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Abstract
In this work, we derive an effective non-adiabatic kinetic energy operator for nuclear
motion in triatomic molecules on the basis of perturbation theory. For this purpose,
we extended the approach of Herman and Asgharian (J Mol Spectr 19:305, 1966)
originally developed for diatomic systems. General perturbative-type expressions for
effective distance-dependent reduced nuclear masses have been obtained for a tri-
atomic system. It is shown that in the diatomic limit our method reproduces correctly
the previous known result of Herman and Asgharian.

Keywords Non-adiabaticity · Perturbation expansion · Nuclear kinetic energy
operator · Distance-dependent masses

Mathematics Subject Classification 81Q05 · 81Q15

1 Introduction

One of the most elegant approaches to account for the total contribution of non-
adiabatic effects to a given electronic state has been proposed by Herman and
Asgharian [1] and consists of the construction of an effective Hamiltonian, or to be
more precise an effective kinetic energy operator (KEO) based on second-order per-
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turbative analysis of the exact KEO. This leads to non-adiabatic investigations using
a single potential energy surface with distance-dependent effective nuclear masses
within the different kinetic energy operator terms. The essence of [1] consists in the
treatment of the nuclear gradient operators as perturbation in the Born-Oppenheimer
(or adiabatic) approach. Because of the general properties of the adiabatic wavefunc-
tions the leading non-zero corrections to the bound energy of the system arises in the
second-order of the standard Rayleigh–Schrödinger perturbation theory. In case of
the ro-vibrational spectrum of a system one can interpret the obtained second-order
corrections as a first-order correction to an effective nuclear KEO in question [1]. First
implementations and applications by the present authors have been published recently
[2–4].

Simulating non-adiabatic contributions to low lying ro-vibrational states by using
different constant masses for rotational and vibrational motions had been already
investigated in the past. It has been proven theoretically [1,5–9] that this assumption
is reasonable as a first order correction. In the case of H+

3 , earlier calculations [10–
13] have shown that for transition frequencies higher than the barrier of linearity the
strategy with different constant masses for rotation and vibration does not improve
in the average the deviation from experiment. The correct way would be to take into
account that all nuclear masses or reduced nuclear masses used in the ro-vibrational
Hamiltonian are distance-dependent: this can be done based on a rigorous theory
[1,12,14–17] or empirically [18]. The distance dependencemeans that the contribution
of the electronic mass or the coupling of the electronic motion to the nuclear motion
changes with internuclear distance.

Let us note briefly other approaches to account for the non-adiabatic effects. A
method employing the Bunker and Moss formalism [5] with simultaneous considera-
tion of many electronic states has been developed for one-electron systems in [19,20],
and for multi-electronic systems in [21,22]. An empirical approach employing energy-
dependent corrections was suggested in [23,24] and extended in [25]. The most recent
reviews on the accuracy of calculated rotation-vibration spectra can be found in [26–
28].

It should be noticed, that the approach of Herman and Asgharian is useful only
for weak non-adiabatic interactions, whereas strong non-adiabatic interactions need
direct coupled surface calculations based on explicit derivative couplings (first and
second derivatives of the electronic wavefunction with respect to nuclear motion) or
diabatic potential approaches.

The practical realization of the Herman–Asgharian algorithm consists of the con-
struction of an perturbation expansion for the intermediate nuclear kinetic energy
operator in the Cartesian body-fixed (BF) frame with subsequent representation of
the obtained results in generalized molecular coordinates related to an arbitrarily ori-
ented space-fixed (SF) frame. In principle, it is not necessary, that BF and SF are
arbitrarily oriented with respect to each other. One can superimpose the SF and BF
frames. However, in this case the technical difficulties arise with the exponentiation
[29] of the infinitesimally small Euler angles to obtain the angular part of the kinetic
energy operator in the explicit form. Applications of infinitesimal Euler rotations in
the derivation of the molecular KEO are given in [30].
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The differential operators which enter into the intermediate Cartesian nuclear KEO
are multiplied by prefactors, which are referred as distance-dependent (or coordinate-
dependent) contributions to reduced nuclear masses. These prefactors are not only
different for each single operator but also defined in a uniquely chosen BF frame.
Consequently, the resulting total nuclear KEO can no longer be represented as a simple
sum of Laplace operators of nuclear coordinates (that would be possible in case of
conventional nuclear masses). Instead, one has to deal with the transformation of each
individual differential operator from the BF frame into the SF frame with subsequent
representation of the final result as a linear combination of the components of the
total orbital momentum operator plus the pure vibrational part. This transformation
constitutes themaindifficulty in the applicationof theHerman–Asgharian approach for
the construction of the effective nuclear KEO. Probably because of such complications
of the theory themethod ofHerman andAsgharian, shown to be successful for diatomic
molecules, was not utilized further for more complex systems.

In our previous work [2] (hereafter referred to as I) we have constructed the general
expression for the nuclear kinetic energy operator in molecular (Jacobi) coordinates
with distance-dependent masses (DDM) for each nuclei. In paper I we did not specify
any explicit representation for the ad-hoc introduced nuclear DDM and considered
only the main contributions which come from the diagonal differential operators in
the Cartesian form of the nuclear KEO. In the present work, we extended the technique
of analytic variations of nuclear coordinates, described in I, on the operators of the
mixed derivatives. This allows us to construct a complete non-adiabatic nuclear KEO
for triatomic systems starting from the perturbative type (or Herman–Asgharian type)
Cartesian expressions of the KEO in the BF frame. The distance-dependent contri-
butions to the reduced nuclear masses are explicitly represented through derivative
matrix elements between the electronic wave functions of different electronic states.

The structure of the paper is the following. In Sect. 2we construct the general pertur-
bation scheme for the derivation of the non-adiabatic corrections to the ro-vibrational
energies for a triatomicmolecule. In Sect. 3 the obtained corrections are used to deduce
the effective Hamiltonian inmolecular (Jacobi) coordinates. In Sect. 4 we demonstrate
that our approach, applied to a diatomic system, reproduces correctly the results of
[1] (without additional assumptions used by the authors of [1]). Concluding remarks
are given in Sect. 5. Technical details concerning the transformation of the differential
operators from Cartesian BF to molecular SF coordinates are given in “Appendix A”.
In “Appendix B” we describe a recurrent scheme for the calculation of some matrix
elements between associated Legendre functions needed in the applications.

2 Perturbation expansion for the non-adiabatic contributions

The application of the method of distance-dependent corrections to nuclear masses
[1] imposes certain conditions on the usage of the coordinate frames, which we shall
discuss here briefly. To construct the effective non-adiabatic nuclear kinetic energy
operator we must first obtain the general expression for the corrections to the ro-
vibrational energies within a perturbation expansion. Such expansion includes the
matrix elements between the electronic wave functions [see (13) and further], which
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depends on the relative position of the nuclei and on the chosen directions of the
coordinate axis. Therefore, to keep the meaning (i.e. the numerical values) of these
matrix elements unaltered during the molecular rotation we should use the body-fixed
frame for their representation. For the explicit representation of the rotational degrees
of freedom of the molecule we use the space-fixed frame which is arbitrarily oriented
with respect to the BF frame. The mutual orientation of the BF and SF frames is
determined by three Euler angles Ω = {δ, γ, ϕ}. We employ the passive picture (see
[31,32]) for the definition of the rotation matrix, i.e. the molecular system is assumed
in rest and rotation is described by the rotation of the SF frame (see (I.1); we shall use
the index I whenever referring to the formulae of paper I).

