd

dt
hV ,s

)
(10)

where V is the cell volume, N the number of droplets, md the mass of droplet, τd the
droplet response time, ρd the droplet density, dd the droplet diameter, ud,i the droplet
velocity, YF,u the fuel mass fraction in the unburnedmixture, Ec the number of Eckert,
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Qd the heat transfer by convection and hV ,s the enthalpy of the vapor on the surface
of the droplet. The lagrangian equations for the droplets of MB are given by:

dmd

dt
= − Sh

3Sc

md

τd
ln (1 + BM ) (11)

dud,i

dt
= − f1

τd

(
ui − ud,i

) + gi (12)

dTd

dt
= − Qd

mdCPd

+ Lv

mdCPd

dmd

dt
(13)

where f1 is a correction factor due to Stokes drag, Sh the Sherwood number, Sc the
Schmidt number, BM the mass transfer number, gi the acceleration of gravity, CPd the
specific heat of the liquid droplet, LV the latent heat of vaporization at Td .

The following considerations were made to simplify the system of equations:

– The mean viscous tensor
(
τ j,i

)
was neglected when compared to the Reynolds

stress tensor (whose components are ρ˜u′′v′′);
– The molecular transport terms in the mass fraction and temperature equations

(ρμ∇Yi and ρμ∇h, respectively)were neglectedwhen compared to the turbulent

transport terms (ρ ˜v′′Y ′′
i and ρ˜v′′h′′);

– The Reynolds stress and the turbulent transport terms were modeled using the gra-

dient hypothesis: ρ˜v′′
i v′′

j = −ρμT
∂ṽi
∂x j

, ρ ˜v′′
i Y ′′

i = −ρμT
∂Ỹi
∂x j

, ρ˜v′′
i h′′ = −ρμT

∂ h̃
∂x j

.

The set of equations was solved numerically. A central finite difference scheme
was adopted for spatial derivatives of first and second orders. A nonuniform structured
mesh was used to concentrate sufficient points at the exit of the injector and along the
centerline of the burner.

(
∂ f

∂x

)∣∣∣∣
(i, j,k)

= f(i+1, j,k) − f(i−1, j,k)

2�x
, (14)

(
∂ f

∂ y

)∣∣∣∣
(i, j,k)

= f(i, j+1,k) − f(i, j−1,k)

2�y
, (15)

(
∂2 f

∂ y2

)∣∣∣∣
(i, j,k)

= f(i, j+1,k) − 2 f(i, j,k) + f(i, j−1,k)

�y2
, (16)

and in a similar way in other directions. A section of the mesh is shown in Fig. 1.
This set of equations can be summarized as:

⎧
⎨

⎩

∂ y

∂t
= F(y)

y(t0) = y0

y = (
ρ̃, ṽi , Ỹk, h̃

)T
. (17)

Detailed kinetic systems for biodiesel surrogates generally have significant stiffness
due to the difference between the time scales of the reactive species. This causes
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Fig. 1 Sketch of the mesh used in the numerical simulation of the burner

difficulties in the convergence of purely explicit numerical methods, because rigidity
imposes severe limitations on the time-step size [28]. The eigenvalues of the Jacobian
matrix for F characterize the stability of the system. Generally, a system is considered
stiff when its eigenvalues are very different in magnitude [29].

In this way, the system of equations (Eq. 17) was separated into two parts, one part
of high rigidity g(y), and another part of low stiffness f (y),

∂ y

∂t
= f (y) + g(y), (18)

where f (y) corresponds to the flow (advection and diffusion), while g(y) corresponds
to the terms of chemical origin. The term g(y) has high rigidity due to the different
time scales of the various reactions involved in the mechanism.

