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Abstract

A general quantum-mechanical formalism is reviewed for double electron capture
from heliumlike atomic systems by fast nuclei. The development is carried out with
and without the distorted wave theory by fulfilling the correct boundary conditions.
These refer to the required asymptotic behaviors of the total scattering wave func-
tions and their appropriate connections to the perturbation interactions that produce
the transitions from the initial to the final states of the system. In this general formu-
lation any choice is allowed for the pairs of the distorting potentials and the related
distorted wave functions as long as the correct boundary conditions are satisfied. This
is the case with the four-body versions of several most frequently used methods (con-
tinuum distorted wave: CDW-4B, boundary-corrected continuum intermediate state:
BCIS-4B, Born distorted wave: BDW-4B, continuum distorted wave initial/final state:
CDW-EIS/EFS-4B, and the boundary-corrected first Born: CB1-4B). A comparative
analysis of these methods makes in evidence both their similarities and differences. For
example, the most illustrative is the juxtaposition of the post BDW-4B and CDW-EIS-
4B methods. They share the same distorting potential in the exit channel. The only
difference is in the coordinates from the Coulomb logarithmic phases in the initial
distorted wave functions. This difference is completely negligible in the asymptotic
scattering regions. Yet, for e.g. double electron capture from helium by alpha particles,
the total cross sections from these two methods differ by 1-3 orders of magnitudes.
The BDW-4B method is in agreement with experimental data at high impact energies.
In sharp contrast, within its validity domain of impact energies, the CDW-EIS-4B
method underestimates the measured data by orders of magnitude. This shows that
what matters is not solely the correct asymptotes of distorted wave functions, but rather
how they affect the contributions to the integrals over the entire regions in the T-matrix
elements for total cross sections. Such insights help understand the assessment of the
overall validity and relative performance of various methods, and can provide a versa-
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tile guidance for improving the existing approximations for double charge exchange
in fast ion—atom collisions.

Keywords High energy atomic collisions - Correct boundary conditions - Double
charge exchange - Second-order theories
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1 Introduction

Double charge exchange in ion—atom collisions at intermediate and high energies is
prominent among many multi-electron processes [1-4]. These include electron trans-
fer, excitation, ionization their combinations (transfer-excitation, transfer-ionization,
...), etc. Such processes have been studied intensively over the years both theoretically
[5-54] and experimentally [55-86]. When there is active participation of two or more
electrons from either the projectile or the target or both, we talk about two or mul-
tiple electron transfer, excitation, ionization, transfer-excitation, transfer ionization,
etc. Stated equivalently, the term multiple electron atomic processes implies that more
than one electron has left its initial orbital.

The so-called frozen core approximation has often been invoked in descriptions of
such collisional processes. This additional approximation assumes that the electrons
that do not participate to the actual transitions (the passive electrons) remain in the
final state of the target and/or projectile in the same orbitals which they have occupied
in the initial states. Such an approximation is expected to be reasonable at high impact
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energies. Nevertheless, it is pertinent here to emphasize that e.g. a single-electron
process, in the strict meaning of the term, cannot occur in collisions involving multi-
electron atomic systems. The explanation is that an alteration in the orbital energy of
one electron (the active electron) would inevitably lead to some changes (albeit perhaps
only slight) in the orbital energies of the remaining electrons (meaning that here, in
fact, there could be no passive electrons). Such a strictness is often not of a particular
concern in many applications that frequently rely upon the frozen core approximation,
the notion of passive electrons, the effective or screened nuclear charges, etc.

In particular, for charge-exchange processes, the non-captured electrons are viewed
as playing only a static role amounting to merely screening the bare nuclear charge.
Various choices of the effective nuclear charges can be made, and this should be
done in a consistent manner. Physically, these effective nuclear charges should be
close to the nuclear charges that reproduce the orbital energies of the initial and final
bound states. One reasonable choice is guided by the fact that the nuclear charge
Z and the binding energy ¢, < O of the electron in a hydrogenlike atomic system
for the state with the principal quantum number n is Z = (—2n2¢,)"/?. Similarly, as
suggested in Ref. [87], in the case of a multi-electron atomic or ionic target, an electron
to be captured from a state of the orbital energy e,f < 0 with the orbital number

n, the effective nuclear charge Z%ff could be chosen to satisfy the hydrogenic-type

relationship Z%ff = (—2n%e") /2 Here, £ could be selected as the Roothan-Hartree-
Fock orbital energy for which the tabulated values can be found in Ref. [88] for

many multi-electron atomic systems. Also given in Ref. [88] are the variationally
determined parameters (expansion coefficients, exponential damping factors) for the
analytical forms of the corresponding ground-state wave functions (including some
of the excited states) for neutral and ionized atoms. These latter wave functions are
linear combinations of the Slater-type orbitals (STO) as the basis set functions.

This type of choice for an effective or screened nuclear charge works quite well
in practice [87]. The reason is in the fact that charge-exchange is a very local pro-
cess. This process occurs with non-negligible probabilities at the places where the
initial and/or final bound state wave functions are appreciable. It is at these places
that the electrons to be captured experience the screened charge Z%ff as an average
target nuclear charge. Note that due to their exponential decline with augmentation
of distances, the atomic bound state wave functions take on their noticeable values
only at small separations between the electrons and their parent nucleus. At high ener-
gies, the dominant contribution to charge exchange transition amplitude for complex
atomic targets is predominantly determined by the electrons that are closest to their
nucleus (the K-shell electrons). Small distances correspond to high momenta. There-
fore, even at high impact energies, it is important to use the atomic wave functions
whose momentum-space representations accurately describe high momentum com-
ponents of the electronic states. Momentum-space bound-state wave functions come
into play here because the charge exchange transition amplitudes are determined by
the overlap integrals of the initial and final scattering states. Such overlap integrals
contain the momentum-space bound-state wave functions that are initially given in
the coordinate representations. This becomes most obvious from an inspection of the
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well-known transition amplitude in the first-order Oppenheimer—Brinkman—Kramers
(OBK) approximation for single electron capture processes [89].

From these remarks one can infer the two main mechanisms, the velocity match-
ing and the Thomas-type double scattering, for charge exchange in the first- and
second-order methods, respectively. The first-order methods are based upon the one-
step pathways, involving the direct projectile-target interactions alone. Therein, the
velocity matching mechanism operates via the circumstance that the dominant contri-
bution to electron capture is due to the near equality between the incident speed and
the orbital velocity of the active target electron. High incident velocities require high
momentum components from the momentum distribution in the target momentum-
space bound-state wave functions. The second-order methods describe the two steps
via target ionization followed by capture of the emitted electron. The emitted electron
must have high momentum if it is to be captured by a fast projectile. This ionization-
capture mechanism is a quantum-mechanical version of the classical Thomas double
scattering. There are two successive elastic rearranging collisions in the Thomas
billiard-type twin events. In the first event, the electron is scattered elastically on
the projectile through 60° towards the target nucleus. In the second encounter, the
electron scatters again elastically through 60° on the target nucleus with the velocity
v equal to the projectile large speed. This electron is finally captured by the positively
charged projectile, since on top of having collinear velocities, the attractive Coulomb
potential between these two particles binds them together into a newly formed atomic
system.

In the present review, we will focus only upon several selected first- and second-
order methods with the correct boundary conditions for double electron capture from
heliumlike targets by heavy nuclei. These are the four-body continuum distorted wave
(CDW-4B) [30,31], boundary-corrected continuum intermediate state (BCIS-4B) [32],
Born distorted wave (BDW-4B) [41,42], continuum distorted wave initial/final state
(CDW-EIS/EFS-4B) [47] and the boundary-corrected first Born (CB1-4B) [33,34]
methods. We will illuminate their similarities as well as differences and illustrate
their performance in the most frequently studied example of collisions between alpha
particles and helium atoms.

Atomic collisions involving multiple electron transitions have been of notable inter-
est over last several decades in a vastly different applications ranging from basic
research purposes to technology. These include, but are not limited to:

e Stellar atmospheres, upper atmosphere, inter-stellar medium [90,91].

e Heavy ion accelerators at GSI (Darmstadt), KSU (Kanzas), GANIL (Caen), etc
[92]

e Storage ring accelerator such as ESR, CRYRING (at GSI), TSR (Heidelberg),
ASTRID (Aarhus), etc [93-96].

e Ion traps (EBIT, Paul trap, Penning trap, ...), ion sources (EBIS, ECRIS, ...), etc
[93-95].

e Charge exchange spectroscopy in magnetically confined plasmas [97].

e Hot and dense plasmas (7T > 100 °K, Ne ~ 1019/cm3 — 1024/cm3), high-
temperature thermonuclear fusion by way of inertial confinement accomplished
with heavy ion bombardment (at GSI), short high-energy laser pulses (at LMJ:
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Bordeaux, PHOEBUS: Limeil, NOVA, NIS: Livermole, ...) or short intense dis-
charges (Z-pinch), etc [98—100].

e Hot and dilute plasmas (7 > 10°°K, n, ~ 10'*/cm?), high-temperature ther-
monuclear fusion via magnetic confinement devices e.g. Tokamaks, Stellarators,
etc [97,101,102]

e Heavy ion interactions with matter [92,103-106]

e Hadron therapy by high-energy (~ 300 MeV/amu) light ions (from proton to Car-
bon nuclei) for treatment of deep-seated tumors in patients at either physics-based
facilities or at hospital-built dedicated accelerators in several countries (USA, Ger-
many, France, Austria, Sweden, Italy, Japan, Russia, ...) [107-124].

Atomic units shall be used explicitly unless stated otherwise.

2 General theory with and without the distorted wave formalism
2.1 Coulomb-modified initial and final scattering states without distorted waves

One of the most important problems for testing theories in pure four-particle ion—
atom collisions is double charge exchange (double electron transfer, double electron
capture). Here, two electrons e and e;, that are initially bound to the target nucleus
(T), both end up finally in another bound state, but this time around the projectile
nucleus (P). This process is symbolized by:

Zp + (Z1; e1,€2)i —> (Zp; e1,e2) 5 + Zr, (2.1)
or equivalently,
P+ (T;er,e2)i — (Pser,ea)p + T, (2.2)

where the parentheses indicate the bound states, whereas Zp and Zt are the nuclear
charges of P and T. Let x; and s; be the position vectors of the & th electron e
relative to T and P, respectively (k = 1, 2). Further, let R be the inter-nuclear axis
with R being the position vector of P relative to T (R = |R|). We denote by r;
or r y the position vector of P or T relative to the center-of-mass of (Zr; ey, e3); or
(Zp; e1, e2) y. The elements of the set {r;, ry, x12, 51,2} can be connected to each
other by introducing the position vectors {rp, rt, r1 2} of {P, T, e; 2} relative to the
origin O of an arbitrary Galilean reference frame XOYZ. This gives the defining
expressions for {x1 2, 81,2, r;, r s} as well as for the vectors of the inter-nuclear (R)
and inter-electronic (r ) distances:

X12=r12—rr, S$12=r12—rp

R=rp—ry, rn=ri—r 2.3)
Mrrr+ry 41 Mprp+ri+r2
ri=rp————————, rf=rt— ————
Mt +2 Mp +2
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where My is the mass of the Kth nucleus (K=P, T). Here, the electron mass m, does
not explicitly appear since m, = 1 in atomic units. The position vectors introduced in
(2.3) are connected to each other by the relations:

R=x1—8s1=x2—952

X[2 =X —X2, S|2=5]—82, X2=8S)2=7rp
’ ’ , 2.4)

aj bl
ri=—biry — —(s1+s2), ry=-ari——(x1+x2)
1y i

where 1; and g are the reduced mass of P+ (T; ey, ez); and (P;ej,ez) s + T,
respectively

b — _Mr _ Mr+1 o MpM1 +2)

YT Mrr P T Mer 2 T Mp M 12
2.5)

Mp _Mp-f-l B Mt (Mp + 2)

, ad) = ———, =
Mp+ 1 Mp+2 T Mr 1 Mp 12

For a subsequent derivation, it is useful to decompose the vector R of the inter-nuclear
axis R into its two orthogonal vectorial components:

R={p,Z}, R=p+Z, p-Z=0, dR = dpdZ (Volume element). (2.6)