In the following we shall consider the molecular system which consists of the
three nuclei and n electrons. The relative position of the nuclei is described through
the Jacobi coordinates Q = {r , R, θ}. r represents the distance between two nuclei
(diatomic fragment), and R is the distance from the center of mass of the diatomic
fragment to the third nucleus; θ being the angle between the vectors r andR. We shall
denote the Cartesian coordinates of the vectors r, R in the BF frame as follows

R(X ,Y , Z), r(x, y, z). (1)

The geometry of the molecular system and notations of the coordinate frames are
shown in Fig. 1. Without loss of generality we can assume that the origins of the BF
and SF frames are placed into the total center of mass of the molecule.

We shall follow, to a large extent, the ideas formulated in [1], albeit generalized
to the case of three nuclei. For Jacobi coordinates (1) the nuclear reduced masses are
given by

μ−1
r = m−1

1 + m−1
2 , μ−1

R = (m1 + m2)
−1 + m−1

3 , (2)

Fig. 1 Coordinate frames for a triatomic molecular system; δ
x,y,z
R,r schematically represents the variations

of the Cartesian components of the Jacobi vectors R and r in the BF frame
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where mi (i = 1, 2, 3) is the mass of the i-th nucleus. After separation of the trans-
lational motion, the exact Schrödinger equation for the total wave function ψ of the
molecular system has the following form

(
T + V (Q,q) − E

)
ψ(Q,q) = 0, (3)

where T is the complete translation-free kinetic energy operator of the whole system,
q denotes the complete set of electronic coordinates, V (Q,q) represents the potential
of the Coulomb interaction of all particles in the molecule and E is the total energy.

We use for ψ the expansion over the complete orthonormal set of the product of
electronic ϕλ(q |Q) and nuclear υk

λ(Q) wave functions

ψ(Q,q) =
∑
λk

Cλk ϕλ(q |Q)υk
λ(Q) ≡

∑
λk

Cλk |λk〉, (4)

where the symbols λ denote the electronic and k the nuclear state, respectively. Substi-
tuting the expansion for ψ into the Schrödinger equation (3) we come to the standard
adiabatic approximation for the nuclear motion

[
− �

2

2μR
∇2

R − �
2

2μr
∇2
r + E AD

λ − E

]
ϕλυ

k
λ + Wϕλυ

k
λ = 0, (5)

E AD
λ ≡ E AD

λ (Q) is the adiabatic potential energy surface (PES) and W denotes the
operator of non-adiabaticity

W = − �
2

μR
∇(n)

R · ∇(e)
R − �

2

μr
∇(n)
r · ∇(e)

r . (6)

The superscript indicates that the given operator acts on the nuclear (n) or electronic
(e) states only. If one neglects the operatorW the Schrödinger equation for the nuclear
motion reads

(
− �

2

2μR
∇2

R − �
2

2μr
∇2
r + E AD

λ (Q) − Eλk

)
vkλ(Q) = 0. (7)

Considering the functions vkλ in (7) as a zero approximation, one may treat (5) in the
framework of perturbation theory. The first-order correction to the energy Eλk of the
state |λk〉with respect to the perturbation operatorW vanishes. Therefore, the leading
non-vanishing energy shift is represented by the second-order correction

E (2)
λk = −

∑
a=r ,R

∑
λ′k′ �=λk

(
�
4

μ2
a

) 〈λk|∇(e)
a λ′ · ∇(n)

a k′
〉 〈

λ′k′|∇(e)
a λ · ∇(n)

a k
〉

Eλ′k′ − Eλk
. (8)
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Representing the vectors r and R in (8) in Cartesian coordinates, we introduce the
common symbols χ, η, ζ , which depend parametrically on a as follows

χ, η, ζ =
{
x, y, z, a = r ,
X ,Y , Z , a = R.

(9)

Denoting the Cartesian unit vectors as ni (i = x, y, z), we may write for an arbitrary
scalar function ψ

∂α (niψ) = ni∂αψ, α = χ, η, ζ, (10)

leading to the short notation for the partial derivative: ∂α ≡ ∂
∂α
. So, the matrix element〈

λk|∇(e)
a λ′ · ∇(n)

a k′
〉
is represented as [see the definitions in (9)]

〈
λk|∇(e)

a λ′ · ∇(n)
a k′〉 = ∑

α=χ,η,ζ

〈
λ|∂(e)

α λ′〉 〈k|∂(n)
α k′〉 , a = r , R. (11)

Similar expressions can be given for the matrix elements
〈
λ′k′|∇(e)

a λ · ∇(n)
a k
〉
. In the

following, we neglect the ’smaller’ nuclear ro-vibrational energies against the elec-
tronic energies in (8). Therefore, the difference Eλ′k′ − Eλk can be approximated by
Eλ′ − Eλ, and (8) leads to

E (2)
λk = −

∑
a=r ,R

�
4

μ2
a

×
〈
k

∣∣∣∣∣∣
∑
λ′ �=λ

∑
α=χ,η,ζ

〈
λ|∂(e)

α λ′
〉

Eλ′ − Eλ

∂(n)
α

∑
β=χ,η,ζ

〈
λ′|∂(e)

β λ
〉

∂
(n)
β

∣∣∣∣∣∣ k
〉

. (12)

Let us to introduce the following abbreviations for the matrix element

ωλλ′
α =

〈
λ|∂(e)

α λ′〉 , α = χ, η, ζ. (13)

Computing the sums in (12), by keeping the ordering of the operators ∂
(n)
α , ∂(n)

β , and

taking into account that
〈
λ|∂(e)

α λ′
〉
= −

〈
λ′|∂(e)

α λ
〉
, we come to the following expression

for the energy corrections E (2)
λk [reminding the definitions in (9)]:

E (2)
λk =

∑
a=r ,R

�
2

2μa

〈
k

∣∣∣∣2�
2

μa

∑
λ′ �=λ

1

Eλ′ − Eλ

[
ω2

χ

∂2

∂χ2 + ω2
η

∂2

∂η2
+ ω2

ζ

∂2

∂ζ 2

+ωχωη

(
∂χ∂η + ∂η∂χ

)+ ωχωζ

(
∂χ∂ζ + ∂ζ ∂χ

)+ ωηωζ

(
∂η∂ζ + ∂ζ ∂η

)
+ (ωχ∂χωχ + ωη∂ηωχ + ωζ ∂ζ ωχ

)
∂χ + (ωχ∂χωη + ωη∂ηωη + ωζ ∂ζ ωη

)
∂η

+ (ωχ∂χωζ + ωη∂ηωζ + ωζ ∂ζ ωζ

)
∂ζ

] ∣∣∣∣k
〉
. (14)
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For the sake of compactness in (14), and in the following, we omit the superscripts in
the notation for ωλλ′

α . Notice, in contrast to I, in the present work we take into account
also the terms with mixed contributions ωαωβ for α �= β. Hence, expression (14)
represents the complete non-adiabatic contribution in the second order of perturbation
theory.