For the integration of the system of equations, the Rosenbrock method for g(y)

and the Runge–Kutta–Fehlberg for f (y) were chosen. The Rosenbrock method is a
semi-implicit Runge–Kutta method, defined as [30]:

⎧
⎨

⎩

dy

dt
= G(y)

y(t0) = y0,
(19)
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Table 1 Rosenbrock method
parameters [31] α21 − 0.5 ω1 0.9451564786

α31 − 0.1012236115 ω2 0.341323172

α32 0.9762236115 ω3 0.5655139575

α41 − 0.3922096763 ω4 − 0.8519936081

α42 0.7151140251 c 0.5728160625

α43 0.1430371625

yn+1 = yn + h
s∑

i=1

ωi ki ,

ki = G

⎛

⎝yn + h
i−1∑

j=1

αi j k j

⎞

⎠ + h
∂G

∂ y

∣∣∣∣(
yn+

i−1∑
j=1

βi j k j

)
i∑

j=1

γi j k j ,

(20)

where ωi , αi j , βi j and γi j are constants defined by the method, whose values are
determined according to the order of consistency and stability desired.

To solve this problem, a four-stage, four-order Rosenbrock method developed by
Bui and Bui [31] was used. The implementation considers γi j = c δi, j and βi j = 0,
where δi, j is the Kronecker delta. Thus, the system can be written according to:

yn+1 = yn + h
4∑

i=1

ωi ki (21)

k1 = An
−1G (yn)

k2 = An
−1G (yn + hα21k1)

k3 = An
−1G (yn + h (α31k1 + α32k2))

k4 = An
−1G (yn + h (α41k1 + α42k2 + α43k3))

An =
[

I − ch
∂G

∂ y

∣∣∣∣
yn

]
(22)

where I corresponds to the identity matrix. The constants ai j , ωi and c have their
values set out in Table 1.

Unlike the implicit Runge–Kutta method, which requires the resolution of a non-
linear system at each stage of integration, the Rosenbrock procedure defined in (21)
requires only the resolution of a system of linear equations for each step, a procedure
simpler compared to purely implicit methods [32].

To solve the low stiffness part of Eq. (18), f (y), the Runge–Kutta–Fehlbergmethod
(RKF45) was applied. This method provides two different order approaches for the
solution, 4th and 5th orders, where the higher-order approach uses all calculated coef-
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Table 2 Parameters used in the
Runge–Kutta–Fehlberg method
[33]

α21 1/4 ω1 25/216 ω∗
1 16/135

α31 3/32 ω2 0 ω∗
2 0

α32 9/32 ω3 1408/2565 ω∗
3 6656/12825

α41 1932/2197 ω4 2197/4104 ω∗
4 28561/56430

α42 − 7200/2197 ω5 − 1/5 ω∗
5 − 9/50

α43 7296/2197 ω6 0 ω∗
6 2/55

α51 439/216

α52 − 8

α53 3680/513

α54 − 845/4101

α61 − 8/27

α62 2

α63 − 3544/2565

α64 1859/4104

α65 − 11/40

ficients in the lowest order. This method is given by:

yn+1 = yn + h
6∑

j=1

ωi ki + O
(

h4
)

y∗
n+1 = yn + h

6∑

j=1

ω∗
i ki + O

(
h5

)
(23)

where

k1 = f (yn)

k2 = f (yn + hα21k1)

k3 = f (yn + h (α31k1 + α32k2))

k4 = f (yn + h (α41k1 + α42k2 + α43k3))

k5 = f (yn + h (α51k1 + α52k2 + α53k3 + α54k4))

k6 = f (yn + h (α61k1 + α62k2 + α63k3 + α64k4 + α65k4))

(24)

and the local error can be estimated as:

ε = ∣∣yn+1 − y∗
n+1

∣∣ =
6∑

i=1

h
(
ωi − ω∗

i

)
ki (25)

The coefficients used in RKF45 are given in Table 2.
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Fig. 2 Schematic representation of an ANN for chemical kinetic calculations

3.1 Artificial neural networks (ANNs)

The right side of the differential equations for chemical kinetics

˜̇wi = dỸi

dt
= f (26)

is often a quasi-linear function of the parameters to be estimated [34].
Artificial Neural Networks (ANNs) can be used as an alternative to look-up tables

during numerical simulation (in LES) of combustion with reduced computational
time and memory required [35]. The goal is to teach the network to associate the
response with the various types of input data. The main disadvantage of the look-up
(LUT) tables, as well as ISAT, In-Situ Adaptive Tabulation, and ILDM, Intrinsic Low
Dimension Manifold, is the rapid growth of computational memory with model reac-
tions [36]. The scheme of a generic ANN architecture for chemical kinetic calculations
is given in Fig. 2.