Here, the vectorial projections of R onto the X OY plane and the Z-axis are denoted
by p and Z. Both the light (electrons) and heavy (nuclei) particles are going to be
presently described by fully quantum-mechanical methods through the Schrédinger
equations. Therefore, in (2.6), despite the resemblance, the vector p cannot be viewed
as the impact parameter b in the straight line R = b + vt for the classically described
motion of the projectile, where v and ¢ are the incident velocity and time, respectively.
Nevertheless, using the final expressions for the full quantum-mechanical eikonal
transition amplitudes, we will extract (by means of the Fourier integrals) their semi-
classical impact parameter dependent counterparts. This does not mean that the eikonal
version of the quantum-mechanical formalism should obviate the need for the impact
parameter framework. Quite the contrary, the four-body impact parameter formula-
tions and the four-body full quantum-mechanical formalisms should be treated on
the same footing for ion—atom collisions involving heavy nuclei. The reason is in the
dualism as it is always reassuring to obtain the same results from two different types of
descriptions of the same problem. This dualism stems from the eikonal setting (with
heavy mass limits and predominantly forward scattering of projectiles) which is the
basis of the equivalence between the fully quantum-mechanical and the semi-classical
impact parameter developments (both in the four-body formulations) for double charge
exchange processes.
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The complete Schrodinger equation describing all the states of the whole system is
given by:

(H—-E)¥ =0, 2.7)
where H is the full Hamiltonian operator and E is the total energy

E = E; = Ey (Energy conservation law);
2 Koo
Ei=—"+¢ , Ef=— +¢,. 2.8)
l i 1 f 2/»'l/f f

Here, k; and k 7 are the initial and final wave vectors, whereas eiT and €® are the binding
energies of the two electrons around the target and projectile nucleus in the entrance
and exit channels, respectively. Using the momentum vectors k;  and and the reduced
masses (4 f, the initial and final velocity vectors v; r and their unit vectors ¥; s are:

ki . v; A ki
vip=—L b=y ="00 (2.9)
Wi, f Vi f if
Hereafter, we will choose the initial velocity along the Z-axis, so that v; = (0, 0, v;).
Taking the target atomic system to be at rest, the relative velocity vector of the colliding
particles becomes equal to the incident velocity of the projectile nucleus P. Thus, the

incident velocity of P is equal to v;.
Using the energy conservation law kiz/(Zp.i) + eiT = k%/(Z,uf) + E? from (2.8),

the following exact relationship is obtained between the magnitudes vy = |v | and
v; = |v;| of the initial and final velocity vectors vy and v; :
T_ P
i € —€r
vp=v | — |14+ 55— (2.10)
NG [ k%/(zm}

The total Hamiltonian H is defined by:
H=Hy+V, (2.11)
where V is the complete interaction potential

V = V11 + V2 + Vp1 + Vp2 + Vio + Vpr, (2.12)

ZT Zp 1 ZpZt
Vik=——, Vk=—— (k=1,2), Vip=—, Vpr= :
Xk Sk 2

(2.13)

The quantity Hy is the full kinetic energy operator which takes two equivalent forms
in the two sets of the independent variables {r;, x1, x2} and {r s, 51, 52} :

1, 1, 1
{ri,x1,x2}: Hy=K; — — v

b, U — 2_171 o M—TVx] - Viy,, (2.14)
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1 1 1
{rr.s1,82): Ho=Ky— — V2 V2 _

— Vs, - Vg, (215
2611 51 za] 52 MP S1 52 ( )

where K;  are the kinetic energy operators of the relative motions of heavy particles

K; :_iv?, Kf:—LVZ. (2.16)
2/"Li ri 2Mf rf

2.1.1 Eikonal formalism for dominant forward scatterings of heavy particles

Fast heavy particles only slightly deviate from their incident direction. Consequently,

total cross sections are dominated by forward scattering. This justifies the use of the

eikonal variant of the full quantum-mechanical treatment. For such collisions, the

eikonal formalism consists of a sequence of the following relations:
Eikonal formalism :

Mp1> 1, kiy> 1. Kk /Quis) > max(le]|. |€}])
kf~k; (b;~b; =10) (Forward scattering)

Neglect of all the terms of the order of (or smaller than) M, p. lT or ,uf}
ri~R, ry~-R

kiri — ki -ri ~ u(WR—v-R), kpry—kys-ry~u@wR+v-R)

Neglect of the mass polarizations : M-FleI -V, MP_IV_“ - Vs,

Linearization of K; f via : Ki p ~ K{ = k2 ;/Qui ) = vi.p - (i p £V, )
(2.17)

where p is the reduced mass of the two nuclei, u = MpMt/(Mp + Mrt). Throughout
the present analysis, in the entrance channel, we adopt the standard notation by which
the wave vector k; is the initial momentum of the projectile nucleus P with respect to
(T; e1, e2); for the process (2.1). However, in the exit channel, we use the the non-
standard notation where the wave vector k7 is the final momentum of (P; ey, e2)
with respect to the target nucleus T. In other words, the non-standard initial wave
vector {k ¢ }non—standard changes the direction of its standard counterpart {k ¢ }standard 1.€.
{k £ }non—standard = —1{k f }standard - Here, {k £ }standard is the the usual momentum vector
of the target nucleus T with respect to the newly formed heliumlike atomic system
(P; ey, e2) y. The reason for reversing the sign of {k }standard i {k f }non—standard s in
the fact that for charge exchange in heavy ion—atom collisions, the final velocity vector
vy is very close to the initial velocity vector v;. This yields a convenient notation in
(2.17) via vy ~ v; = v which, as one of the signatures of the eikonal formalism
for heavy particles, makes in evidence the dominant contribution of scattering in
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the forward direction (9; y ~ ¥; y = ¥). Moreover, the same type of the relation
vy A~ v; = v also exists between the absolute values v and v; of the velocity vectors
vy and v; as can be seen by applying kiz’f/(Zpd,-,f) > max(|eiT|, |6?|) from (2.17) to
(2.10). Thus, we see that, as stated, the vectors v y and v; are close to each other in the
sense of being practically collinear:

VRV =D, vpRU=V O VRV =, (2.18)

There is yet another advantage of using the eikonal hypothesis, since the small scat-
tering angles of heavy projectiles imply:

ki-ri+kp-ry=2a-(s;+s2)+28-(x1 +x2)
ki-ri+kp-ry=28-R—v-(s;+s2)=—-20-R—v-(x;+x32) (2.19)

P T
Ef—él-

2e=p—vTh,2=—n—v b, a+B=—v, vE=0vt
v

Here, », as the transversal, two-dimensional, vectorial component of the momentum
transfer vector k s — k;, is given by:

n=(ncosg,,nsing,,0), n-v=0, p-v=0. (2.20)

With the neglect of the mass polarization terms (1/Mt)Vy, -V, and (1/Mp)Vy, -V,
in (2.14) and (2.15), respectively, the kinetic energy operator Hy becomes:

1

Hy = —=—V} + Hor = K; + Hor, (2.21)
2
or alternatively
L
HO = __Vrf + HOP = Kf + HOP’ (222)
2y
where
|- L
- - — V2, 2.23
= "0 "1 2p, @ (29
Hop = ———v2 = L2 (2.24)
op = 2a, S1 2a, 52° :

In (2.21) and (2.22), even though we will adopt the eikonal hypothesis throughout, we
provisionally employ, for convenience, the exact operator K; y instead of K; @k for
the relative motions of heavy particles. However, in the cons1stent eikonal formahsm
(2.17), either the exact kinetic energy operators K; ; = ri, s /2, ) or their eikonal,

linearized forms K i(f}k) = kiz’ 7 [ Qui p)—v; (ki pEi V. ;) canequivalently be used.
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For the given Coulombic potentials Z; ¢ /7; r, the Schrodinger equations with K; s and

K l.(?ik) give the full Coulomb wave functions Fl.jff (ri,r) and their logarithmic phase

factors F; (eik)i(ri 7). respectively. The differences in the results for the total cross

sections based upon the alternative pairs {K; 7, F (r, £)}and {K l(e}k), F, (elk)i( ri )}

i,
are negligibly small, being of the order of or less than 1/u; r and, as such altering

merely the 3rd or 4th decimal places, at most. Theoretically, an explicit use of K (eik)
is particularly convenient when showing that the inter-nuclear potential Vpr does not
contribute to the eikonal total cross sections computed from the eikonal version of the
quantum-mechanical transition amplitudes in any method with the correct boundary
conditions. This has first been shown in Ref. [87] for single capture processes, and it
will also be presently demonstrated for double capture in rearrangement collisions of
heavy nuclei and atomic target systems.

The Schrodinger equation (2.7) is to be solved subject to the physical boundary
conditions associated with the scattering problem (2.1). These boundary conditions
must provide the full wave function W with the proper outgoing \I/l.+ and incoming
W spherical scattered waves at large values of the inter-aggregate separations r; and
ry in the entrance and exit channel:

\lji"l'rijo)o q)j" (D"F q) ell)l In (k ri— k I'A)4P %>1 q)ieiVi ll'l/uL(UR—U-R)’ (2.25)
\D;r/j)m @}, f — bee—t\)fln(kfrf ky- rf) §>](Dfe_ivf ln;/,(uR—i-vAR)7 (2.26)
where
Zp(Zt =2 Z1(Zp — 2
yo 2222 Z1iZe—2) 2.27)
v v

Here, ®; and @ ; are the initial and final unperturbed states:

®; = @i (x1, x2)elki T, (2.28)
Dy =gr(s1,s2)e KIS (2.29)

where ¢; (x1, x2) and ¢ s (s 1, §2) are the bound state wave functions of atomic systems
(Zt; e1, e2); and (Zp; ey, e2) r. These latter wave functions satisfy the equations:

(Hot + Vi — € )gi(x1,%2) =0, (2.30)
(Hop + Ve — €p)gy(s1,82) =0, (2.31)
with
Vr = Vi1 + Vo + Vig, (2.32)
Vp = Vp1 + Vp2 + Vi (2.33)
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The particular forms of the channel states <I>l.+ and <I>j7 from Egs. (2.25) and (2.26)
account for all the long-range distortion Coulomb effects due to the residual interac-
tions Vl";’c between the two scattering particles:

Zp(Zy —2) o Z1(Zp—=2)
-, Vf = .
ri rf

V& =

1

(2.34)

According to (2.17), within the eikonal mass limit Mp T > 1, therelations r; y ~ £R
are amply justified, and this implies:

Vi Vs Vi Vieic (2.35)
where
Zp(Z1 —2) Z1(Zp —2)
ek = — Q= ik = — (2.36)

As such, the distorting potentials V°§ represent the correct asymptotic behaviors of
the corresponding initial and final perturbations V; r, which are introduced by:

Vi= Ve + Vo2 + Vor,=3 Vi (2.37)
Vi =Vri+ Vo + Ver,—3, V7 (2.38)

rf—>00

The unperturbed channel states ®; and ® y from Eqs. (2.28) and (2.29) satisfy the
following equations:

(H; — E)®; =0, (2.39)
(Hf — E)®yr =0, (2.40)

where H; and Hy are the channel Hamiltonians

Hi=H—V, = Hy+ Vp, (2.41)
Hf=H—V; = Hy+ V. (2.42)

In the eikonal approximation, the asymptotic channel states <I>;r and ®; from
Egs. (2.25) and (2.26) are the solutions of the equations:

(H; +V® - En®f =0, (2.43)
(Hf + V¥ —Epd; =0. (2.44)

For scattering, the complete Schrodinger equation (2.7) for the original problem is
written in the forms that emphasize the appropriate boundary conditions:

(H—E)¥;" =0, (2.45)
(H—EpW; =0. (2.46)
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2.1.2 The prior and post forms of the transition amplitudes

It is convenient to introduce the initial and final compound wave functions T
(hereafter called the initial and final scattering amalgamates) as the images of the
applications of the perturbations V; s — fo} onto the Coulomb-modified channels

+ .
states ®; N
=V = VRS, Y = (V= V)P (2.47)

Then the prior form of the full transition amplitude Tl; is obtained by projecting the
initial scattering amalgamate Tl.+ onto the final complete scattering state \Iff_ This

projection is the overlap integral between Ti+ and \IIJT :
Prior : T, = (¥ IT;h). (2.48)

Likewise, the post form of the full transition amplitude Tl'}' is the scalar or inner product

between the final scattering amalgamate Tf_ and the initial complete scattering state
vt

1

Post : Y. (2.49)

T} =(Y;

Overall, for a straightforward book keeping, the ansatz Ti+ from the prior form Ty

fuses the Coulomb-modified initial state be and the corresponding perturbation inter-
action V; — V> via Tl.+ = (V; — ViOO)CDIT". Similarly, and for the same reason, the

ansatz TJ? from the post form Tl}r merges the Coulomb-modified final state vector CD}

and the associated perturbation interaction Vy — V2 as T o = (Vy — V)@ . In the

prior/post transition amplitudes lef from (2.48) and (2.49), the asymptotic Coulomb

potentials Voji must always be subtracted from the perturbations V; ; to accommodate

for the difference between le f and ®; r. Such couplings of <I>l iy and V; ¢ — VO‘}

embedded in the state vectors T,, I emphasize the fact that the perturbation potentials
and the channel states must systematically be consistent with each other. Any change
in @i f ought to be accompanied by the appropriate alteration of V; ; — V> i and vice
verse.