3 The non-adiabatic KEO for a triatomic system

3.1 The general derivation

As said before, the main idea of [1] is to interpret the second-order correction E (2)
λk of

the exact nuclear KEO as the first-order correction of a new effective non-adiabatic
nuclear KEO Tna, which can be deduced from (14) as

E (2)
λk = 〈k|Tna|k〉 . (15)

The electronic matrix elements ωλλ′
α , and therefore the correction E (2)

λk , are defined
in the BF frame of coordinates. To introduce the rotational degrees of freedom (the
Euler angles) we shall represent the E (2)

λk in the SF frame, which is assumed arbitrarily
oriented with respect to the BF frame, see Fig. 1. In the present work we use the
molecular embedding with the diatom vector r aligned along the z-axis and the vector
R in the xz-plane (we denote this embedding as [r ||z]). The operator Tna

Tna ≡ T (1)
na + T (2)

na , (16)

can be written immediately by comparing (14) and (15):

T (1)
na = − �

2

2μr

[
G(r)

xx
∂2

∂x2
+ G(r)

yy
∂2

∂ y2
+ G(r)

zz
∂2

∂z2

]

− �
2

2μR

[
G(R)

XX
∂2

∂X2 + G(R)
YY

∂2

∂Y 2 + G(R)
Z Z

∂2

∂Z2

]
, (17)

and

T (2)
na = − �

2

2μr

[
G(r)
xyOxy + G(r)

xz Oxz + G(r)
yz Oyz + g(r)

x ∂x + g(r)
y ∂y + g(r)

z ∂z

]

− �
2

2μR

[
G(R)

XYOXY + G(R)
X ZOX Z + G(R)

Y ZOY Z + g(R)
X ∂X + g(R)

Y ∂Y + g(R)
Z ∂Z

]
, (18)

with Oαβ = ∂α∂β + ∂β∂α . G
(a)
αβ and g(a)

α are given by

G(a)
αβ = −2�

2

μa

∑
λ′ �=λ

ωαωβ

Eλ′ − Eλ

,
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g(a)
α = −2�

2

μa

∑
λ′ �=λ

ωχ∂χωα + ωη∂ηωα + ωζ ∂ζ ωα

Eλ′ − Eλ

, α, β = χ, η, ζ. (19)

Let the symbol T0 indicates the conventional (constant nuclear masses) trinuclear
KEO. The operator T0 + Tna represents the most complete non-adiabatic KEO in the
sense formulated in the previous section. To separate the pure vibrational T (n)

V and

vibration-rotational T (n)
V R terms in the KEO we use the following notations

T (n)
na = T (n)

V + T (n)
V R, n = 1, 2. (20)

Therefore, an effective Schrödinger equation for nuclear motion can be written as

(
T0 + Tna + E AD

λ (Q) − Eλk

)
υk

λ(Q) = 0. (21)

In case of embedding [r ||z], the conventional kinetic energy operator T0 = T (0)
V +T (0)

V R
reads

T (0)
V = − �

2

2μr

1

r

∂2

∂r2
r − �

2

2μR

1

R

∂2

∂R2 R

− �
2

2

(
1

μR R2 + 1

μr r2

)(
∂2

∂θ2
+ cot θ

∂

∂θ

)
, (22)

T (0)
V R = 1

2μr r2

[
Π2

x + Π2
y + Π2

z cot
2 θ + (ΠxΠz + ΠzΠx

)
cot θ

]

− i�

μr r2

(
∂

∂θ
+ cot θ

2

)
Πy + 1

2μR R2

Π2
z

sin2 θ
. (23)

Πx , Πy and Πz are the total orbital momentum operators (see [32], par. 5.5.2; or
I, (I.A1); to be precise, we use the complex conjugated expressions of the orbital
momentum operators adopted in [32]).

The representation of the BF differential operators in (17), as seen in the SF frame
for embedding [r ||z] (see Fig. 1) has been given in I. Hence, to represent the operator
T (1)
na in the SF Jacobi coordinates we use expressions (I.48) and (I.49).
Notice, in I we have included the constant reduced nuclear masses μR , μr into the

definition of the DDMs μ
(x,y,z)
2,3 (in the notations adopted in I) whereas in the present

work we have separated out the conventional part T0 of the total KEO. One should bear
in mind, that the μ

(x,y,z)
2,3 and functions G(a)

αβ and g(a)
α , defined by (19), are formally

related as follows
1

μ
(α)
2

= 1 + G(r)
αα

μr
,

1

μ
(β)
3

= 1 + G(R)
ββ

μR
, (24)

where α = x, y, z and β = X ,Y , Z . To obtain the SF representation for the operators
∂α andOαβ (α �= β), needed for construction of the operator T (2)

na , we employ the same
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technique as described in I. The details of the derivation are given in the “Appendix A”.
Finally, this leads to the following expression for the operator T (1)

V +T (2)
V (vibrational

part of Tna)

T (1)
V + T (2)

V = − �
2

2μr
G(r)

zz
∂2

∂r2
− �

2

2μR
G(R)

1
∂2

∂R2

− �
2

2μr

(
G(r)

xx + G(r)
yy

)
1

r

∂

∂r
− �

2

2μr
g(r)
z

∂

∂r
− �

2g(+)

2μR

∂

∂R

− �
2

2μR

(
G(R)

3 + 2G(R)
1

)
1

R

∂

∂R

− �
2

2μr
G(r)

xx
1

r2
∂2

∂θ2
− �

2

2μR
G(R)

4
1

R2

∂2

∂θ2

− �
2g(−)

2μR

1

R

∂

∂θ
− �

2

2μr
G(r)

xz
2

r2
∂

∂θ
− �

2

2

(
G(r)

yy

r2μr
+ G(R)

YY

R2μR

)
cot θ

∂

∂θ

+ �
2

2μr
g(r)
x

1

r

∂

∂θ
− �

2

2μR
G(R)

5
1

R2

∂

∂θ
+ �

2

2μR
G(R)

5
1

R

∂2

∂R∂θ

+ �
2

2μr
G(r)

xz
2

r

∂2

∂r∂θ
. (25)

The operator T (1)
V R + T (2)

V R for the vibration-rotational part of Tna is given as

T (1)
V R + T (2)

V R = 1

2

(
sin−2 θ

μR R2 G(R)
YY + cot2 θ

μr r2
G(r)

yy

)
Π2

z − i�

(
G(r)

xy

μr r2
+ G(R)

XY

μR R2

)
Πz

sin2 θ

+ 1

2r2μr

(
Π2

x G
(r)
yy + G(r)

xx Π2
y + G(r)

yy cot θPxz

)
+ i�

2μR R

g(R)
Y

sin θ
Πz

− i�

2r2μr

(
2G(r)

xx
∂

∂θ
+ G(r)

yy cot θ − rg(r)
x

)
Πy

+ i�

r2μr
G(r)

xy

(
Πx + cot θΠz

) ∂

∂θ

+ i�

μr
G(r)

xz

(
1

r

∂

∂r
− 1

r2

)
Πy − 1

r2μr
G(r)

xyPxyz

+ i�

R2μR
G(R)

XY cot θ
∂

∂θ
Πz

− i�

μr

(
G(r)

yz

(
1

r

∂

∂r
− 1

r2

)
+ g(r)

y

2r

)(
Πx + cot θΠz

)

+ i�

μR
G(R)

XY
1

R

∂

∂R
Πz + i�

μR
G(R)

Y Z

(
cot θ

R

∂

∂R
− 1

R2

∂

∂θ

)
Πz . (26)
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For the sake of brevity we use the following short notations

Pxz = ΠxΠz + ΠzΠx , Pxyz = ΠyΠx + cot θ ΠyΠz, (27)

G(R)
1 = G(R)