Themain problem associated with ANN simulations is the generation of the dataset
that covers the chemical state of interest [37]. Often the input and output data are
scaled or standardized to vary between zero and 1. However ANNs can not predict the
absolute zero value, which can be bypassed by choosing a small enough value, below
which the reaction rates are considered void.
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About 10–20% of the thermochemical data is randomly selected to be used in the
network test, while the remaining is used for training. A complex part of the learning
algorithm is determining which input contributed most to an incorrect output, and how
this can be corrected.

Training data should be entered randomly to prevent the network frommemorizing
a specific data set, to make the procedure of general use. The ANN receives as input
data the temperature and mass fraction of the species and generates the rate of reaction
of the species involved, as quoted by Zhou et al. [38].

There is no theoretical limit to the number of intermediate layers, but one or two
[37] are often sufficient. Several configurations with a large number of intermediate
layers have been tested, but four layers, one input layer, two intermediate layers, and
one output layer, were sufficient to solve complex mechanisms.

The back-propagation algorithm formulti-layerANNs is used, because it is themost
popular. The algorithm is based on the descending gradient procedure and consists of
two parts:

– the input is propagated forward;
– the error is propagated backwards.

The difference between the output of the last layer and the desired output is back-
propagated to the previous layers, scaled by the derivative of the transfer function.
The transfer function of the last layer (linear, for example) may be different from that
used in the rest of the network (often the sigmoid, because it has a good level of noise
immunity and has a continuous derivative), in order to accelerate the training process.

3.1.1 Back-propagation algorithm

The basic learning procedure is given by:

1. Initialize the weights wi j connecting nodes using small random values;
2. Provide some input data V k

i and corresponding output values, V t
i , where k corre-

sponds to the layer, i to the node number, and t is the desired output value;
3. Propagate the signal forward on the network using

netkj =
∑

i

wk
i j V k−1

i + β j (27)

and
V k

i = F
(
netki

)
, (28)

where wi j are the weights of the connections between the nodes i and j , V k−1
i is

the signal of node i and layer (k − 1), β is the limit value (or bias) of node j and

F is the transfer function (usually a sigmoid), F(netki ) = (
1 + exp(−netki )

)−1
;

4. Obtain the
∂ E

∂wi j
values for the output layer, that is

∂ E

∂wk
i j

= −
(

V t
i − V k

i

)
F ′ (netki

)
V k−1

j , (29)
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The error function is given by

E = 1

2

∑

i

(
V t

i − V k
i

)2
(30)

and F ′(netki ) = F(netki )[1 − F(netki )];
5. Obtain

∂ E

∂wi j
of the previous layers propagating the error

∂ E

∂wk−1
i j

=
(

∑

m

δk
mwk

mi

)
F ′ (netk−1

i

)
V k−2

j ; (31)

where

δk
m =

⎧
⎪⎨

⎪⎩

−
(

V t
m − V k

m

)
F ′ (netkm

)
, if k is an output layer

∑

n

δk+1
n wk+1

nm F ′ (netkm
)
, if k is a hidden layer

(32)

6. Use
∂ E

∂wi j
to recalculate the weights of the connections as:

wnew
i j = wold

i j + η
∂ E

∂wi j
, (33)

where η corresponds to the global learning coefficient, which is constant for all
iterations;

7. Go back to step 2 and repeat the procedure until the convergence;
8. Repeat for other examples (datasets).

The back-propagation algorithm is based on the principle of error correction. The
basic idea of the descending gradient rule is to find a distribution of weights between
the connections, which provides minimal global error [35]. The use of differences
among values (increments) increases the sensitivity of the network [36].

In addition, ANNs can be incorporated into LES simulations to decrease compu-
tational time by using them in sub-grid models. The neural network can be used as a
sub-grid in both chemical kinetics and turbulence in reactive flows.