In the eikonal mass limit Mp T > 1, the relations (2.35) and (2.36) imply that the
perturbation interactions V; — V,>° and V; — Voo from the transition amplitudes (2.48)
and (2.49) do not contain the inter-nuclear potentlal Vpr :

Vi—V>® = Vpi+ Vpp+ Vpr — V>
fres<l Vp1 + Vp2 + Vpr — Vi %k
2 1 1
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V=V = Vni+Voo+ Ver — Vi°
e V11 + Vo + Vpr — V}’?eik

= Zr (3—i—i). 2.51)

For large R in the entrance channel, both s; and s; are also large. Similarly, x; and
xp are large for large R in the exit channel. This indicates that the perturbations
Zp(2/R—1/s1—1/s2) and Z1(2/R — 1/x1 — 1 /x7) in the entrance and exit channels,
respectively, are of short range. Indeed, the use of the Taylor expansion shows that both
Zp(2/R—1/s1 —1/s2) and ZT(2/R — 1 /x| — 1/x3) are the short-range interactions:

2 1 1
o0 -2
Vi—=Vim i Zp <E T 5) =% Zp0 (R ) , (2.52)
2 11 72
Vi = Vi i 2t (E Ta x_2> o Zr0 (R ) . (2.53)

The scattering states \IJif and <I>i ir with the same correct asymptotic behaviors (2.25)
and (2.26) at large distances can also properly be connected to each other in any region
with no necessary reference to the the limits 7; y — o00. To this end, we define the
total Mgller wave operators SZ ra

Qf =1+GT (V- V). 27 =146 (V- V), (2.54)

where G¥ are the total Green operators (resolvents)

1 1
Gtl=——— G =———— (¢>0). (2.55)
E; — H +ie Ef —H—ic

Then the sought relationships between \Il,.if and <I>l.i [ atany inter-particle distance are
given by:

W) = Qo). (2.56)
|\11f_) = Q;|<I>;>. (2.57)
The expressions (2.56) and (2.57) must be consistent with the full Schrodinger equa-
tions (2.45) and (2.46). This is true as can be checked by multiplication of (2.56) and

(2.57) with E — H +ie and E — H — ie, in which case Egs. (2.45) and (2.46) are
obtained in the limits ¢ — 0" and ¢ — 07, respectively:

lim (Ej s —H+is) W, = lim (Eij — H i)

e—0F
1
X[ +E,~_f—Hiie PR T
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= lim [(Eis = Hip = VigEie)+ (Vi = Vi5)| oF;

e—0

. . +
= 11mi (E,',f —Hi - Vlm} + 18) Py

e—>0

= (Ei,f —Hy— V,°‘}) ¢ff =0 (82%1iiad>ff =0),
where Eqs. (2.43) and (2.44) are used, so that

lim (E; ;— H *ie) \Iffff = (Eif — H)\vi%f =0 (glirgi ie\vff =0), (2.58)

e—0F

in agreement with (2.45) and (2.46). Therefore, the scattering states \Il from (2.56)
and (2.57) are indeed the solutions of the full Schrodinger equations (2. 45) and (2.46).
Nevertheless the solutions (2.56) and (2.57) are formal because finding the explicit
forms of Q fCDI I for \I—'ff is as difficult as solving the full Schrodinger equations
(2.45) and (2.46). This is the case because the Mgller wave operators Qli 7 through
the resolvents G* from (2.55) also contain the total Hamiltonian H as do the full
Schrodinger equations (2.45) and (2.46). In order to extract the physical solutions
for the investigated problem, Eq. (2.7) must always be explicitly accompanied by the
appropriate boundary conditions (2.25) or (2.26). This is symbolized by the super-
scripts & of the total scattering wave functions in (2.45) and (2.46). On the other hand,
in the case of (2.56) and (2.57), these scattering boundary conditions are implicitly
contained in the Green operators G=. This is secured by the presence of the infinites-
imally small positive number ¢ in the Green operators from (2.55). The terms %€ in
G¥ determine, respectively, the outgoing and incoming scattering boundary condition
as per (2.25) and (2.26).
Upon substitution of (2.56) and (2.57) into (2.48) and (2.49), it follows:

Prior : T.; = (/{1 + (V; = V)GV (Vi — V) o)), (2.59)

Post : ,j = (P 1(Vy = V)1 + GV, — V) eh), (2.60)
where (Vy — V}’O )y = Vi— V}’O We emphasize that these are the 7T-matrix elements
with no recourse to distorted waves and distorting potentials. The only difference rel-
ative to the conventional scattering theory with short-range interactions between the
infinitely separated scattering aggregates is in the presence of the Coulomb asymp-
totic states <I> i f and the modified perturbation potentials V;  — Voo instead of the
unperturbed channel states ®; ,# and the original perturbation 1nteract10ns Vir-

2.2 Coulomb-modified initial and final scattering states with distorted waves
In the distorted wave formalism of scattering theory, instead of solving Eqgs. (2.45)

and (2.46), it is customary to consider a model problem by introducing the distorted
waves Xi+ and X]T via the equations:

(Hi +W; — Ey;" =0, (2.61)
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(Hf + Wy — Ef))(; =0, (2.62)

where W; and Wy are certain distorting potential operators to be chosen, under the
restriction that they do not cause the transition under consideration. Without any loss
of generality, we can select W; r to be in the additive form:

Wi=w + V>, Wr=ws+ V}?O, (2.63)
where w; s are some short-range distorting potentials. The connection of the models

in (2.61) and (2.62) with the original problem in (2.45) and (2.46) is provided through
the request that Xiﬂff and \Ilff exhibit the same asymptotic behaviors as r; y —> 00 :

+ + +
Xi' s Vi s i (2.64)
X;rfj)oo ;rfj)oo (D; (2.65)

The prior T and post TlJfr form of the full transition amplitudes in the distorted wave
theory are defined by:

Prior:  T;; = <xp;|1/fl.+>, vt =Uix", (2.66)
Post : Ti}r = <¢;|\pl.+), v =Usxs, (2.67)

where
U=V, =W;, Ur=Vy—Wy. (2.68)

In analogy with Tijff from (2.47), the functions 1//?} in (2.66) and (2.67) embody the
distorted waves xlif and the distorting potentials U; s as per wlif =U.y xlif Here,

the replacement of ® by 1/[1 o is reflected through the pertinent subtraction of W; s
from V; .

If we add and subtract V; in (2.61) and use U; = V; — W; together with H = H;+V;,
we can transform the Schrédinger equation for X,-+ to

(H—-U; —Ep)y;"=0. (2.69)

In the same way, when adding and subtracting Vs in (2.62), followed by identification
of Vi — Wy with Uy as well as H; + V; with H, we can cast the Schrodinger equation
for X; into the form:

(H—Us —Ef)x; =0. (2.70)

The transformed Egs. (2.69) and (2.70) for Xi+ and X; resemble the Schrodinger
Egs. (2.45) and (2.46) for the exact scattering states lIJl.Jr and \IJ;, respectively. In
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fact, we have \Il = Xl s for Ui g = 0. Of course, the main interest of introduc-
ing the dlstorted wave theory for scattering phenomena is not in making the trivial
choices U; y = 0, as these would bring us back to the original problem with the full
Schrddinger equation, which cannot be solved exactly by analytical means. Rather, an
advantage and flexibility of the distorted wave scattering theory is in the possibility
for making different choices of U; ¢ # 0 that, in turn, would enable us to obtain the
exact analytical solutions X,Jr and X/f of the model Schrodinger Eqs. (2.69) and (2.70).

Further, the scattering states \IJ N and X of the original and the model problem,
respectively, with the same proper asymptotes (2.64) and (2.65) can also be inter-
related with no necessary reference to the regions r; y — 0. To this end, we use the
total Mgller wave operators Qi e

QF=1+G"U;, Q;=1+GUy, (2.71)
where G* are the same as in (2.55). Then the general connections between \IJl-if and
xff are:

W) =@f I, 2.72)
W) =Q%1x,). (2.73)

Inserting (2.72) and (2.73) into (2.66) and (2.67) we have, respectively:

Prior: T, = (x; 11+ UsG)'Uilx;"), (2.74)
Post: T = (x;|UJ(1+GTU)IxD). (2.75)

Similarly, taking the limits ¢ —> 0%, the distorted waves equations from (2.61) and
(2.62) can also be formally solved as follows:

") =l 107), Ixy) = wp|®y). (2.76)
Here, a)l.j’E | are the initial and final Mgller wave operators defined by:

of =1+ Gfw, w; =1+Guwy, 2.77)
where Gf | are the initial and final Green operators

1 1
G = —, G;= — (¢>0). (2.78)
! E,—H —W; +i¢ Ef—Hy — Wy —ic

One of the ways to set up a general framework for the introduction of various distorted
wave approximations to the full scattering wave functions \I—'if consists of neglecting
the total Green operators in (2.72) and (2.73). This amounts to the replacement of the
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total Mgller wave operators lei 0 in (2.72) and (2.73) by the unity operator (le.j_E r 1)
which then gives: g

WAy, WA T (2.79)

1

Such choices for \Il 1n (2.66) and (2.67) give the first-order approximations to the
full transition amphtudes that are for simplicity again denoted by the same labels Tl 7

Prior 1 T, = (x; Uilx;), (2.80)
Post : ,f_<xf|UT|Xl> (2.81)

In the distorted wave formalism for TjE from (2.66), (2.67), (2.80) and (2.81), the
following statements define the correct boundary conditions:

e Any choice of the distorted waves xf 1 is permitted as long as :
e (i) it yields the proper asymptotes (2.64) and (2.65) . (2.82)

e (ii) it connects U;, r and Xiﬂff via (2.61), (2.62) and (2.68)

In the next sub-sections, several choices for the tandems {U; r, xiif} will be made
yielding the known two- or one-center distorting functions with four or two electronic
Coulomb waves, respectively.

2.3 Determination of the initial and final distorted waves

Here we shall outline the procedure of obtaining the initial and final pairs {U; ¢, Xf )
in the entrance and channels.