XX sin2 θ + G(R)
Z Z cos2 θ + G(R)

XZ sin 2θ,

G(r)
2 = G(r)

xx + G(r)
yy − 2G(r)

zz , G(R)
2 = G(R)

XX − 2G(R)
YY + G(R)

Z Z ,

G(R)
3 = G(R)

XX

[
1 − 3 sin2 θ

]+ G(R)
Z Z

[
1 − 3 cos2 θ

]+ G(R)
YY − 3G(R)

XZ sin 2θ,

G(R)
4 = G(R)

XX cos2 θ + G(R)
Z Z sin2 θ − G(R)

XZ sin 2θ,

G(R)
5 = [G(R)

Z Z − G(R)
XX

]
sin 2θ − 2G(R)

XZ cos 2θ, (28)

g(+) = g(R)
X sin θ + g(R)

Z cos θ, g(−) = g(R)
X cos θ − g(R)

Z sin θ. (29)

The substitution Ψ → 1
r RΨ eliminates the first radial derivatives in the KEO

T (0)
V which is transformed as a result into the expression denoted by T̄ (0)

V (see (I.54)

but with constant masses), whereas T̄ (0)
V R = T (0)

V R . Similarly, the transformed KEO
T̄na ≡ T̄V + T̄V R can be represented by the following expressions:

T̄V = T (1)
V + T (2)

V + ΔTV , T̄V R = T (1)
V R + T (2)

V R + ΔTV R, (30)

with

ΔTV = �
2

μr r
G(r)

zz
∂

∂r
+ �

2

μR R
G(R)

1
∂

∂R
− �

2
(

G(r)
xz

μr r2
+ G(R)

5

2μR R2

)
∂

∂θ

+ �
2

2μr

(
G(r)

2

r2
+ g(r)

z

r

)

+ �
2

4μR R2

(
3G(R)

4 − 3G(R)
1 − G(R)

2

)+ �
2

2μR R2 g(+). (31)

ΔTV R is given by

ΔTV R = − i�

μr r2
G(r)

xz Πy + i�

μr r2
G(r)

yz

(
Πx + Πz cot θ

)

− i�

μR R2G
(R)
XYΠz − i�

μR R2G
(R)
Y Z Πz cot θ. (32)

3.2 The effective kinetic energy operator

The effective KEO is obtained by integrating the expressions T̄0, T̄V and T̄V R over
Wigner D-functions |JMk〉 and normalized associated Legendre polynomials |lk〉
[see (I.63), (I.C1)]. We denote the corresponding effective T̄ operator as

〈
T̄
〉
Ω

and〈
T̄
〉
Ω,θ

. The subscripts denote the angular variables on which the integration is carried
out [for more details see [33] or (I.64)]. For the sake of brevity we introduce the
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following short notations

G(r)
+ = G(r)

xx + G(r)
yy , G(r)

− = G(r)
xx − G(r)

yy . (33)

The effective T̄ (0)
V , T̄ (1)

V and T̄ (2)
V expressions read

〈
T̄ (0)
V

〉
Ω,θ

= − �
2

2

[
1

μr

∂2

∂r2
+ 1

μR

∂2

∂R2 − �(� + 1)

(
1

μr r2
+ 1

μR R2

)]
δk′kδ�′�

− �
2k2

2

(
1

μr r2
+ 1

μR R2

) 〈
�′k| sin−2 θ |�k

〉
δk′k , (34)

〈
T̄ (1)
V

〉
Ω,θ

= − �
2

2

[
G(r)
zz

μr

∂2

∂r2
+ G(R)

1
μR

∂2

∂R2

]
δk′kδ�′� − �

2

2

[
G(r)
yy

μr r2
+ G(R)

YY

μR R2

]

×
〈
�′k| cot θ ∂

∂θ
|�k
〉
δk′k − �

2

2

[
G(r)
xx

μr r2
+ G(R)

4
μR R2

] 〈
�′k| ∂2

∂θ2
|�k
〉

δk′k ,(35)

and

〈
T̄ (2)
V

〉
Ω,θ

= − �
2

2μr

[
g(r)
z + G(r)

2

r

][
∂

∂r
− 1

r

]
δk′kδ�′� − �

2

2μR

[
g(+) + G(R)

3

R

]

×
[

∂

∂R
− 1

R

]
δk′kδ�′� + �

2

2

(
g(r)
x

μr r
− g(−)

μR R
− 2G5

μR R2 − 4G(r)
xz

μr r2

+ G(R)
5

μR R

∂

∂R
+ 2G(r)

xz

μr r

∂

∂r

)〈
�′k| ∂

∂θ
|�k
〉
δk′k . (36)

We performed similar derivations for the effective T̄ (0)
V R , T̄

(1)
V R and T̄ (2)

V R . The result is

〈
T̄ (0)
V R

〉
Ω

=
[

�
2[J (J + 1) − 2k2]

2μr r2
+ �

2k2

sin2 θ

(
1

2μr r2
+ 1

2μR R2

)]
δk′k

+ �
2 C+

Jk Θ̂
(0)
−

2μr r2
δk′k+1 + �

2 C−
Jk Θ̂

(0)
+

2μr r2
δk′k−1, (37)

〈
T̄ (1)
V R

〉
Ω

=
[

�
2(J (J + 1) − 2k2)

2r2
G(r)

yy

μr
+ �

2k2

sin2 θ

(
1

2r2
G(r)

yy

μr
+ 1

2R2

G(R)
YY

μR

)

+ �
2 G(r)

−
8μr r2

(
C−

JkC
+
Jk−1 + C+

JkC
−
Jk+1

)]
δk′k

+ �
2 C+

JkΘ̂
(1)
−

2μr r2
δk′k+1 + �

2 C−
JkΘ̂

(1)
+

2μr r2
δk′k−1

− �
2 G(r)

−
8μr r2

(
C−

JkC
−
Jk−1δk′k−2 + C+

JkC
+
Jk+1δk′k+2 (38)
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〈
T̄ (2)
V R

〉
Ω

= �
2

2μr r

[
g(r)
x

2
+ G(r)

xz

(
∂

∂r
− 2

r

)](
C+

Jkδk′,k+1 − C−
Jkδk′,k−1

)
, (39)

with

Θ̂
(0)
± = k cot θ ± ∂

∂θ
, Θ̂

(1)
± = k G(r)

yy cot θ ± G(r)
xx

∂

∂θ
. (40)

Finally, after integration over the associated Legendre polynomials |�k〉 we obtain

〈
T̄ (0)
V R

〉
Ω,θ

= �
2[J (J + 1) − 2k2]

2μr r2
δk′kδ�′� + �

2k2

2

[
1

μr r2
+ 1

μR R2

]

×
〈
� ′k| sin−2 θ |�k

〉
δk′k − δ�′�

�
2

2μr r2
(
δk′k+1C

+
JkC

+
�k + δk′k−1C

−
JkC

−
�k

)
, (41)

〈
T̄ (1)
V R

〉
Ω,θ

= �
2

2

[(
J (J + 1) − 2k2

)
r2

G(r)
yy

μr
δ�′� + k2

[
G(r)

yy

μr r2
+ G(R)

YY

μR R2

]

×
〈
�′k| sin−2 θ |�k

〉 ]
δk′k − �

2 G(r)
+

4μr r2

[
C+

JkC
+
�k δk′k+1 + C−

JkC
−
�k δk′k−1

]
δ�′�

+�
2 G(r)