4 Obtaining a reducedmechanism for MB

Mechanism reduction is a process of removing some reactions from the complete
mechanism to achieve certain objectives, such as appropriate temperature and species
concentration profiles [11].

Methyl butanoate, MB (C5H10O2), was one of the first fuels to be proposed to
emulate the reaction kinetics of biodiesel [20]. However, methyl butanoate cannot

123



824 Journal of Mathematical Chemistry (2019) 57:812–833

be considered as an appropriate surrogate for biodiesel for low temperatures. But
molecules such as MB and MC (C5H8O2) elucidate the effect of oxygenation on
combustion [11], andmodels for largemechanisms can be contructed based on smaller
mechanisms due to their hierarchical structure. Therefore, MB is an essential model
to represent reactions of ester group in large saturated methyl esters [39].

The balance equations for the 40 species of the skeletal mechanism of 75 reactions
shown in Tables 3, 4 and 5 which comes from the use of the artificial intelligence, are:

1. L (C5H10O2) = −w1 − w2 − w3 − w4 − w5
2. L (C O2) = w1 + w8 + w13 + w14 + w28 + w40 − w42 + w64 + w66
3. L (nC3H7) = w1 + w3 + w4 − w17 − w18
4. L (C H3) = w1 + w8 + w11 + w13 + w39 − w42 − w52 − w54
5. L (C H2C O) = w2 + w7 + w10 + w12 + w15 − w39 − w40 − w41
6. L (C H3O) = w2 + w7 + w10 + w12 + w14 + w15 + w16 − w44 + w50 + 2w52 −

w57 − w65
7. L (C2H5) = w2 − w22
8. L (C H3OC O) = w3+w9+w42+w45+w46+w47+w48−w49−w50−w51+w65
9. L (H) = −w4 − w5 + w6 − w11 − w12 − w16 + w17 + w22 + 2w28 − w30 −

w39 − w45 − w51 + w59 − w61 + w66 − w69 − w70 − w71 + w72 + w74 − w75
10. L (C H3OC H O) = w4 − w43 − w44 − w45 − w46 − w47 + w51
11. L (C5H9O2) = w5 − w6 − w7
12. L (H2) = w5 + w30 + w45 + w61 − w72 − w74
13. L (C5H8O2) = w6 − w8 − w9 − w10 − w11 − w12
14. L (C2H4) = w7 + w12 + w14 − w23
15. L (C3H5) = w8 + w9
16. L (O H) = −w10 −w14 −w15 +w19 +w20 +w21 −w23 −w25 −w31 +w32 −

w36 + w37 − w41 − w43 − w47 + w49 − w54 − w55 − w56 + w60 − w63 + w64 −
w66 − w67 + w69 + 2w70 + w71 + w72 + 2w73 − w74

17. L (C H3C H O) = w10 + w22 − w35 − w36 − w37 − w38
18. L (C4H6O2) = w11 − w13 − w14 − w15 − w16
19. L (C2H3) = w13 + w20 + w23 − w24 + w34
20. L (C H2O) = w15 + w20 + w57 + w59 − w60 + w62
21. L (C2H3C H O) = w16 + w21 − w31 − w32 − w33
22. L (C3H6) = w17 + w18 − w19
23. L (O) = −w19−w22 −w26−w32 −w37−w40 +w58−w60 +w71−w72 −w73
24. L (C3H5(a)) = w19 − w20 − w21
25. L (H2O) = w23 + w25 + w29 + w31 + w36 + w43 + w47 + w54 + w55 + w56 +

w63 + w67 + w69 − w73 + w74
26. L (O2) = −w18 − w21 − w24 − w27 − w28 − w29 − w35 − w53 − w57 − w58 +

w62 − w68 − w71 − w75
27. L (H O2) = w18 − w20 + w24 − w33 + w35 − w38 − w46 − w49 + w57 − w62 −

w64 + w67 + 2w68 − w70 + w75
28. L (C2H2) = w24 − w25
29. L (C2H) = w25 − w26 − w27 − w53
30. L (C O) = w26 + w27 + w29 + w34 + w39 + w41 + w49 + w50 + w53 + w61 +

w63 − w64 − w65 − w66
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Table 3 MB skeletal mechanism—part I