2.3.1 Entrance channel
In the entrance channel, by reference to the requirement (2.64) for the correct asymp-

totic behavior of the initial distorted wave, the following factorized form for )(l.+ is
sought:

X =i, x2)¢", (2.83)
where ;‘i+ is an unknown function. Upon inserting (2.83) into (2.61), with the help of
(2.39) and Hy from (2.14), we deduce the equation:

2
1
Qi(AE; — Hy— Vgt + 1> b Vi Vil +Uipig =0, (2.84)
k=1
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where

k2

AE; = E; — el = . (2.85)
1 2 .
i

We now choose the operator potential U; to annul the terms within the curly brackets
from Eq. (2.84):

2
1
Ui=-)_ b_kv"k Ing - V. (2.86)
k=1

Here, the presence of 1/¢;, which is implicit in the term V,, Ing; = (1/¢;)V, ¢;,
causes no problem even for the target bound states ¢; with nodes. This is the case
because U; in (2.86) is applied to Xi+ = @i §i+ in which ¢; is factored out in (2.83), so
that:

ka In Qi - ka X,’+ = ka @i - ka §i+' (287)

Thus, U; X;r is a regular function given by:

2
1
UiXi+ = - E vakwi : ka§i+a (2.88)
k=1

which casts Eq. (2.84) into the form
(AE; — Hy — V)" =0. (2.89)

To solve this equation, we use Hy from (2.15). Further, in V; from (2.89), we use the
eikonal mass limit for the R-dependent potential via ZpZt1/R ~ ZpZt/ry. Under
these circumstances, the choice (2.88) provides a separation of the independent vari-
ables ry,s1 and s in Eq. (2.89). With such a setting, the solution of Eq. (2.89),
obeying the required asymptotic behavior (2.64), is:

i 2 ikr . . .
& = u PN opr) [N (up) ] €T Fy (—ivpr, L ikir g + ki o p)
x1Fi(ivp, 1,ivs; +iv-s)1 Fi(ivp, 1,ivsy +iv - s)2), (2.90)

where the symbol | ] represents the Kummer confluent hypergeometric function. The
quantities A" (vpr) and N (vg) (K = P, T) are the normalization constants of the
Coulomb wave functions:

NEwg) = ™k 20 (1 +ivk) , NEpr) = e TPT20(1 £ivpr), (2.91)
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where I' is the Euler gamma function, with vpr and vg (K = P, T) being the usual
Sommerfeld parameters

Z Z ZpZ
vp="2 vp="2 ypr =222 (2.92)
v v v

Hence, employing (2.83) and (2.90), the distorted wave Xi+ becomes:

92 2 ik . . .
Xt = w2 PN ) [NTp) ] €T (et x0)1 Fi (—ivpr, 1 ikirp + ik 1 p)
x1Fi(ivp, 1,ivsy +iv-s1)1 Fi(ivp, 1,ivsy +iv-s»2). (2.93)
2.3.2 Exit channel

Similarly to (2.83), an inspection of the boundary condition requirement (2.65) in the
exit channel suggests a factorized form for Xr of the type:

Xy =er(s1.82)¢,, (2.94)

where &y is a function to be found. Substituting (2.94) into (2.62) and employing
(2.40) and Hy from (2.15), the following equation is deduced for gf_ :

2
_ 1 _ _
0r(AE; —Ho=Vp)ey +1) aVsksOf Vabr +Usepty ¢ =0, (2.95)
k=1

where

k2
AE;=E;—éb= L (2.96)
f f f 2//‘/'

Symmetrically, with respect to U; from (2.84), the following choice of the operator
potential Uy cancels out the terms within the curly brackets from (2.95):

2

1
Up = _Zavsk Ingy-Vy,. (2.97)
k=1

Here too, the reciprocal 1/¢¢, stemming from Vg Ingr = (1/¢f) V@, is not a
problem even for the nodes of ¢ . This occurs because, by definition, the operator

U applies only to the class of functions that are the product of ¢y with some other
functions. Such is the distorted wave XJ: =@y g“; from (2.94) and, therefore:

Va lngof-Vskxszskgof~Vsk§;. (2.98)
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This occurrence implies that U ¢ X is a regular function:

2
- 1 _
Ufo - Z avmﬂf ) Vsk;f , (2.99)
k=1

which reduces Eq. (2.95) to
(AEy — Hp — Vf)gf =0. (2.100)

In order to proceed with this equation, we employ Hp from (2.14). Moreover, in
Vy from (2.100), the eikonal mass limit for the R-dependent potential implies that
ZpZ1/R ~ ZpZt/r;. In this situation, the choice (2.99) for Uy makes Eq. (2.100)
separable in the independent variables {r;, x1, x2}. With such an arrangement, the
solution of Eq. (2.100), satisfying the imposed asymptotic behavior (2.65), is found
to be:

¢ = TN en) [N~ P e 0 By Gver, L, —ikpri — kg i)
x1Fi(—=ivr, 1, —ivxy —iv-x1)1Fi(—ivt, 1, —ivxy; —iv-x3). (2.101)

Therefore, using (2.94) and (2.101), we can write the distorted wave X]T as:

_ —2i _ _ 2 ik . . .
Xp = MfszN wpr) [N~ ()] e " @ (s1, s2)1 FiGivpr., 1, —iksri —iky - r;)
x1Fi(—ivt, 1, —ivxy —iv-x1)1 F1(—ivr, 1, —ivxy —iv - x»2). (2.102)

2.4 Asymptotic behaviors of distorted waves at large inter-particle distances

In the entrance channel, for large s; and s», using the asymptotic formula of the
confluent hypergeometric function, we have:

2 2
[NFoR) P [ 1FiGve, Livsc +iv-si) ~  []sc+v-s07.

k=1 $1,82—>00 p_1

(2.103)

Also the asymptotes of the two Kummer functions for large x; and x, in the exit
channel yield:

2 2
[N_(UT)]2H1F1(—iUT,1,—ivxk—iv-xk) ~ n(vxk+v-xk)i"T.

k=1 X1,X2—=>00 p—

(2.104)

In these asymptotic cases, the distorted waves from (2.93) and (2.102) are transformed
to:
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X = PN er)e i gy (e, x0) 1 Fi(—ivpr, 1 ikiry +iki 1)

x (vs] +v-851) P (vsa + v - 59) P, (2.105)
Xy = M}%UTN_(VPT)e_ikf'rfw,f(Sl, so)1FiGivpr, 1, —ikpry —iky - r;)

x (vx] 4+ v - x1)"T (vxg +v-x2)"T. (2.106)

Moreover, in the asymptotic region of large inter-particle distances for the entrance
channel, all the three coordinates s1, s and R are simultaneously large, so that:

. vR—v-R
lim — =1 (k=1,2). (2.107)
sg—>00,R—>00 USy + V - Sk
Likewise, all the three coordinates x1, xo and R become simultaneously large in the
asymptotic region of the exit channel and, therefore:

R+v-R
im SN k=12, (2.108)

Xp—>00,R—00 UVX| + U - X

Further, for large inter-nuclear separation R, the distances r; r are also large. In fact,
even at any value of R, due to heavy masses MpT > 1, we have r; f ~ £R,
according to (2.17). This implies:

k: k-
lim SRS k= 1,2), (2.109)
Sk—>00,7 f—00  USk + U - Sk
kfri + kf - r;

lim

= k=1,2). 2.110
xXg—>00,R—>00 VX + V- Xy wr ) ( )

With these asymptotes at hand, the following expressions are obtained:

PO SO L R @.111)
X; 0o cbfe—iUflnu(vR+v.R) — CD;, (2.112)

in agreement with the requirements (2.64) and (2.65). Moreover, as per the derivation,
the distorted waves x l.+ and yx , are automatically connected to the distorting potentials
Ui and U ¢ by way of Egs. (2.69) and (2.70). As such, both prerequisites from (2.82) are
fulfilled. Therefore, Xi+ and XJT from (2.93) and (2.102) satisfy the correct boundary
conditions, as per the requests in (2.82).

Overall, it is important to emphasize that only in the asymptotic regions of the
entrance channel, is it permitted to replace the terms vsy + v - sx (k = 1,2) by
vR — v - R. A similar replacement of vx; +v-x; (k = 1,2) by vR 4+ v - R is allowed
solely at the asymptotic distances in the exit channel:

q)ie—sz In (vsy4v-s1)—ivp In (vs2+v-52) @ie—Zz vp In (vR—v-R)’ (2.113)
51,82, R—~00

‘DfeiVTln(MIHM)HWln(vx2+v'x2;1’ﬁ_)ooq’feziwln(URH‘R). (2.114)
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However, the transition amplitudes are the integrals over every inter-particle distance,
i.e. these integrals do not cover only the asymptotic separations. Therefore, throughout
the transition amplitudes, the wave functions ®; ]_[,%=1 (vsg+v-sp) """ and ®; (VR —
v - R)~%" from the entrance channel are not equivalent. Likewise, throughout the
transition amplitudes, the wave functions ® ¢ ]_[,%:1 (vxg + v - x)™T and @ (R +
v - R)*'T from the exit channel are not equivalent either. This means that the use of
®, ]_[i=1 (vsk+v-55) """ and ®; (VR — v - R) %" in the transition amplitudes would
give two different methods, e.g. the CDW-EIS-4B and the post BDW-4B method,
respectively. Similarly, employing @ ¢ ]_[,%:l (vx 4 v-x4)""T and dr(vR+v- R)?vt
in the transition amplitudes would yield another pair of differing methods, e.g. the
CDW-EFS-4B and the prior BDW-4B method, respectively.

2.5 Different choices of the distorting potentials and distorted waves

Second-order theories are the formalisms that include the intermediate ionization
channels for electronic degrees of freedom through the Coulomb wave functions of
the electrons centered on one or both nuclei. Symmetric second-order theories, such
as the CDW-4B method, have the electronic Coulomb wave functions centered on
both nuclei with two such functions in each channel (entrance and exit). Asymmetric
second-order theories, e.g. the BCIS-4B and BDW-4B methods, possess two elec-
tronic Coulomb wave functions in total, both centered on one nucleus in one channel
alone (entrance or exit) for the given transition amplitude. There is also another pair
of asymmetric second-order theories, e.g. the CDW-EIS-4B and CDW-EFS-4B meth-
ods, that use four electronic distorting functions, such as two full Coulomb waves in
one channel (exit/entrance) and two Coulomb logarithmic phases in the complemen-
tary channel (entrance/exit), respectively. First-order theories are the formalisms that
do not include any intermediate ionization channels for the two captured electrons.
Symmetric first-order theories, e.g. the CB1-4B method, include one Coulomb wave
function (or equivalently, its logarithmic phase factor) per channel (entrance or exit) for
the relative motion of heavy nuclei. Both the BCIS-4B and BDW-4B method belong
to the class of hybrid theories that treat one channel by the CDW-4B method and the
other by the CB1-4B method. The CDW-EIS/EFS-4B are also from the category of
hybrid theories since they coincide with the CDW-4B in one channel, whereas the
electronic and nuclear distorting functions in the other channel are eikonalized.

2.5.1 Symmetric second-order theories: four-body continuum distorted wave
method, CDW-4B

For the prior and post transition amplitudes (2.80) and (2.81), we make the first sym-
metric choices of the initial and final pairs {U; 7, Xl.j’tf} in the entrance and exit channels
according to the following selection, which defines the four-body continuum distorted
wave method, CDW-4B [30,31,43-45]:
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Prior CDW — 4B : Transition amplitude ]’i(fCDW_4B)_ = X;|U,~ | Xi+>
o U;x; from (2.88) with ;" from (2.93) ,
o x; from(2.102)
(2.115)
Post CDW — 4B : Transition amplitude 77" *2* = (x 7 |U}1x;")

o ;' from (2.93)

° Uf)(; from (2.99) with X; from (2.102)
(2.116)

The corresponding explicit prior and post transition amplitudes Tl.(fCDW_4B) ¥ read as:

TV _ N2, // dx dxodr;
Xeiki.ri+ik,».r_/ﬁlg?DW—4B)—Bi(]§DW—4B>—, (2.117)
TI,S‘CDW*“BH = —N2Ciy f// dsidsadr ¢
xelkiritikpry pCOW=4BF gEDW—ABY (2 118)
where
Cif = M;Zi”PM;ZiVT, N = NT(vp) N~ *(vr), (2.119)
and
Bz‘(J(f:DW_4B)_ = @(s1,82) 1tF1(ivr, 1 ivxy +iv-x1) 1 FiGivr, L ivxy +iv - x2)

x {1 Fi@ivp, 1,ivsy +iv - 52) V@i (x1,x2) - Vg 1 Fi(ivp, 1, ivs) +iv-s1)
+ 1F1Givp, 1, ivs1 +iv-8$1) V@i (x1,%2) - Vo, 1 Fi(ive, 1, ivsy +iv-82)},
(2.120)
lS’i(?)W_“B)Jr =@;i(x1,x2) 1 Fi1Gvp, 1,ivsy +iv-s1) 1 F1Gvp, 1,ivsy +iv-s3)
X { 1FiGvr, 1, ivxn +iv ~x2)Vs1(p;§(s1,sz) -V 1FiGvr, Livxy +iv-xp)

+1F1Givr, 1 ivxg +iv-x1) Vi, @5(s1,52) - Vi, 1 F1Gvr, 1 ivxg +iv~x2)},

(2.121)
(CDW—4B)— (CDW—4B)+
L P =L, 7

= N (vpr)1 Fi (—ivpr, 1, ikiry +iki -rg)1Fi(—iver, 1, ikgri +iky-r;),
(2.122)
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with A(ver) = N (opr)N ~*(vpr) = [N (vpr)]” where A"*(vpr) = A (vpr).
e Independence of the eikonal total cross sections on the inter-nuclear potential

In the eikonal formalism (2.17), the two confluent hypergeometric functions 1 Fj
from (2.122) can be replaced by their Coulomb logarithmic phases, and this leads to:

(CDW—4B)F . |
ki oo Kirg +kior ) kpri A kg ri)TT

mp2sr (Hits (R —v - R)YWR+v- R}

ivpT ivpT .
= [Miﬂf”z (R2—22>] =(mufv2p2) iy (RVO)PT

so that

(CDW—4B)F ~ 2ivpr
£ weor (0P (2.123)
where p = |p| With' p being the XOY-component of R from (2.6). The remaining
phase factor (uvp)®YPT in (2.123) stems directly from the inter-nuclear potential
Vpr = ZpZ1/R. In other words, this latter phase is the only trace left from Vpr in the

eikonal versions of the transition amplitudes Ti;CDW*‘lB)?.