−
8μr r2

[
C−

JkC
+
Jk−1 + C+

JkC
−
Jk+1

]
δk′kδ�′�

+�
2 G(r)

−
4μr r2

(
δk′k+1

〈
�′k+|�k−〉C+

JkC
−
�k + δk′k−1

〈
�′k−|�k+〉C−

JkC
+
�k

)

−�
2 G(r)

−
8μr r2

(
δk′k+

〈
�′k+|�k〉C+

JkC
+
Jk+1 + δk′k−

〈
�′k−|�k〉C−

JkC
−
Jk−1

)
, (42)

and

〈
T̄ (2)
V R

〉
Ω,θ

= �
2

2μr r

[
g(r)
x

2
+ G(r)

xz

(
∂

∂r
− 2

r

)]

×
(
C+

Jk

〈
�′k+|�k〉 δk′k+ − C−

Jk

〈
�′k−|�k〉 δk′k−

)
, (43)

where k± = k ± 1 and k± = k ± 2 . Note, the largest portion of the operator
T (2)
V R is non-Hermitian, hence expression (43) is obtained after the transformation

T̄V R = 1
2

(
T̄V R + T̄ †

V R

)
. The complete effective nuclear KEO can be given as a sum

T̄ =
2∑

n=0

〈
T̄ (n)
V

〉
Ω,θ

+
〈
T̄ (n)
V R

〉
Ω,θ

. (44)

4 The non-adiabatic KEO for a diatomic system

Let us derive the effective non-adiabatic KEO for a diatomicmolecule in the electronic
state Σ to compare with the results obtained in [1]. We shall place the internuclear
vector r along the BF axis z. Taking into account the symmetry of the diatomic
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molecule (ωx = ωy) we can introduce the following coefficients

Aλλ′ = 〈λ|∂xλ′〉 〈λ′|∂xλ
〉 = 〈λ|∂yλ′〉 〈λ′|∂yλ

〉
, (45)

Cλλ′ = 〈λ|∂zλ′〉 〈λ′|∂zλ
〉
. (46)

Assuming cylindrical symmetry for the state of interest (i.e. Σ), the expressions of
the type

∂α

〈
λ′|∂βλ

〉
, α �= β (47)

are zero (see also [1]) and derivation of the effectiveKEOcan be greatly simplified. The
differential BF operators ∂α (α = x, y, z) can be given in the SF spherical coordinates
{r , θ, ϕ} by exploiting the same techniques as used in the previous section; see also
“Appendix A”. The result is

∂x = 1

r

∂

∂θ
, ∂y = 1

r sin θ

∂

∂ϕ
, ∂z = ∂

∂r
. (48)

It is important that expressions (48), as well as (49) and (50) further, are obtained
under the geometrical constraint represented by the embedding of the molecular axis,
[r ‖ z] in our case. As a consequence, the BF operator ∂

∂z , for instance, is given in the

SF frame by a simple partial derivative ∂
∂r (see also the discussion after equation (24)

of [1]).

With the help of (48) we can analyse the contribution
〈
k|Ô|k

〉
from all terms (with

a = r ) in (14). Because of angular symmetry of the diatomic nuclear wave function
|k〉 (in the absence of external fields), which are the properly symmetrized spherical
harmonics Y jm(θ, ϕ), the matrix elements 〈k|∂x |k〉 and

〈
k|∂y |k

〉
are zero (this can be

easily verified by direct calculation), and can be dropped from (14). By the same

reason we can drop the matrix elements
〈
k|Ô|k

〉
, where the operators Ô is represented

by the following mixed derivatives

∂x∂y + ∂y∂x = 2

(
1

r2 sin θ

∂2

∂θ∂ϕ
− cot θ

r2 sin θ

∂

∂ϕ

)
,

∂x∂z + ∂z∂x = 2

(
1

r

∂2

∂r∂θ
− 1

r2
∂

∂θ

)
,

∂y∂z + ∂z∂y = 2

(
1

r sin θ

∂2

∂r∂ϕ
− 1

r2 sin θ

∂

∂ϕ

)
. (49)

Therefore, the only non-zero contribution to E (2)
λk results from the operator ∂z and the

second-order derivative operators ∂2

∂x2
, ∂2

∂ y2
, ∂2

∂z2
, which are given by

∂2

∂x2
= 1

r

∂

∂r
+ 1

r2
∂2

∂θ2
,

∂2

∂ y2
= 1

r

∂

∂r
+ cot θ

r2
∂

∂θ
+ 1

r2 sin2 θ

∂2

∂ϕ2 ,
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∂2

∂z2
= ∂2

∂r2
. (50)

Hence, we come to the following representation for E (2)
λk :

E (2)
λk = − �

2

2μr

〈
k

∣∣∣∣2�
2

μr

∑
λ′ �=λ

(Eλ′ − Eλ)
−1
[
Aλλ′

(
∂2

∂x2
+ ∂2

∂ y2

)
+ Cλλ′

∂2

∂z2

− (ωx∂xωz + ωy∂yωz + ωz∂zωz
)
∂z

] ∣∣∣∣k
〉
. (51)

Using (48) and (50) we reach

E (2)
λk = − �

2

2μr

〈
k

∣∣∣∣2�
2

μr

∑
λ′ �=λ

(Eλ′ − Eλ)
−1
[
Aλλ′∇2

r + (Cλλ′ − Aλλ′)
∂2

∂r2

− (ωx∂xωz + ωy∂yωz + ωz∂zωz
) ∂

∂r

] ∣∣∣∣k
〉
. (52)

∇2
r denotes the full Laplacian operator:∇2

r = 1
r

∂2

∂r2
r+ 1

2r2
�̂2. Introducing the functions

G1(r) = 2�
2

μr

∑
λ′ �=λ

Aλλ′

(Eλ′ − Eλ)
, G2(r) = 2�

2

μr

∑
λ′ �=λ

Cλλ′

(Eλ′ − Eλ)
, (53)

G3(r) = −�
2r

μr

∑
λ′ �=λ

ωx∂xωz + ωy∂yωz + ωz∂zωz

(Eλ′ − Eλ)
, (54)

we can rewrite E (2)
λk in the following way

E (2)
λk = − �

2

2μr

〈
k

∣∣∣∣ G1(r)∇2
r +

[
G2(r) − G1(r)

] ∂2

∂r2
+ G3(r)

2

r

∂

∂r

∣∣∣∣k
〉
. (55)

According to the [1], (55) can be interpreted as if the nuclear motion were governed
by an effective perturbation of the form

Heff = − �
2

2μr

(
G1(r)∇2

r +
[
G2(r) − G1(r)

] ∂2

∂r2
+ G3(r)

2

r

∂

∂r

)
. (56)

Hence, by expression (56), we have demonstrated that in the diatomic limit we repro-
duce correctly the non-adiabatic nuclear Hamiltonian obtained in [1]. Note, that in [1]
thematrix elements ∂x

〈
λ′|∂xλ

〉
and ∂y

〈
λ′|∂yλ

〉
were neglected because of its negligibly

small numeric contribution. Therefore, if one omit the terms ωx∂xωz and ωy∂yωz as
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suggested in [1] the expression for G3(r) can be further simplified to GHA
3 (r)

GHA
3 (r) = �

2r

μr

∑
λ′ �=λ

〈
λ|∂zλ′〉 ∂z 〈λ′|∂zλ

〉
(Eλ′ − Eλ)

. (57)

Expression (57) [instead of (54)] has been used in [1] to construct the final represen-
tation for the effective non-adiabatic Hamiltonian for diatomic molecules.