Nr Reaction A n Ea

1 C5H10O2 = C O2 + nC3H7 + C H3 0.50E+17 0.00 86800

2 C5H10O2 = C H2C O + C H3O + C2H5 0.50E+17 0.00 85200

3 C5H10O2 = C H3OC O + nC3H7 0.50E+17 0.00 89900

4 C5H10O2 + H = C H3OC H O + nC3H7 0.10E+11 0.00 4000

5 C5H10O2 + H = C5H9O2 + H2 0.10E+13 0.00 7925

6 C5H9O2 = C5H8O2 + H 0.10E+15 0.00 42000

7 C5H9O2 = C2H4 + C H3O + C H2C O 0.11E+15 0.00 33000

8 C5H8O2 = C3H5 + C O2 + C H3 0.50E+17 0.00 82000

9 C5H8O2 = C3H5 + C H3OC O 0.35E+16 0.00 84439

10 C5H8O2 + O H = C H3C H O + C H2C O + C H3O 0.10E+10 0.00 0

11 C5H8O2 + H = C4H6O2 + C H3 0.12E+11 0.00 2000

12 C5H8O2 + H = C2H4 + C H2C O + C H3O 0.10E+11 0.00 2000

31. L (C H) = w26 + w30 + w55 − w58
32. L (HC O) = w27 + w53 + w58 + w60 − w61 − w62 − w63
33. L (C H2) = −w28 − w29 − w30 + w40 + w54 − w55
34. L (C2H3C O) = w31 + w32 + w33 − w34
35. L (H2O2) = w33 + w38 + w46 − w67 − w68 − w69
36. L (C H3C O) = w35 + w36 + w37 + w38
37. L (C H2O H) = w41 + w56 − w59
38. L (C H2OC H O) = w43 + w44 − w48
39. L (C H3O H) = w44 − w56
40. L (C H3O2) = w49 − w52

Table 6 shows the reduced mechanism for MB; the main intermediate species are
contained in this mechanism.

The following specieswere considered to be in steady state: nC3H7,C H3,C H2C O ,
C2H5, C5H9O2, C3H5, C H3C H O , C2H3, C2H3C H O , C3H6, H O2, O , C3H5(a),
C2H , C H , C H2, C2H3C O , H2O2, C H3C O , C H2O H , C H2OC H O , C H3O2.

For the eliminated species the algebraic relations are:

nC3H7: w18 = w1 + w3 + w4 − w17
C H3: w54 = w1 + w8 + w11 + w13 + w39 − w42 − w52
C H2C O: w41 = w2 + w7 + w10 + w12 + w15 − w39 − w40
C2H5: w22 = w2
C5H9O2: w(7) = w5 − w6
C3H5: w(9) = −w8
C H3C H O: w38 = w10 + w22 − w35 − w36 − w37
C2H3: w34 = −w13 − w20 − w23 + w24
C2H3C H O: w33 = w16 + w21 − w31 − w32
C3H6: w19 = w17 + w18
H O2: w70 = w18 − w20 + w24 − w33 + w35 − w38 − w46 − w49 + w57 − w62 −
w64 + w67 + 2w68 + w75
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Table 4 MB skeletal mechanism—part II