Employing (2.4) and (2.6), the exponential function e*ki "i+ik/7f from (2.117) and
(2.118) can be written as:

eik,--r,-+ikf»rf -D

— eZiﬂ-R—iv-(S1+S2) — e2iu-R—iv»(x1+x2) , (2124)
— e iNp—ivT Z—iv(s1+s2) _ ei17~,o—iv"’Z—iv-(x1+x2)
where
D = i (s1+s2)+2iB-(x1+x2) (2.125)

Thus, using (2.123), the transition amplitudes (2.117) and (2.118) become eikonalized
in the relative motion of heavy nuclei:

TPV ) — _N2Cy, f / f dxydxodR p?7r DBCPY TR (2.126)

Y};CDW—ALB)-F(”) — _N2 l/f //f ds1ds2dR p2il)pT DBZ-(JGDW_4B)+9 (2127)

where

Clp = Cip(uv)™™", Clp =~  p¥ryer—we—vn, (2.128)
Mp 11

Hereafter, whenever using (2.124) in the transition amplitudes T,.(CDW_4B)3F from

the general expressions (2.117) and (2.118), the dependence on 3 will explicitly
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be written as Tl(CDW 4B)jF(n) With this setting, in the expressions for the total

cross sections, the starting integration over the solid angle Qp = {0p, ¢p} =
{scattering angle, azimuthal angle} around the projectile P is mapped to the integration
over 7, so that:

Q(CDW BF (4 2) = ! (2.129)

CDW—-4B
T( ):F( )
2mv

In order to see the net effect of pPT onto the total cross sections, we first pass from
one to another set of the volume elements in (2.126) and (2.127) via dxdx,dr; =
J7dx1dx2dR and ds1dsodrp = J *ds ds,dR, respectively, where the Jacobians J T
are checked to be equal to unity. Subsequently, we use dR = dpdZ from (2.6) in
Egs. (2.117) and (2.118) for T,°V "~ and 7PV~ Then before perform-
ing the integrals over {x1, x2, Z} in (2.126) and over {s1, s2, Z} in (2.127), we first

T(CDW 4B):|E( P = T(CDW 4B):|E( ){T(CDW 4B):F(n)}*

integrate the functions | over

n in Q(CDW BIF from (2.129). This latter integral over 5 yields the Dirac delta-

function §(p — p’) which, in turn, removes the phase p’"PT from eikonal total cross

sections QECDW_4B)3F. In fact, two pairs of such phases p!**T and (p’) "/"PT, one from
(CDW—4B)F (CDW—4B)F i —i

T and the other from {7}, o M, appear as p“"’T(p/) TS (p — p’)

where they are canceled by the §-function in the remaining integral over p. Overall,

this procedure shows that the inter-nuclear potential Vpr has no influence whatsoever

on the eikonal total cross sections Q;SDW_‘lB) i

All told, the eikonal transition amplitudes TZ.SCCDW%B)$ from (2.117) and (2.118)

now become:

TPV = [aper e AP IR ) @as0)

Here, A(CDW 4B)jF(/o) denote the mentioned integrals over {xi,x7,Z} within

TPV~ i)~ () and over {s1, s2, Z} in TffCDW BIF () from (2.126) and (2.127),
respectively:

A(CDW B () = ~N2C}; // dxldx2dze—iv’Z—in.(s1+s2)Bi(J€DW74B)7,
(2.131)
ACN=B- () _ N2 /// s dspdZ ¢~V 2t gCDW 4B

(2.132)

@ Springer



26 Journal of Mathematical Chemistry (2019) 57:1-58

(CDW—4B)F become:

Then the associated total cross sections Q,; 5

CDW 4B

(27111))2 /d”T(CDW BF )lT(CDW 4B, )}
= o [ [ anap T AN ) [N 1
x/dn e Fin(o'—p)
=5 [[ pap AT ) (AN |
<[ (oSG0l — )
= —f ‘A(CDW 4B)¢(p)‘2, 8(p' —p) =8(p —p),
Q(CDW BT, 2= %/ ‘A(CDW BT, )2_ (2.133)

To compare the outcome (2.133) with the starting expression (2.129), we work

backward by recuperating the integration over 5 through the re-introduction of the
§-function:

2
Q(CDW 4B)F (2 ) = 7/dp’A(CDW 4B):|:(n)‘
_1 // dpdp/A(chfztB);(p) {A(CDW74B):|:(p/)}*8(p _ )
1 (CDW—4B)F (CDW—4B)F Fin-(o—p')
(znv)Z//ddA 0 A wh| /dne
1 : _ L _ *
= Gro? /d" {/dp eﬂFln-pAl(.?DW 4B):F(p)} {/dp/e:F””’ AE?DW 4B)3F(p/)}

1
T @nv)? /dn

if
RECDW—4B)F () 2
Q(CDW BIF 2) =/d U”T (2.134)
where
Ri(;:DW—4B)¢(n) _ /dp eﬂrrpAl(?DW*“BF(p), (2.135)
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From here, the explicit expressions for the matrix elements Rf?DW_AtB) ¥ () are written

as:

if

REPVADE oy - N2y, / / / ds ds,dR DB}fDW“‘B)*. (2.137)

REPVBI= () = —N2C, / / / dx1dedRDBEPY TP (2.136)

if

This shows, by reference to the pairs of Egs. {(2.126), (2.127)} and {(2.136), (2.137)},

that the only difference between RffCDw_4B)¢(n) and Ti(CDW_4B) () is in that the

former matrix elements do not contain the inter-nuclear phase % "PT

(CDW—4B)F _ { (CDW—4B)F }
R =T , 2.138
if (n) if (m vp1=0, i.e. Vpr=0 ( )
and consequently
(CDW—4B):|:} _ { (CDW—4B)¢} 2.139
[ Qlf with Vpr if without Vpr ' ( ’ )

Therefore, the eikonal total cross sections Q;?DW_A‘BHE for double charge exchange
in four-body collisions via process (2.1) are independent of the inter-nuclear potential
Vet = ZpZT/R.

The outlined procedure amounts to implicitly using the Fourier integral trans-
form of the functions with the variables n and p. This is seen from (2.135) where

R}J?DW“‘B)* (n) are the Fourier transforms of AE?DW_4B);(p). Likewise, it is seen

from (2.130) that the transition amplitudes Ti(CDW%B); () are the Fourier transforms
of pZiV"TAggDW_4B) F(p). In fact, the expressions from (2.133) and (2.134) are the

Parseval relations that yield the same total cross sections Q?CDWAB)]F irrespective of
whether computations are carried out in the n or the p domain of the Fourier trans-
forms:

1 2
CDW—4 CDW—4
QIPV BT - W/d ‘Ri(fDW BFm|”, (2.140)
1 _ 2
_ pfdp‘AngW 4B)$(p)‘ . (2.141)

Thus far, the entire exposition was a fully quantum-mechanical treatment for both
electrons and nuclei. In such a presentation, treatment of the motion of nuclei does
not necessarily need to resort to the eikonal formalism. However, when the eikonal
hypothesis is used, as in the present analysis, with the full Coulomb waves replaced
by their logarithmic phases for the relative motion of nuclei, the obtained expressions
for the transition amplitudes in (2.130) can be interpreted as if they were derived from
the four-body impact parameter formulation of the CDW-4B method. Namely, when
the latter formalism is adopted from the onset (along the lines of e.g. the BCIS-4B
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method [32]), the nuclear motion is treated classically by a rectilinear trajectory with
the vector R of the nuclear axis R given by R = b + vt where b is the impact
parameter and ¢ is time (as before, v is the incident velocity). This classical R can
be directly related to the corresponding expression R = p + Z from (2.6) if we
set Z = vt and interpret p as the impact parameter. With this interpretation, for
example the quantities p% T AE?DW_4B)3F(p) from the eikonal quantum-mechanical
treatment are the transition amplitudes in the four-body impact parameter formula-
tion of the CDW-4B method for double charge exchange (2.1). Here “the four-body
impact parameter formulation of the CDW-4B method” should not be confused with
the usual impact parameter method (IPM) implemented for double charge exchange in
the CDW approximation (as denoted by CDW-IPM) [17,19]. This is the case because
the CDW-IPM approximation for double charge exchange is a three-body formalism
which uses the product of the two three-body impact-parameter dependent transition
amplitudes for each of the two transferred electrons. As such, the CDW-IPM approx-
imation ignores the four-body nature of two electron capture process (2.1) and, in
particular, neglects the inter-electron correlation effects.

Overall, the relation (2.123) displays the greatest practical usefulness of the eikonal
setting because the product of the two confluent hypergeometric functions in (2.122)
for the relative motion of heavy nuclei is first reduced to a single phase (j1vp)%/ T,
which is subsequently shown to disappear altogether from the total cross sections. It
is such a complete elimination of the R-dependent Coulomb wave functions and their
logarithmic phase factors that enormously simplifies the computations of total cross
sections for double charge exchange in the CDW-4B method [30,31].

2.5.2 Symmetric first-order theories: four-body boundary-corrected first Born
method, CB1-4B

Here, for the entrance and exit channels, we choose the distorting potential w; ¢ in
(2.63) as the following short-range interactions:

11

wi = V™ =V = Zp(Zr - 2) (E - ;> , (2.142)
1
11

wp = VP — VX = Zr(Zp - 2) (E — ;) . (2.143)

In other words, the distorting potentials W;  from (2.63) are of the forms:

Zr(Zp — 2
Cowp=ve, = A TD

Wi = Vo Zp(Z1 —2)
T R

i,eik — R

As a consequence, the perturbations that cause the transitions in the prior and post
cross sectionsare U; = V; — V.55 = Vpr+Vp1+ Ve =V and Uy = Vy— V}”eik =

iei Jei

Ver + V11 + Vo — V]??eik, respectively, or explicitly:

U = Zp <_ L _> , (2.145)
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Up=2Zr (—————). (2.146)

Inserting W;  from(2.144) into Eqgs. (2.61) and (2.62) for Xf,‘-» we have:

Zp(Z1 —2

{Hi i % _ Ei} =0, (2.147)
Z1(Zp -2

{Hf+ﬂ+>_Ef}Xf—.=o. (2.148)

Similarly to Egs. (2.89) and (2.100) from the CDW-4B method, we can use the
eikonal relations R ~ ry and R ~ r; in (2.147) and (2.148) via Zp(Z1 — 2)/R ~
Zp(Z1 —2)/ry and Z1(Zp —2)/R ~ Z1(Zp — 2)/r;, respectively. This separates
the variables in Egs. (2.147) and (2.148) whose solutions X,-%f with the correct asymp-
totes <I>l.i f are:

o

= & NT W Fi(=ivi, Likirg +iki-rp) s x5, =z @, (2.149)
X; = O NTWpFiGvy, 1, —ikgri —iky 1)), Xfrishe @70 (2150)

with
NTw) =e ™20 +iv), N () =e ™01 —ivp), (2.151)

where v;, ¢ are given in (2.27). Then the resulting prior and post forms of the transition
amplitudes in the CB1-4B method [33,34,39,40] are summarized as:

Prior CB1 — 4B : Transition amplitude T(CBl 4B)- _ X7 Uil X
e U, from (2.145) and x;" from (2.149) , (2.152)
° X_ from (2.150)
Post CB1 — 4B : Transition amplitude T(CBl 4B+ _ = X,« |U T| X; )
o ;' from (2.149) - (2.153)

e Uy from (2.146) and Xf_- from (2.150)

The matrix elements for the prior and post transition amplitudes T(fCBl BT take the

forms:

T(CBI 4B)— f/ dx dxadr; A,.[,_,_ikf.,/EE?B1—4B)—B[(?BI—4B)—, (2.154)

7RI 4B+ / / / dsydsadr y efkiritikr CBI—BIEpCBIBIE () |55
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where
BCBI-4B)— _ 2 1 1
if =@y | Zp | 5 = — = — ) |91 x2), (2.156)
’ S1 52
(CB1-4B)+ _ & 2 1 1
Bif = ¢5Gs1,5) | Zr (= — — — — ) | @i (x1, x2), (2.157)
R x X2
EE?B174B)* — £§?B174B)+ — N+(Vi)N_*(Vf)1F1(—il)i, Likirs + ik )
VFi(=ivy, ikpri +iky 1) (2.158)

Within the eikonal formalism, the heavy mass limits Mp 1 > 1 imply:

CB1—4B)— iV ivr
ciP Ty g k)™M i kg )™
wpSn (HOR =0 R (@R + 0 R = (uvp)*™ R — v R),

(CB1-4B)—

if mp%or (W00)*" (R — v RYS, (2.159)

(CBI-4B)+ _ Vi (o i
Liy mp 1 ity + ki ) epri k)t

M St LR =0 RV (@R +v- RV = (uop)*™ WR +v - R) %,

- .\ .
LT = o)™ R o R (2.160)
Zr —Z
f=22T "7 (2.161)
v

Using (2.124), the eikonal alternatives to the prior and post transition amplitudes

Ti(fCBl“‘B)‘ and Ti;CBl“‘B” from (2.154) and (2.155) read as:

TP () = /f dx1dx2dR (1vp)™ (R — v - RYSDBSEI 4~

(2.162)
T,-(fCBH‘BH(ﬂ) _ /// ds ds>dR (1vp)2" (WR + v - R)—iSDBSJ(CZBlf4B)+.

(2.163)

Due to (2.159) and (2.160), the entire dependence of the transition amplitudes
7P () and TI.SFB‘*“B)* (1) from (2.162) and (2.163) on the inter-nuclear

potential Vpr is contained in the Coulomb phases (vp)*¥/ and (uvp)>i, respec-
tively. Therefore, the same proof from the CDW-4B method can also be made in

the CB1-4B method showing that the eikonal total cross sections Q;?Bl_étB)_ and
(CB1—4B)+

Qif are unaffected by the phases (uvp)?"/ and (uvp)?Vi. This makes
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foCBl B)F independent of the inter-nuclear potential Vpr and, therefore, computable

from the expressions:

T(CBI 4B)1F( )
0 T (ad) = / dp |- o : (2.164)
CB1-4
REPDEp |
= [ dy T : (2.165)

where

RGP () = f// dx1dx2dRWR — v - RYEDBSE = (2.166)

REPI14 () = / / f ds1dsadRR + v - R)“EDBESPI =BT (2.167)

Note that the exact functions £§C-B1_4B)_ and EEC-BI_4B) * are equal to each other, as

per (2.158), and so are their eikonal forms (2.159) and (2.160) due to the relations:
(uvp)?/ WR —v - R = (uvp)* (R +v- R, (2.168)

In other words, either (uvp)*/ (VR — v - R) or (uvp)®¥i (vR + v - R) "¢ can be
employed in LB from T BB opin £ EBI74BF o T(CBl )+ instead
of the single product of the two full Coulomb waves (2.158). The only reason for stating
the two equivalent eikonal expressions (2.159) and (2.160) is to exhibit the ease in
computations of differential cross sections when either Zp or Zt is equal to 2. Thus, for
Zt = 2 and Zp arbitrary, we have v; = 0 and (2.160) should be used. Conversely, for
Zv arbitrary and Zp = 2, it follows that vy = 0 and (2.159) is preferred. The rationale
for these preferences is clear from (2.168), where for either Zp = 2 or Z1 = 2, only
one Coulomb logarithmic phase remains for the relative motion of heavy particles,
namely (VR — v - R)¥ [for vy =0]or (WR+v- R)’if [for v; = 0]. Thus, for either
Zp =2 or Zt = 2, the differential cross sections in the CB1-4B method are directly
proportional to the squared moduli of |R(J€B1_4B)3F(17) |2

the same matrix elements RI(J?BI 4B)jF(n) for total cross sections can also be used

for differential cross sections. These special circumstances avoid computations of
differential cross sections in the CB1-4B method by the standard, highly oscillatory
numerical integrations (in the interval 0 < p < 4-00) over the integrand comprised
of the product of the factors p!+2s.i with a Bessel function of the first kind and the
p-dependent transition amplitudes .A(CB] 4B);( ).

In Refs. [36-38], the four-body boundary -corrected first Born method, or CB1-
4B, has alternatively been called the four-body Coulomb-Born distorted (CBDW-4B)
method because therein the computations make use of the full Coulomb wave functions
for the relative motion of heavy nuclei. However, the total cross sections from the CB1-
4B method, employing the logarithmic Coulomb phase factors for the relative motion

. In these two particular cases,
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of heavy nuclei, fully agree with those from the CBDW-4B method, as has explicitly
been shown in computations on single capture (see section 4), and this should also be
true for double capture.

2.5.3 Asymmetric second-order theories: four-body boundary-corrected continuum
intermediate states method, BCIS-4B

The BCIS-4B method [31] is a merger of the CDW-4B and CB1-4B methods. The
prior BCIS-4B method uses the CB1-4B and CDW-4B methods in the entrance and
exit channels, respectively. Conversely, the post BCIS-4B method employs the CB1-
4B and CDW-4B methods in the exit and entrance channels, respectively. Thus, the
joint charter for the prior and post forms of the BCIS-4B method runs as follows:

Prior BCIS — 4B : Transition amplitude Ti;BCIS“‘B)‘ = (X7 1Uilx")

e U;from (2.145) and Xi+ from (2.149) ,

° X; from (2.102)

(2.169)
Post BCIS — 4B : Transition amplitude E;BCIS_4B)+ = X}T |U;| Xi+>
e x;" from(2.93)
o Uy fromEq. (2.146) and X; from Eq. (2.150)
(2.170)

Hence, this prescription has the following explicit 7-matrix elements:
TS _ N2cy /// dxydxadr ki ik 7 pBCIS—4B)~ pBCIS—4B)
(2.171)

Ti(jBCIS—4B)+ — N2Cp /// dsydsadr eiki-ri+ikf.rfEE];CIS—4B)+B;}$CIS—4B)+,

(2.172)
where
Cp=p; ", Cr=p; ™" Np=N*(p), Np=N"*(vr), (2.173)
2 1 1
(BCIS—4B)— __ =« -t .
B;; = @r(s1,52) |:ZP (E 5 Sz)}%(xl,xz)

x1F1@vr, 1,ivxy +iv-x1)1Fi1(vr, 1,ivxy +iv-x3), (2.174)

2 1 1
(BCIS—4B)+ __  « _ _ .
Bif _gof(sl,sz) |:ZT (E X x2>:|(ﬂz(x1,x2)
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x1F1(@vp, 1,ivs1 +iv-s1) 1 F1(Gvp, 1,ivsy +iv-s3), (2.175)
LIS NP ()N ()
x1F1(=ivi, 1, ikiry + ik; -re)1Fi(=ivper, 1, ikysr; +ikf -ri),
(2.176)
LB € ) A ()
x1F1(=ivpr, 1, ikjry + ik; - re)1Fi(=ivy, Liksr; + ikf ;).
2.177)

Using the eikonal hypothesis, with its heavy mass limits Mp 1 > 1, we have:

L(BCIS 4B)—M 2, iy k- F P K A kg )
oSy (BWR = v RYY (@R + v R = (uvp)*" (vR —v- R) 7>,

E[(JIECIS 4B)— o (uvp) 2T (VR — v - R) 2% (2.178)

E(BCIS 4B)+ PT>>1 (k; ry Tk - rf)wPT(kf'"z“rkf "z)wf

oSt (R — v YT (uR +v- R = (nop)* " (R +v - R) 7T,

£§?C1574B)+MP‘T§1 (,uvp)ZiupT (R +v- R)—Ziv—p. (2179)

T(BCIS 4B)— and

Employing (2.124), the eikonal versions of the transition amplitudes 7; i

7P from (2.171) and (2.172) become:

T(BCIS 4B)— ( )_ NTCT // dxldxzdRPZZvPT

x(WR — v R)“HPDBITI (2.180)
(BCIS 4B)+( ) — NPCP /// dS]dszdR,OZWPT
X(UR + v- R) ZlVTfDBi(J]?CIS—4B)+’ (2181)

where

C]/3 — CP(/,LU)inPT, Cl/l' ~ v2i\)p’1‘/L2i(UpT—Up)
Mp 11
(2.182)
C’/T — CT(MU)inPT, C"/[‘ ~ UinPTMZI(VPT*VT)
Mp 1>>>1
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Because of the relations (2.178) and (2.179), the eikonal transition amplitudes
T(BCIS 4B)— () and T(BCIS 4B)+(17) in the BCIS-4B method depend on the inter-
nuclear potential Vpr only through the single Coulomb phases, (j1vp)%"PT, as is the
case with the CDW-4B method. This latter phase disappears from the corresponding

eikonal total cross sections Q;BCIS_A‘B)jF that are, therefore, independent of the the
inter-nuclear potential Vpr and, as such, computable from the expressions:

T(BCIS 4B):|:( )
(BCIS—4B)F , 2\ _ i
Qi (ag) = /dn 5 : (2.183)
R(BCIS—4B)1F(17) 2
:/dn lfz— , (2.184)
TV
where
x(vR —v-R)~% VPDBI.(J‘?CIS*“B)*, (2.185)
RSy = N3G / / / ds1dsydR
x(WR +v-R)™ 2”’TDBS§CIS_4B)+ . (2.186)

Note that in Refs. [49-53] for double electron capture processes, the four-body
boundary-corrected continuum intermediate state method based upon the full Coulomb
wave function for the relative motion of heavy nuclei has been denoted by the acronym
BCCIS-4B. Unexpectedly, however, the total cross sections from the BCCIS-4B
method [49-53] do not coincide with those obtained employing by the BCIS-4B
method in terms of the corresponding logarithmic Coulomb phase factors for the rel-
ative motion of heavy nuclei [1,3,32]. We analyzed this discrepancy by performing
a new detailed computation whose results will be reported very soon (see also the
pertinenet comment on p. 1437 in Ref [3]).