5 Summary

The aimof the current studywas to construct the effective non-adiabatic kinetic energy
operator for nuclear motion in a triatomic molecule. The purpose of such operator is
to simulate, within a certain order of accuracy, a full N -body level of theory but
staying in the paradigm of the adiabatic theory (i.e. utilizing the concept of adiabatic
potential energy surfaces). The derivation has been carried out in the spirit of the
work of Herman and Asgharian [1], resulting in distance-dependent contributions to
effective reduced nuclear masses. The main difficulties in the rigorous extension of
this approach to a triatomic molecule (originally developed for a diatomic molecule)
is the transformation of each individual differential operator with mass-prefactors
defined in the BF frame into an arbitrarily oriented SF frame. These difficulties in the
derivation are related to a dramatic complication in the description of the vibrational
and, especially, rotational degrees of freedomof the triatomic in contrast to the diatomic
molecule. By employing analytic variations techniques (described in I) we were able
to perform this transformation and construct the effective triatomic nuclear KEO in
question. We also reproduce the KEO of [1] for homonuclear diatomics and obtain
the terms neglected in [1] needed for the non-adiabatic investigation of heteronuclear
diatomic systems.

In the derivation of the KEO the distance-dependent contributions to reduced
nuclear masses arise from the application of perturbation theory. The non-adiabaticity
is represented by the small terms G(a)

α,β and g(a)
α : they are of the order of O(μ−1

r ) and

O(μ−1
R ) and neglected in the adiabatic approximation. The major limitation of the

present study is the requirement for “smallness” of the non-adiabaticity. This condi-
tion is not fulfilled near avoided crossings or conical intersections where the matrix
elements ωα , see (13), become very large or singular.

Preliminary applications for the rovibrational spectrum of H+
3 have been already

performed [3,4]. For the use of the new presented kinetic energy operator we have to
calculate first all new distance-dependent mass prefactors G(a)

α,β (with α �= β) and g(a)
α

[see (25) and (26)] which had not been used before. Then we can analyze, how strong
the additional influence of these additional mass-prefactors will be on the rovibrational
spectrum.

Acknowledgements MK acknowledge the support from the DAAD (Ref. A/14/02363) in the early stage
of this study.
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Appendices

A Derivation of the operators @˛ and @˛@ˇ in the SF frame

In the notations of the variations we shall use the conventions adopted in I. The set of
variations of the molecular (Jacobi) SF coordinates r , R, θ , δ, γ , and ϕ are denoted by
the symbol {δu}αβ and ordered in the same way as described by (I.B7). The subscripts
α and β denotes the Cartesian BF coordinates of the same Jacobi vector r or R, i.e.
α, β = x, y, z or α, β = X ,Y , Z (α �= β); f is the dummy function. In the present
work the Cartesian BF coordinates (in contrast to I) are not primed.

We shall demonstrate the transformation of the mixed derivatives ∂α∂β from Carte-
sian BF coordinates into the SF molecular coordinates. Essentially, the procedure has
been described in I [see (I.9)–(I.14), (I.77)]. Here, instead of (I.10) we use the finite
difference representation for the mixed derivatives ∂α∂β

∂α∂β f = 1

δαδβ

[
δ2 f − δ

(α)
1 f − δ

(β)
1 f

]
, (58)

with δ
(α)
1 f = f (α + δα) − f (α), δ

(β)
1 f = f (β + δβ) − f (β) and δ2 f =

f (α + δα, β + δβ) − f (α, β). We treat δ1 f and δ2 f in exactly the same manner
as described by (I.12) and (I.14), albeit for δ2 f the variations of the molecular coordi-
nates {δu} are represented by simultaneous variations of two independent BFCartesian
coordinates δα and δβ. We start from the two Cartesian BF variations δα and δβ, next
we find the corresponding variations of the Cartesian SF variables with the help of the
transformation (I.9). The obtained SF variations are then substituted into (I.13) that
gives the following expressions for {δu}αβ

{δu}xy =
{

δx2

2r
+ δy2

2r
, 0,

δy2 cot θ

2r2
− δx

r
,

cot γ sin 2ϕ

2r2 sin γ
(δy2 − δx2) − δxδy cot γ cos 2ϕ

r2 sin γ
+ δx sin ϕ

r sin γ
+ δy cosϕ

r sin γ
,

cot γ

2r2

(
δx2 sin2 ϕ + δxδy sin 2ϕ + δy2 cos2 ϕ

)
+ 1

r

(
δx cosϕ − δy sin ϕ

)
,

sin 2ϕ

8r2 sin2 γ

(
3δx2 + cos 2γ

(
δx2 − δy2

)− 3δy2
)

+ δxδy
(
3 + cos 2γ

)
cos 2ϕ

4r2 sin2 γ

+ δxδy

2r2
− δxδy

r2 sin2 θ
− cot γ

r

(
δx sin ϕ + δy cosϕ

)− δy cot θ

r

}
, (59)

{δu}xz =
{

δx2

2r
+ δz, 0,

δxδz

r2
− δx

r
,

δx sin ϕ

r sin γ
− δx2 cot γ sin 2ϕ

2r2 sin γ

− δxδz sin ϕ

r2 sin γ
,

δx2 cot γ sin2 ϕ

2r2
+ (rδx − δxδz) cos ϕ

r2
,

δx2[3 + cos 2γ ] sin 2ϕ
8r2 sin2 γ

+ (δxδz − rδx) cot γ sin ϕ

r2

}
, (60)
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{δu}yz =
{

δy2

2r
+ δz, 0,

δy2 cot θ

2r2
,
cosϕ

(
δy2 cot γ sin ϕ + rδy − δyδz

)
r2 sin γ

,

δy2 cot γ cos2 ϕ

2r2
+ δyδz sin ϕ

r2
− δy sin ϕ

r
, −δy2(3 + cos 2γ ) sin 2ϕ

8r2 sin2 γ

+ δyδz cot γ cosϕ

r2
+ δyδz cot θ

r2
− δy cot γ cosϕ

r
− δy cot θ

r

}
, (61)

and

{δu}XY =
{
0,

δX2 cos2 θ

2R
+ δX sin θ + δY 2

2R
,

− δX2 sin 2θ

2R2 + δX cos θ

R
+ δY 2 cot θ

2R2 , 0, 0,
δY

R sin θ
− δXδY

R2 sin2 θ

}
, (62)

{δu}XZ =
{
0,

δX2 cos2 θ

2R
− δXδZ sin 2θ

2R
+ δZ2 sin2 θ

2R

+ δX sin θ + δZ cos θ,
(δZ2 − δX2) sin 2θ

2R2

− δXδZ cos 2θ

R2 + δX cos θ

R
− δZ sin θ

R
, 0, 0, 0

}
, (63)

{δu}Y Z =
{
0,

δY 2 + δZ2 sin2 θ

2R
+ δZ cos θ,

1

2R2

(
δY 2 cot θ + δZ2 sin 2θ

)

− δZ sin θ

R
, 0, 0,

δY

R sin θ

}
. (64)