Nr Reaction A n Ea

13 C4H6O2 = C2H3 + C H3 + C O2 0.20E+17 0.00 85000

14 C4H6O2 + O H = C2H4 + C O2 + C H3O 0.10E+10 0.00 0

15 C4H6O2 + O H = C H2O + C H2C O + C H3O 0.10E+10 0.00 0

16 C4H6O2 + H = C2H3C H O + C H3O 0.20E+11 0.00 3000

17 nC3H7 = H + C3H6 0.27E+16 − 0.64 36820

18 nC3H7 + O2 = C3H6 + H O20 0.30E+12 0.00 3000

19 C3H6 + O = C3H5(a) + O H 0.52E+12 0.70 5884

20 C3H5(a) + H O2 = C2H3 + C H2O + O H 0.10E−17 0.00 0

21 C3H5(a) + O2 = C2H3C H O + O H 0.25E+14 − 0.44 23020

22 C2H5 + O = C H3C H O + H 0.50E+14 0.00 0

23 C2H4 + O H = C2H3 + H2O 0.20E+14 0.00 5955

24 C2H3 + O2 = C2H2 + H O2 0.52E−14 − 1.26 3310

25 C2H2 + O H = C2H + H2O 0.34E+08 2.00 14000

26 C2H + O = C O + C H 0.18E+14 0.00 0

27 C2H + O2 = HC O + C O 0.24E+13 0.00 0

28 C H2 + O2 = C O2 + H + H 0.33E+22 − 3.30 2868

29 C H2 + O2 = C O + H2O 0.73E+20 − 2.54 1809

30 C H2 + H = C H + H2 0.10E+19 − 1.56 0

31 C2H3C H O + O H = C2H3C O + H2O 0.92E+07 1.50 − 962

32 C2H3C H O + O = C2H3C O + O H 0.59E+13 0.00 1868

33 C2H3C H O + H O2 = C2H3C O + H2O2 0.30E+13 0.00 11930

34 C2H3C O = C2H3 + C O 0.20E+15 0.40 31450

35 C H3C H O + O2 = C H3C O + H O2 0.30E+14 0.00 39150

36 C H3C H O + O H = C H3C O + H2O 0.20E+07 1.80 1300

37 C H3C H O + O = C H3C O + O H 0.59E+13 0.00 1868

38 C H3C H O + H O2 = C H3C O + H2O2 0.30E+13 0.00 11930

39 C H2C O + H = C H3 + C O 0.11E+14 0.00 3400

40 C H2C O + O = C H2 + C O2 0.17E+13 0.00 1350

41 C H2C O + O H = C H2O H + C O 0.37E+13 0.00 − 1013

42 C O2 + C H3 = C H3OC O 0.15E+12 0.00 36730

O: w73 = −w19 − w22 − w26 − w32 − w37 − w40 + w58 − w60 + w71 − w72
C3H5(a): w21 = w19 − w20
C2H : w53 = w25 − w26 − w27
C H : w58 = w26 + w30 + w55
C H2: w55 = −w28 − w29 − w30 + w40 + w54
C2H3C O: w33 = −w31 − w32 + w34
H2O2: w69 = w33 + w38 + w46 − w67 − w68
C H3C O: w38 = −w35 − w36 − w37
C H2O H : w59 = w41 + w56
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Table 5 MB skeletal mechanism—part III