2.5.4 Asymmetric second-order theories: four-body Born distorted wave method,
BDW-4B

The BDW-4B method [41,42] is also a hybrid of the CDW-4B and CB 1-4B methods. In
the BDW-4B method, the role of the CDW-4B and CB 1-4B methods is inter-exchanged
relative to the BCIS-4B method. Namely, the prior BDW-4B method employs the
CDW-4B and CB1-4B methods in the entrance and exit channels, respectively. On
the other hand, the post BDW-4B method uses the CDW-4B and CB1-4B methods in
the exit and entrance, respectively. With this at hand, the prior and post forms of the
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BDW-4B method are specified by:

Prior BDW — 4B : Transition amplitude J"i(jBDW_4B) = Xj_-|U,- | X,~+)

e U;x; from (2.88) with x;" from (2.93) ;

° X; from (2.150)

(2.187)
Post BDW — 4B : Transition amplitude ﬂ;BDW_4B)+ = X;|U;| )(l-+)
o x; from (2.149)
° UfXJT from (2.99) with X; from (2.102)
(2.188)

The corresponding matrix elements in the transition amplitudes read as:

Ti;BDW—4B)— — _N2Cp // dxdxdrs eik,--r,-+ikf.rfE;}I?DW—4B)—BZ_(]]§DW—4B)—’
(2.189)
TiIJBCDW(ﬂlB)+ — _N2Cp /// dsydsadr eik,—~r,-+ikf-rf£§JI§DW74B)+BZ_(}3DW74B)+’
(2.190)
where
B _ e, )

x {1F1@ivp, 1,ivsy +iv-$2) V@i (x1,%2) - Vi 1 Fi(ivp, 1, ivs) +iv - s1)
+ 1FiGvp, 1, ivs) +iv-851) V@i (x1,X2) - Vo, 1 Fi(ive, 1, ivsy +iv - s2)},
(2.191)

BDW—4B
Bi(f = gi(x1, x2)

x { 1F1Gvr, Livxy +iv - x2) V@5 (s1,82) - Vi 1 Fi(ivr, 1 ivxg +iv-xp)

R, Livxy + 0 ) V@ (51,52) - Vg 1 Fi G, Lo + 0 %)

(2.192)
LV = N pn)N T ()
x1Fi(=ivpr, 1, ikiry + ik; - re)1Fi(=ivy, Likgr; + ikf -r), (2.193)
E??DW_4B)+ _ N+(Ui)N_*(VPT)
x1F1(=ivi, 1, ikiry + ik;- re)1Fi(=ivpr, 1, iksri + ikf -r). (2.194)
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Here, the £-functions from the prior and post BDW-4B method are identical to those
from the post and prior BCIS-4B methods, respectively:

(BDW—4B)— _ ~(BCIS—4B)+ (BDW—4B)+ __ ,(BCIS—4B)—
L =L L =L

. (2.195)

’

where £ BB~ apq LBCIS=BF ope given by (2.176) and (2.177), respectively.
This implies, by reference to (2.178) and (2.179) for the eikonalized motions of the P
and T nuclei, that within the heavy mass limits Mp 1t >> 1, we have:

C(BDW —4B)— ~ 2ivpr i —2ivt 9
MP >>l (l'“)p) P (UR +v R) ’ (21 6)

W —4B)+ 2i vpT —2i 97
El(?D ® Mp, NT>>1 (,bLUp) ‘P (UR v - R) 21\)]2. (2.1 )

With the help of (2.124), the eikonal total transition amplitudes TZ.(BDWABF(n) are
reduced to:

Ti(BDW74B)*(n) — —NPZCE) /f/ dxldxzdRinvm‘

x (VR + v - R)_Zi”TDBl.(?DW_4B)_, (2.198)
,Tl(fBDW 4B)+(T,) — _N%C’{F /// dSIdszdszivPT
< (VR — v - R)*2"“P1)1!3,.(]‘?')“"43”r . (2.199)

Thus, in the BDW-4B method, the Coulomb phase (uvp)?"PT is the only term due

to the inter-nuclear potential Vpr in the eikonal transition amplitudes T(fBDW 4B)— n)

T(BDW 4B)+

and (n) from (2.198) and (2.199). This remaining phase vanishes from

the elkonal total cross sections Q;BDW_“B)jF that, therefore, become independent of
the inter-nuclear potential Vpr :

(BDW—4B)F
T, (77)
Q(BDW BF §)=/drl i — ’ (2.200)
BDW—4B 2
; ROV T ()
— [ ay — i (2.201)
where
RPN = —N3 G /// dxdx>dR
x(VR+1v-R)™ 2’”TDBS?DW_4B)_, (2.202)
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Rl.f?DW“‘B)*(n) = —N2C} / / / ds;ds,dR

x(VR — v R) DRIV, (2.203)

2.5.5 Asymmetric second-order theories: four-body continuum distorted wave
eikonal initial/final state methods, CDW-EIS/EFS-4B

The CDW-EIS-4B and CDW-EFS-4B methods [47] are the asymmetric approxi-
mations to the post and prior versions of the CDW-4B method, respectively. The
CDW-EIS-4B method eikonalizes the motions of the two electrons in the initial scat-
tering states Xi+’ using its asymptote (2.105), whereas U ¢ Xr is the same as (2.99)
in the post version of the CDW-4B method. Similarly, the CDW-EFS-4B method
replaces the two full electronic Coulomb wave functions by their asymptotes (log-
arithmic phase factors) in the final scattering state X;, according to (2.106), while

preserving the intact U; x;~ from (2.88) in the prior version of the CDW-4B method.
Thus, the schemes for the CDW-EIS-4B and CDW-EFS-4B methods run as follows:

CDW — EIS — 4B : Transition amplitude T&CDW_EIS_LLBH ={ X; |U;| )(l-+)

o ;' from (2.105) ,

o Uy |X]T) from (2.99) with X5 from (2.102)
(2.204)
CDW — EFS — 4B : Transition amplitude Tl.S(CDW*EFS*‘LB)* = { X; |Ui | Xi+>

e Ux;" from (2.88) with ;" from (2.93)

°* X; from Eq. (2.106)

(2.205)
The associated transition amplitudes T&CDW*EIS%BH and Ti(fCDW*EstélB)* have the
forms:
Y}}CDW—EIS—4B)+ — _N%CT /// ds1ds2drf eiki‘ri+ikf~rf
% £§$DW—EIS—4B)+ Bi()(;DW—EIS—4B)+’ (2.206)
E}CDW—EFS—4B)— — N2 // dxydxodr; elkiTitikers
% EE?DwastztB)7Bi(?Dw7Est4B)f, (2.207)
where
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Bi(.?DW_EIS_4B)+ = @i(x1,x2) (vsi +v-51) " (s +v-52) 7"

X { 1F1Gvr, Livxy +iv - x2) V@5 (s1,82) - Vi 1Fi(ivr, 1 ivxy +iv - x1)

+1FiGvr, Livxy +iv-x1)V,@5(s1,82) - Vi 1 Fiivr, 1 v +iv~xz)},

(2.208)

Bi(ngW—EFS—“'B)_ — (p;kc(Sb SZ) (v_xl +v- x1)7iUT (UXZ +v- x2)7iUT

x {1F1@ivp, 1,ivsy +iv-$2) V@i (x1,x2) - Vi 1 Fi(ivp, 1, ivs) +iv-s1)
+ 1 Fi(ivp, 1, ivs) +iv-5) V@i (x1,x2) - Vi, 1 Fi(ive, 1, ivsy +iv-s2)},

(2.209)

(CDW—EIS—4B)+ __ »(CDW—EFS—4B)— (CDW—EIS—4B)+ _ ~(CDW—4B)F
L =L L =L .

)

(2.210)

Here, £§DW_4B)¢ are the £-functions from the CDW-4B method given by Eq. (2.122),
where cfj?DW“‘B)* — ﬁngW“‘B)‘ . Using (2.123) and (2.124), it follows that the

transition amplitudes Y}}CDW*EIS%BH(J;) and Ti(fCDW*EFS*“B)*(n) can be written
as:
T(CDW BIS=4B1+ () _ N2cr /// ds dsydR p2"T ,DBi(?DW—EIS—4B)+’
2.211)
T(CDW EFS—4B)— ) _ _N2C /// dx dxad R p2PT DB(CDW EFS—4B)—
2.212)

As in the CDW-4B method, the Coulomb phase (j1vp)%"PT is the only remainder

from the inter-nuclear potential Vpr in the transition amplitudes T(fCDW —EIS= 4B’)Jr( )

and T(CDW EFS—4B)— (n) from (2.211) and (2.212), respectively. Therefore, the phase
factor (pvp)2vPr disappears from the total cross sections Q(CDW EIS=4B)+ and

Q(CDW EFS=4B)~ that become independent of the inter-nuclear potential Vpr :

(CDW—EIS—4B)+ ) 2

Q(CDW EIS—4B)+ 2) = /drl if — , (2.213)
CDW—EIS—4B 2
RS )
— {4y — , (2.214)
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T(COW—EFS—4B)— )
Q(CDW EFS—4B)— 2) = ! . , (2.215)
CDW—EFS—4B)— ,_. |2
5 RS ()
— 4y — , (2.216)

where

R(CDW EIS—4B)+ () _N2C, /// ds|ds>dR ,DB(j(;DwaleétB)Jr’ 2.217)

RIPVTEST®T 0y = _NZCy / / drjdxodR DBV ES TR 2018

Let us re-emphasize that the superscripts % in the transition amplitudes and cross
sections for the CDW-EIS-4B and CDW-EFS-4B methods are used to remind us
that the former and the latter method are derivable from the post and prior forms
of the CDW-4B method, respectively. In other words, the CDW-EIS-4B and CDW-

EFS-4B methods themselves do not have both the post and prior forms. Rather the

CDW-EIS-4B method exists only in the post variant, TI;CDW EIS= 4BH()]) whereas

the CDW-EFS-4B method is defined solely in the prior version, T(CDW ~EFS—4B)- ).
2.5.6 The link between the prior/post BDW-4B and CDW-EFS/EIS-4B methods

Here, we establish the relationships between the post/prior BDW-4B and CDW-
EIS/EFS-4B methods. We do that by juxtaposing the transition amplitudes in these
methods so as to exhibit their similarities. To this end, we cast Egs. (2.198) and (2.212)
into the following forms:

T(fBDW 4B)—( ) = _ngclg /f dx;dx,dR (VR + v - R)*ZivTDHl.}

T(CDW EFS—4B)— ( )_ —NPCP///dX1dxzdR l_[(vxk +v- xk) WTDHlf
k=1

(2.219)

M = (nop)™™ ¢} (s1, 52)
X { 1FiGvp, 1,ivsy +iv-52)Vy0i(x1,x2) - Vg 1 Fi(vp, 1, ivsy +iv-s1)
+ 1 FiGvp, 1,ivst +iv-851)Vy,0i(x1,x2) - Vg, 1 Fi(ivp, 1, ivsy +iv - SQ)}.
(2.220)

Here, the gradient—gradient operators for the distorting potentials are the same

in both methods. However, th¢re are two unequal terms (vR + v - R)’zi"T and
[(vx; 4+ v-x1)(vx2 + v -x2)]7""T in the prior BDW-4B and CDW-EFS-4B methods,
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respectively. This is the only difference between these two methods. Such a differ-
ence is negligible only in the asymptotic region of the exit channel since according to
(2.108), we have:

[(vx; +v-x)DWxa+v-x2)]7T ~  @WR+v-R)7HT. (2221)

X1,X2—>00

Of course, the integrals in (2.219) are over all the distances {x1, x>, R} and not just
over their radial asymptotic values. It is this circumstance that makes the prior BDW-
4B and CDW-EFS-4B methods differ from each other.

A similar situation is also encountered when comparing the post BDW-4B and
CDW-EIS-4B methods. This is at once seen by writing together the transition ampli-
tudes (2.199) and (2.211) as:

T[SfBDW—4B)+(n) — —N%C"/r //[ dsids,dR (VR — v - R)—ZivP'DH?]_r

’

2
TPVTESTR Gy = N3t / f f dsds2dR [ sk + v - 50 " DI},
k=1

(2.222)

Ml = (vp)*™T gix1, x2)
X { 1F1Gvr, 1 ivxg + v - x2) V@5 (s1,82) - Vi 1 Fi(ivr, 1 ivxg +iv - x1)

+ 1 FGvr, 1, ivxy +iv -xl)Vh(p;‘Z(sl,sz) -V 1 Fi@vr, 1, ivxo +iv ~x2)}.
(2.223)

Here too, both methods possess the identical gradient—gradient potential operators.
Further, we see that the sole difference between the post BDW-4B and CDW-EIS-4B
methods is the terms (VR — v - R)’Z"”P and [(vs; +v-s1)(vsy + v - $2)]7/"P from the
former and the latter approximation. Such a difference is small only in the asymptotic
region of the entrance channel as per (2.107) which implies:

[(vs;i +v-s))(vs2 +v-52)]" ~ (vR—wv-R)“2", (2.224)

§1,82—> 00

However, the integrals in (2.222) cover all the distances {s1, s2, R} and not just their
asymptotically large values. This fact is responsible for any difference found in the
computations by means of the CDW-EIS-4B and the post BDW-4B methods.