With the help of (I.14) we compute δ1 f [using the variations (I.B8), (I.B9)] and δ2 f
[using the variations (59)–(64)] and substitute the obtained results into (58). Taking
the limit δα → 0, δβ → 0 in (58) we get the expression for the operator ∂α∂β in the
SF frame. Calculating the limit one should bear in mind that δα and δβ are of the same
order of magnitude. As an example, consider the case of the ∂x∂y operator (obviously,
∂x∂y = ∂y∂x ). Substituting all variations into (58) we reach the final result

∂x∂y = sin 2ϕ

2r2

(
cot γ

∂

∂γ
− ∂2

∂γ 2

)
+ cos 2ϕ

r2 sin γ

∂2

∂δ∂γ
+ sin 2ϕ

2r2 sin2 γ

∂2

∂δ2

+
(
cos2 ϕ − cos2 γ sin2 ϕ

r2 sin2 γ
− 1

r2 sin2 θ

)
∂

∂ϕ
− cot γ cos 2ϕ

r2 sin γ

∂

∂δ

−
[
cot θ sin ϕ

r2 sin γ
+ cot γ sin 2ϕ

r2 sin γ

]
∂2

∂δ∂ϕ
− cosϕ

r2 sin γ

∂2

∂θ∂δ

+ cot γ cosϕ + cot θ

r2
∂2

∂θ∂ϕ
−
[
cot γ cos 2ϕ

r2
+ cot θ cosϕ

r2

]
∂2

∂γ ∂ϕ
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+ sin ϕ

r2
∂2

∂θ∂γ
+
(
cot γ cot θ sin ϕ

r2
+ cot2 γ sin 2ϕ

2r2

)
∂2

∂ϕ2 . (65)

Using the representations of the total angular momentum operators Πx , Πy and Πz

[see (I.A1)] the expression for ∂x∂y can be expressed in a more compact form:

∂x∂y = 1

�2r2

[
ΠyΠx+cot θΠyΠz

]
+ i

�r2
csc2 θ Πz− i

�r2

[
Πx+cot θΠz

]
∂

∂θ
. (66)

In the same manner we can compute all operators and finally arrive at the following
representations for operators Oαβ

Oxy = 2

�2r2

[
ΠyΠx + cot θΠyΠz + i� Πz

sin2 θ
− i� (Πx + cot θΠz)

∂

∂θ

]
, (67)

Oxz =
(
2

r2
− 2

r

∂

∂r

)(
i

�
Πy + ∂

∂θ

)
, (68)

Oyz = 2i

�

(
1

r

∂

∂r
− 1

r2

)
(Πx + cot θΠz) , (69)

OXY = −2i

�

(
1

R

∂

∂R
+ cot θ

R2

∂

∂θ
− csc2 θ

R2

)
Πz, (70)

OXZ =
(
2

R

∂

∂R
− 2

R2

)
cos 2θ

∂

∂θ
+ sin 2θ

(
∂2

∂R2 − 1

R

∂

∂R
− 1

R2

∂2

∂θ2

)
, (71)

OY Z = −2i

�

(
cot θ

R

∂

∂R
− 1

R2

∂

∂θ

)
Πz . (72)

The transformation of the 1st-order derivative operators ∂α is considerably simpler
and can be done within the same technique by employing variations (I.B8), (I.B9)
and the standard definition for the 1st-order derivative operator [which we use now in
place of (I.10)]

∂α f = lim
δα→0

δ
(α)
1 f

δα
, (73)

Obviously, for the purpose of the ∂α transformation, one needs the linear parts (with
respect to the δα) of the expressions (I.13), (I.14), (I.B8) and (I.B9) only. One finally
obtains the following representations for the ∂α operators in the SF frame:

∂x = −1

r

∂

∂θ
− iΠy

� r
, ∂y = i

� r
(Πx + cot θ Πz) , ∂z = ∂

∂r
,

∂X = cos θ

R

∂

∂θ
+ sin θ

∂

∂R
, ∂Y = − i

�

Πz

R sin θ
, (74)

∂Z = cos θ
∂

∂R
− sin θ

R

∂

∂θ
. (75)
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The representations for the differential operators (65)–(72), (74) and (75) [as well as
(48)–(50) for the diatomic molecule] are obtained under the geometrical constraints
presented by the embedding

[
r ||z ] of the Jacobi vectors R and r in the BF frame.

Finally we give the variations needed to transform the BF Cartesian derivative
operators ∂α and ∂αβ (α, β = x, y, z) into spherical SF coordinates {r , θ, ϕ} used in
Sect. 4 for the diatomic system:

{δu}x =
{

δx2

2r
,

δx

r
, 0

}
, {δu}y =

{
δy2

2r
,

δy2 cot θ

2r2
,

δy

r sin θ

}
,

{δu}z = {δz, 0, 0}. (76)

{δu}xy =
{

δx2 + δy2

2r
,
2rδx + cot θδy2

2r2
,

δy

r sin θ
− δxδy cos θ

r2 sin2 θ

}
,

{δu}xz =
{
δz + δx2

2r
, −δxδz

r2
+ δx

r
, 0

}
,

{δu}yz =
{
δz + δy2

2r
,

δy2 cot θ

2r2
, − δyδz

r2 sin θ
+ δy

r sin θ

}
. (77)

B The recurrent relations between the matrix elements involving the
associated Legendre polynomials

The general expression for the matrix elements
〈
n′m′|nm〉, (I.C9), rather impractical

for the large values of n′, n, m′ and m, because of the presence of numerous factorials
and summations. Here we give the simple recurrent schemes for calculation of these
matrix elements for some combinations of the quantum numbers. Namely, we consider
the casem′ −m = 2. The mentioned restriction on the quantum numbers related to the
practical needs in the calculation of the effective Hamiltonian [see (42) as an example].

We shall use the ideas used in the [34]. The associated Legendre polynomials Pm
n (x)

can be defined by the following two equivalent representations

Pm
n (x) = (−1)m

(1 − x2)m/2

2nn! ∂n+m
x (x2 − 1)n

= (n + m)!
2nn!(n − m)! (1 − x2)−m/2∂n−m

x (x2 − 1)n, (78)

where (similarly as in the previous sections) the symbol ∂ k
x denotes the k-th derivative

on the variable x .
We shall use the following relation [see [35], (8.733-4)]

Pm
n−1(x) − Pm

n+1(x) = (2n + 1)
√
1 − x2Pm−1

n (x). (79)

In the calculations of the integrals it is convenient to use the un-normalized expressions
(78) for associated Legendre polynomials. The standard normalization coefficient Bnm
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reads ∫ +1

−1

[
Bnm Pm

n (x)
]2
dx = 1, Bnm =

√
(2n + 1)

2

(n − m)!
(n + m)! . (80)

Let us introduce the following notation for the matrix elements with the polynomials
Pm
n (x) ∫ +1

−1
Pm′
n′ (x)Pm

n (x)dx =
〈
Pm′
n′ |Pm

n

〉
. (81)

We are going to derive: (i) the recurrent relations between the matrix elements〈
Pm
n |Pm−2

n

〉
and

〈
Pm−1
n |Pm+1

n

〉
(type I); (ii) the matrix elements

〈
P2
n |P0

n−k

〉
, k =

2, 4, . . . , n, where n is an even number (type II). Without loss of generality we assume
that the quantum numbers m and m′ in (81) are positive, i.e. for the matrix elements
of the type I, m ≥ 2.