Nr Reaction A n Ea

43 C H3OC H O + O H = H2O + C H2OC H O 0.52E+10 0.97 1590

44 C H3OC H O + C H3O = C H3O H + C H2OC H O 0.16E+12 0.00 7000

45 C H3OC H O + H = H2 + C H3OC O 0.65E+06 2.40 4471

46 C H3OC H O + H O2 = H2O2 + C H3OC O 0.28E+13 0.00 17690

47 C H3OC H O + O H = H2O + C H3OC O 0.23E+08 1.61 − 35

48 C H2OC H O = C H3OC O 0.26E+12 − 0.03 38180

49 C H3OC O + H O2 = O H + C H3O2 + C O 0.70E+13 0.00 − 1000

50 C H3OC O + C H3O2 = C H3O + C H3O2 + C O 0.70E+13 0.00 − 1000

51 C H3OC O + H = C H3OC H O 0.10E+15 0.00 0

52 C H3O2 + C H3 = C H3O + C H3O 0.70E+13 0.00 − 1000

53 C2H + O2 = HC O + C O 0.24E+13 0.00 0

54 C H3 + O H = C H2 + H2O 0.30E+07 2.00 2500

55 C H2 + O H = C H + H2O 0.11E+08 2.00 3000

56 C H3O H + O H = C H2O H + H2O 0.71E+07 1.80 − 596

57 C H3O + O2 = C H2O + H O2 0.55E+11 0.00 2424

58 C H + O2 = HC O + O 0.33E+14 0.00 0

59 C H2O H + M = C H2O + H + M 0.28E+15 − 0.73 32820

60 C H2O + O = HC O + O H 0.42E+12 0.57 2762

61 HC O + H = C O + H2 0.73E+14 0.00 0

62 HC O + H O2 = C H2O + O2 0.30E+11 0.33 − 3861

63 HC O + O H = C O + H2O 0.10E+15 0.00 0

64 C O + H O2 = C O2 + O H 0.30E+14 0.00 23000

65 C O + C H3O = C H3OC O 0.15E+12 0.00 3000

66 C O + O H = C O2 + H 0.14E+00 1.95 − 1347

67 H2O2 + O H = H2O + H O2 0.10E+13 0.00 0

68 H2O2 + O2 = H O2 + H O2 0.59E+18 − 0.66 53150

69 H2O2 + H = H2O + O H 0.24E+14 0.00 3970

70 H O2 + H = O H + O H 0.71E+14 0.00 300

71 H + O2 = O + O H 0.20E+15 0.00 16540

72 O + H2 = H + O H 0.51E+05 2.67 6292

73 O + H2O = O H + O H 0.30E+07 2.02 13400

74 O H + H2 = H + H2O 0.22E+09 1.51 3430

75 H + O2 = H O2 0.15E+13 0.60 0

C H2OC H O: w48 = w43 + w44
C H3O2: w52 = w49

After some algebraic operations, the reduced mechanism rates result in:

wI = w1 + w2 + w3 + w4 + w5
wI I = wI − w6 + w10 + w11 + w12
wI I I = wI I − w11 + w13 + w14 + w15 + w16
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Table 6 MB reduced
mechanism

Number Reaction

I C5H10O2 + O H = C5H8O2 + H2O + H

II C5H8O2 + O2 = C4H6O2 + H2O + C O

III C4H6O2 + H2 = C H3OC H O + C2H4

IV C H3OC H O + H2 = C H3OC O + H2

V C2H4 + O H = C2H2 + H2O + H

VI C2H2 + O2 = 2C O + H2

VII C H3OC O + H = C H3O H + C O

VIII C H3O H = C H3O + H

IX C H3O + H = C H2O + H2

X C H2O = HC O + H

XI HC O + H = H2 + C O

XII C O + H2O = C O2 + H2

XIII 3H2 + O2 = 2H + 2H2O

XIV H + H + M = H2 + M

wI V = wI I I − w4 + w43 + w44 + w45 + w46 + w47 − w51
wV = wI I I − w5 + w6 − w12 − w14 + w23
wV I = wV − w24 + w25
wV I I = wI V −w3+w8−w42−w43−w44−w45−w47+w49+w50+w51−w65
wV I I I = wV I I − w44 + w56
wI X = wV I I I −w2 −w5 +w6 −w10 −w12 −w14 −w15 −w16 +w44 − 4w49 −
w50 + w57 + w65
wX = +wI X − w2 − w5 + w6 − w10 − w12 − 2w15 − w20 + w39 + w40 − w56 −
w57 + w60 − w62
wX I = wX − w1 − w8 − w11 − w13 − w25 + w28 + w29 − w39 − w40 + w42 +
w49 − w60 + w61 + w62 − w63
wX I I = w1 + w8 + w13 + w14 + w28 + w40 − w42 + w64 + w66
wX I I I = −wI I −wV I −w1−w8−w11−w13−w17−w20+w24+w25+2w28+
2w29 + 2w30 + w35 − w39 − w40 − w42 + w49 + w57 − w62 + w68 + w71 + w75
wX I V = wI I I − wV I − wI X − wX I − wX I I + 3wX I I I + w5 + w30 + w45 +
w61 − w72 + w74

5 Stiffness of differential equations

Stiffness in differential equations occurs when the rates of change of two or more
dependent variables of the same system differ by a great proportion. The numerical
solution of stiff systems of equations is difficult and time consuming (and therefore,
costly) because stiffness imposes severe step-size limitations on the numerical method
[28].