B.1 Matrix elements of the type I

Let us to introduce a short notation Inm = 〈
Pm
n |Pm−2

n

〉
. We shall derive the rela-

tion between the matrix elements Inm and Inm+1, where Inm+1 =
〈
Pm−1
n |Pm+1

n

〉
=〈

Pm+1
n |Pm−1

n

〉
. By using the representation (78) we have

Inm = Cnm

∫ +1

−1
(1 − x2)∂ k

x qn(x)∂
p+2
x qn(x)dx, qn(x) = (x2 − 1)n, (82)

where k = n + m, p = n − m, and

Cnm = (−1)m(n + m − 2)!
[2nn!]2(n − m + 2)! . (83)

Integrating by parts in (82) [Inm ≡ ∫ udv, where u = (1 − x2)∂ k
x qn(x)] the Inm can

be represented as follows:

Inm = −Cnm

∫ +1

−1
(1 − x2)∂ k+1

x qn(x) ∂
p+1
x qn(x)dx

+ 2Cnm

∫ +1

−1
x ∂ k

x qn(x) ∂
p+1
x qn(x)dx = −Cnm I

(0)
nm + 2Cnm I

(1)
nm . (84)

Consider (84) at m = n (i.e. k = 2n and p = 0), which give us the matrix element
Inn ≡ 〈

Pn
n |Pn−2

n

〉
. Because of ∂ k+1

x qn(x) ≡ 0, the first integral I (0)
nm in (84) is zero

and Inn is represented solely by the second integral I (1)
nm . Integrating the I (1)

nm by parts
(with u = x) and using the relation

∫ +1

−1
∂ k
x qn(x)∂

p
x qn(x)dx = Knm, Knm = 2(−1)m

(
2nn!)2

2n + 1
, (85)
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we reach the final result for the matrix element Inn

Inn = −2Cnn

∫ +1

−1
∂ k
x qn(x)∂

p
x qn(x)dx = −2(2n − 2)!

2n + 1
. (86)

Consider now the general case, n > m. The integral I (0)
nm in the (84) represents (up

to a constant) the matrix element Inm+1 [one can see this immediately, by comparing
the expression for I (0)

nm with the (82)], therefore we can write

Inm = − Cnm

Cnm+1
Inm+1 + 2Cnm I

(1)
nm . (87)

Integrating I (1)
nm by parts (with the u = x∂ k

x qn(x)) we obtain

I (1)
nm = −Knm − I (2)

nm , (88)

where I (2)
nm can be treated in the same way and result is

I (2)
nm =

∫ +1

−1
x ∂ k+1

x qn(x)∂
p
x qn(x)dx = −Knm+1 − I (3)

nm . (89)

We can write a general expression for I (r)
nm as follows

I (r)
nm = −Kn m+r−1 − I (r+1)

nm , (90)

where

I (r)
nm =

∫ +1

−1
x ∂ k+r−1

x qn(x)∂
p−r+2
x qn(x)dx . (91)

The last non-zero integral I (N )
nm (r = N ) can be determined from the condition k +

N − 1 = 2n (i.e. N = n − m + 1) and the result is I (N )
nm = Knn . Therefore, by using

the recurrence relation (90) we can obtain the I (1)
nm , namely

I (1)
nm = −(n − m + 1)Knm . (92)

Substituting this expression for I (1)
nm into the (87) we finally reach the resulting recur-

rence relation

Inm = Inm+1

(n + m − 1)(n − m + 1)
− 4(n + 1 − m)

(2n + 1)

(n + m − 2)!
(n − m + 2)! . (93)

The recurrent relation (93) together with initial value for Inn , (86), allows to calculate
the all necessary matrix elements of the type

〈
Pm
n |Pm−2

n

〉
.
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B.2 Matrix elements of the type II

First we shall demonstrate that for k > 0 the auxiliary integral Jk equal to zero

Jk ≡
∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)n
[
∂n−k−2
x (x2 − 1)n−k−1

]
dx = 0. (94)

By means of the representations (78) we have

(1 − x2)∂n+2
x (x2 − 1)n ∝ P2

n (x), (95)

∂n−k−2
x (x2 − 1)n−k−1 ∝

√
1 − x2P1

n−k−1(x). (96)

Using now relation (79) the right-hand side of the (96) can be given as the linear
combination of P2

n−k−2(x) and P2
n−k(x), therefore the integral Jk can be represented

as follows

Jk ∝
∫ +1

−1
P2
n (x)

(
a P2

n−k−2(x) + b P2
n−k(x)

)
dx, (97)

The explicit expressions of the coefficients a and b can be obtained directly from (79).
From the representation (97) it is obvious, that Jk = 0 (for k > 0) due to orthogonality
properties of the associated Legendre polynomials.

Let us prove now the following relation

〈
P2
n |P0

n−k

〉
=
〈
P2
n |P0

n−k−2

〉
= · · · =

〈
P2
n |P0

0

〉
. (98)

We shall use the induction method. Obviously, it is enough to show that relation

〈
P2
n |P0

n−k

〉
=
〈
P2
n |P0

n−k−2

〉
(99)

holds for arbitrary k > 0. Let us introduce the following notations:
〈
P2
n |P0

n−k

〉 ≡ JA
and

〈
P2
n |P0

n−k−2

〉 ≡ JB . Using the representation (78) we have

JA = Ck

∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)n
[
∂n−k
x (x2 − 1)n−k

]
dx, (100)

JB = Ck+2

∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)n
[
∂n−k−2
x (x2 − 1)n−k−2

]
dx, (101)

where

Ck =
[
22n−kn!(n − k)!

]−1

. (102)

Consider (100). We have,

∂n−k
x (x2 − 1)n−k = a1 ∂n−k−2

x (x2 − 1)n−k−1 + a2 ∂n−k−2
x (x2 − 1)n−k−2,
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where a1 = 2(n − k)(2n − 2k − 1), a2 = 4(n − k)(n − k − 1). Hence,

JA = Cka1

∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)n
[
∂n−k−2
x (x2 − 1)n−k−1

]
dx

+Cka2

∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)n
[
∂n−k−2
x (x2 − 1)n−k−2

]
dx .

(103)

The first integral in (103) is zero, see (94). Taking into account that Cka2 = Ck+2,
one can find immediately, that the second integral in (103) coincides with JB . Hence,
we obtain JA = JB , which completes the proof of the relation (99); by induction this
also proves the relation (98) .

Finally, we need the explicit expression for any of the matrix elements in (98). For
this purpose we shall obtain the expression for the simplest one J0 = 〈

P2
n |P0

0

〉
. The

integral J0 is quite trivial and can be obtained by sequential use of the relation (8.735)
in [35]. However, to keep the representation self consistent we give below a short
derivation. Integrating J0 by parts twice we obtain

J0 = Cn

∫ +1

−1
(1 − x2)∂n+2

x (x2 − 1)ndx

= − 4Cn

∫ +1

−1
∂nx (x2 − 1)ndx + 2Cnuv |+1

−1, (104)

where u = x and v = ∂nx (x2 − 1)n . The integrand in the second line of (104) is
the Legendre polynomial P0

n (x), therefore the corresponding integral is zero due to
orthogonality properties. Hence J0 = 2Cnuv |+1

−1 and can be calculated as follows

J0 = 2Cn

[
x ∂nx (x2 − 1)n

]+1

−1

= 4Cn

n∑
k=n/2

(−1)n−k n!
k!(n − k)!

(2k)!
(2k − n)!

= Cn2
n+2n! = 4. (105)
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