The eigenvalues of the Jacobian matrix can characterize the stability of the system.
Generally, the system is stiff when the eigenvalues differ considerably in magnitude.
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A commonly used variable for analyzing the stiffness of a system is the stiffness
ratio given by

S = max|Re(λi )|
min|Re(λi )| , (34)

where λi corresponds to the eigenvalues of the local Jacobian Matrix.
The stiffness ratio does not take into account the integration interval [t0, t f ]. A

small value of S could contribute to raising stiffness if the interval is too long.
Another variable used to characterize stiffness is the dimensionless stiffness index

S = T

τ
, (35)

where T is the time scale used and τ = − [Re(λ)]−1, with λ being the eigenvalue
with the largest negative real part (spectral radius).

The skeletalmechanismused to develop the reducedmechanism strongly influences
the stiffness of the latter [40].

6 Numerical results

To build a burner one can surround a high velocity jet of fuel with a lower speed annular
pilot flame. Consider the burner as shown in Fig. 3. The duct has a cylindrical cross
section with De = 1 (dimensionless, equivalent to 30 cm) and a cylindrical tube that
injects fuel with d = 0.025 (or 7.5 mm); the coflow tube has a diameter D = 1.068 d
and the length of the burner is L = 11 De. Through the coflow tube fuel is injected
with the same composition of the jet, however with 1/50 speed of the main jet. The
number of grid points was taken as 199× 51× 51 in directions (x, y, z), respectively;
x corresponds to the axial direction.

Figure 4 shows the results for themass fractions of C5H10O2 andO2 on the left side,
while on the right side of the same figure are shown the molar fractions of CO2, CO
and OH along the domain of the mixture fraction. These products have their maximum
values close to the stoichiometric surface of the flame (Z ≈ 0.1), where there are ideal
conditions for burning. This graph shows that fuel consumption as well as oxidizer
comsumption are close to the Burke–Schumann solution.

To compare the numerical results with the data available in the literature, we used
the work of Niemann et al. [41], in which the authors simulated a diffusion flame of
MB with the same initial conditions applied in this study. The results obtained are in
accordance with those presented by Niemann et al.

Figure 5 shows the temperature of the flame in the mixture fraction space. The
adiabatic flame temperature for theMB is approximately 2000K,which is in agreement
with the results obtained in this simulation.

7 Conclusions

The present paper provides a new reduced kineticmechanism forMBdiffusion flames.
In addition, we propose the use of Artificial Intelligence to the prefered path of com-
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Fig. 3 Sketch of a jet diffusion
flame

bustion setting. Starting with a detailed mechanism, a skeletal mechanism of 75 steps
and a reduced mechanism of fourteen steps were developed for the methyl butanoate.
Using the steady-state assumption, wich is justified by the asymptotic analysis, pro-
vided the final level of reduction.

Often, the skeletal mechanisms found in the literature have number of species that
vary between 50 and 150 and the number of reactions between 120 and 900. Such
mechanisms are still too big for CFD simulations on small computers. In addition, the
reactions of the ester group often include species like MP2D (C4H6O2), MP2DMJ
(C4H5O2), C2H3C O , C H3OC O , C2H3, C H3O , C H3, C O and C O2, whose reac-
tions were selected using artificial intelligence in this work. That’s because, with
increasing temperature, the ester group begins to be consumed, and the consumption
of C H3OC O dominates the early formation of C O2 during the oxidation of methyl
esters [42].

The main advantage of using reduced mechanism is the decrease of the computa-
tional cost to solve the system of differential equations, two orders of magnitude for
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Fig. 4 Numerical result for the mass fractions of MB and O2 on the left size, and molar fractions of CO2,
CO and OH on the right side to the flame of MB

Fig. 5 Temperature for MB
flame
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the MB, as the number of reactions is reduced in the same order. In addition, the rate
constants of the chemical reactions were kept unchanged in the reduction process.
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