The initial and final heliumlike bound-state wave functions ¢;(x,x) and
@ r(s1, s2) decay fast (exponentially) with the increasing values of {x1, x2} and {s1, 52},
respectively. This is readily apparent from e.g. the heliumlike ground state wave
functions with either one [125] (Hylleraas) or four variational parameters [126—128]
(Lowdin, Green et al, Silverman et al):
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7eff)3 . 5
pi(x1,x2) = = ) e ARt 24 = 7y - 16
, Hylleraas [125].
eff\3
@r(s1,82) = &) ) e Zp (145 Z3" = 7Zp - 15_6

(2.225)

Therefore, it is the small values of {x1, x2} and {s1, s»} that provide the dominant
contributions to the integrals in (2.219) and (2.222). Moreover, in the regions of the
small values of {x{, xo} and {sy, 52}, the behaviors of ]_[izl(vxk + v - x,) "V and
(VR—v-R)™%"T in (2.219) as well as of Hi:l (vs+v-5¢)"""P and (VR+v- R) 2"
in (2.222) are very different. This is prone to yield the significant discrepancies in
the cross sections computed by means of the CDW-EFS-4B and the prior BDW-4B
methods, as well as between the CDW-EIS-4B and the post BDW-4B methods.

2.5.7 The link between the prior/post CDOW-4B and CDW-EFS/EIS-4B methods

Continuing with the preceding lines, it is also instructive to juxtapose the CDW-
EFS/EIS-4B and the prior/post CDW-4B methods to directly see their similarities and
differences. Thus, putting together Eqs. (2.126) and (2.212), we have:

2
TPV ) = —N2 ) /// dx dodR [ |1 FiGvr, 1 ivx +iv - x)DH;,
k=1

2
T PVTESTR TGy = —NR G / / / dx1dx2dR [ (ox +v-x0) T DH;,
k=1

(2.226)

The same gradient—gradient potential operator is present in these two transition ampli-
tudes. Otherwise, the CDW-EFS-4B method is seen to be an approximation to the
post CDW-4B method. It replaces the product of the two full confluent hypergeo-
metric functions N% ]_[,%=1 1Fi(vr, 1, ivxg + iv - xi) for the electrons e; » by their
asymptotic forms given by the Coulomb logarithmic phases Hi:l (Vxg + v - xg) 70T
as per (2.104). This replacement is valid only outside the integrals for the transition
amplitudes and exclusively at very large distances (x; — 00, x — 00). Since the
capture cross sections are dominated by the small values of {x1, x2}, at which the said
replacement breaks down, the CDW-EFS-4B and prior CDW-4B method are expected
to yield different results, especially at lower part of intermediate incident velocities.

In the same vein, we can collect Egs. (2.127) and (2.211) for a straightforward
comparison:
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2

Tif,?DW‘4B)+(n) = —N*C}; /// dsidsadR [ 1FiGve, 1, ivs +iv - s)DH;y
k=1

2
TPV RS gy = —NECh / / / dsidsadR [J(ose +v - 510 "P DA,
k=1

(2.227)

These two expressions share the common gradient—gradient potential operator.
According to (2.103), (2.206) and (2.208), the CDW-EIS-4B method is observed to
make an additional approximation to the post CDW-4B method using the Coulomb
logarithmic phases Hi:l (vsg + v - s¢) "'V instead of the full confluent hypergeomet-
ric functions NF% ]_[iz1 1Fi(ivp, 1,ivsy + iv - s;) for the electrons e; and e>. Such
an approximation is justified solely at simultaneously large distances s; — oo and
s> — 00, but fails at small values of {sy, 57} that otherwise provide the dominant con-
tribution to the cross sections. The errors invoked by using the asymptotic Coulomb
phases instead of the confluent confluent hypergeometric functions for the electrons
are expected to increase with decreasing incident velocity.

3 Convergence issues with the Born series for rearrangement
collisions

Aaron et al. [129] pointed out that the Born series for the transition operators diverges
for three-body rearrangement collisions. However, neither the transition operators
nor the related total scattering wave functions are observable (physically measurable
quantities). What actually matters is the status of convergence of certain observables
of the main interest, e.g. scalar products that contain the transition operators and total
scattering wave functions. In scalar products, such as those from cross sections, the
transition operators and total scattering wave functions are embedded in integrals
over all the configuration and/or momentum space. This circumstance may well wash
out the pathological/divergent features of the transition operators and total scattering
wave functions within the transition amplitudes. Indeed, it has been demonstrated by
Corbett [130] that for a divergent T -operator series, convergence can nevertheless
exist for both the series of total scattering wave function and the 7-matrix elements.
This means that the conditions in the Born series for the 7 -operator convergence
are more restrictive than those for the total wave functions. It also implies that the
convergence conditions in the Born series for the total scattering wave functions are
more restrictive that those for the 7 -matrix elements. An appropriate illustration of this
important conclusion has been reported by Dettman and Leibfried [131] for a special
case of rearrangement collisions with the §-function interactions. For this particular
scattering, it has been found [131] that despite the existing operator divergence, the
resulting physical transition amplitude is convergent.

Dodd and Greider [132,133] have studied the convergence features of the distorted
wave Born series for three-particle rearrangement collisions with short-range interac-
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tions. They analyzed the case of two heavy and one light particles. We shall briefly
discuss their concept adopted to atomic collisions for single electron capture by nuclei
from hydrogenlike atomic systems:

Zp + (Z1,e)i —> (Zp,e)s + Z. 3.1

Here, as before, both the projectile and target nucleus of charges Zp and Zt are heavy
particles. The main focus in Refs. [132,133] was upon the so called “disconnected
diagrams” because these lead to divergence of the Born series. The disconnected dia-
grams are those Feynman diagrams that describe the intermediate steps of collision
(3.1) with two particles interacting with each other, while the third particle is propagat-
ing freely. For example, the typical kernel U;G(‘)"U,-, in terms of the total three-body

free-particle Green operator GO , would become disconnected if a potential from e.g.

Uy, i were also contained in U,;. Therefore, in order to have only connected diagrams
that in turn, yield the divergence-free operator Born series, it suffices to modify the
kernel of the series in such a way that no potential from e.g. U; would be repeated in
U}. This can be achieved by introducing a virtual channel x with a model potential

V. (real- or complex-valued) and the associated Green operators gxﬂE defined by:

1
+

= , 32
S T ECHYV. tie (3.2)

where E and H are the total energy and the total Hamiltonian of three particles
encountered in process (3.1) for which U; ¢ are the perturbation distorting potentials.
To proceed, Dodd and Greider [133] used the three coupled Faddeev equations [134—
137] for the transition amplitude of the studied three-body problem. Then they exploit
the suitable mass ratios of the two heavy and one light particle to reduce the three
to two coupled Faddeev equations and finally arrive at the full transition amplitude
whose kernel can be connected by making a suitable choice of potential V,. The see
this, we first note that there is a direct relationship between the model g;“ and the total
Green operator G as:

1
Gt=¢"(14+V,G"), GT= ——— . 3.3
g (14 V:G7) T, (33)

Inserting (3.3) into (2.74), where U; , GT and X o refer to process (3.1), we obtain
the modified full transition amplitudes in e.g. the prior form which we write here
together with its original counterpart, to enable a direct comparison:

T;; Modified) = (x 7 I{1 + Uygy (1 + VoGO Uilx;")
(3.4)
T, (Original) = (x; |(1+ UG ) U;1x;")

As a check, for V, = 0, it follows from (3.3) that g;” = G, in which case we have
Tl; (Modified) = Tl; (Original), as it should be. The Born series of the new transition
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amplitude T, (Modified) will be void of disconnected diagrams if e.g. no part in the
chosen potential Vy is repeated in U .

By setting Gt = 0 in (3.4), one obtains the first-order approximations
Tl}l)l_ (Modified) and Ti;l)_(Original) to Tl; (Modified) and Tl; (Original), respec-
tively:

T~ Modified) = (¢ (1 + Uyg:) Uilx; )
(3.5)
T/~ (Original) = (x; |U;1x;")

As stated, a judicious choice of V, leads to a divergence-free modified Born series
for the transition amplitude 7, (Modified). This guarantees that the first-order con-

tribution Ti(fl)_(Modiﬁed) in that series is a meaningful lowest order term to a

divergence-free perturbation expansion generated from Tl; (Modified). However, the

price to pay for this achievement is that Tl.S,l)_(Modiﬁed) is more complicated than

Ti(fl)f (Original) since the modified 7 -matrix element contains an additional propaga-
tor Urg, . Nevertheless, with a particular choice of Vi, satisfying the mentioned
Dodd-Greider constraint, the same analytical result for the transition amplitude
Ti(fl)_(Original) from the CDW-3B method [138] in the case Zp = Z = 1 for

process (3.1) have also been obtained in Ref. [139] using Ti(fl) " (Modified). A similar
situation is encountered in the BCIS-3B, BDW-3B and CDW-EIS/EFS-3B methods,
as well.

In practice, besides having a divergence-free Born series, its first few succes-
sive terms should also be computed numerically to see their behaviors regarding the
smoothness and convergence rate. Such an insight could help to empirically assess
the possibility for convergence of the entire Born series. This has been the subject of
a number of studies where the exact numerical computations were carried out in the
1st [140-144], 2nd [145-149] and 3rd [150] Born approximations to the series for
the full 7-matrix elements with Zp = Zt = 1 in process (3.1). The outcome is that
all the three Born approximations are well-behaved, smooth functions at all impact
energies and for any scattering angle. Further, these studies show that, at high impact
energies (in the MeV region), the 2nd Born approximation dominates over both the
Ist and the 3rd Born approximations. This steady trend, especially with the recent
availability of the exact cross sections for the 3rd Born approximation [150], is an
improved assessment of the convergence rate of the Born series for rearrangement
collisions of the prototype (3.1).

4 |llustrations
In the preceding exposition, we illuminated the similarities and differences among var-

ious distorted wave models for the general case of the arbitrary nuclear charges Zp and
Zt in process (2.1) for double electron capture. For example, in sub-sections 2.5.6 and
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2.5.7, we highlighted the relationships among the post/prior BDW-4B and CDW-EFS-
EIS methods as well as among the prior/post CDW-4B and CDW-EFS/EIS methods,
respectively. Moreover, throughout the analysis, we emphasized the role of the double
continuum intermediate states populated by the two electrons prior to their capture by
the projectiles. Such twofold electronic ionization continua are explicitly included
in the second-order methods, either in one channel (BCIS-4B, BDW-4B) or two
channels (CDW-4B, CDW-EIS/EFS-4B). The first-order theories, such as the CB1-
4B method, do not take into account the double electronic continuum intermediate
states since the initial and final total scattering states are considered to be the dressed
channel states dbff. The states dbff are the products of the unperturbed channel
states ®; r and the Coulomb logarithmic phase factors exp (&iv; s In (VR F v - R))
generated by the asymptotically present tails of the residual Coulomb potentials,
Vloji = Zp,1(ZTp — 2)/R. Here, R is the vector of the inter-nuclear axis R. Simul-
taneously, R is also the difference between the electronic position vectors {xj, si}
relative to Zt and Zp, respectively, R = x; — sx (k = 1, 2). In other words, using
R in the Coulomb logarithmic phases for the BCIS-4B and BDW-methods amounts
to correlating the two Coulomb centers (the nuclei of the projectile and of the target).
By contrast, the Coulomb logarithmic phases in terms of s (CDW-EIS-4B) or xj
(CDW-EFS-4B) deal only with the projectile or the target Coulomb center at a time
(hence no correlation between the two centers). This difference is immaterial only at
large {R, s} (entrance channel) and large {R, x;} (exit channel), according to (2.113)
and (2.114), but becomes essential at finite distances when these Coulomb logarithmic
phases are employed in the integrals over all distances in the matrix elements of the
transition amplitudes from the BCIS-4B, BDW-4B and CDW-EIS/EFS-4B methods.

These features are illustrated in Fig. 1 where the total cross sections from all the
analyzed methods (CB1-4B, CDW-4B, CDW-EIS/EFS-4B, BCIS-4B, BDW-4B) are
compared with the existing experimental data for double electron capture from helium
by alpha particles. Here, the theories refer to the ground-to-ground state transition
alone:

‘He2t + *He(1s?) — *He(1s?) + ‘He? ™. 4.1)

On the other hand, the measurements displayed on Fig. 1 are for all the final bound
states (ground and excited) of helium as symbolized by:

‘He?t + *He(1s?) — *He(X) + “He?t. 4.2)

Nevertheless, it still makes sense to compare theories for (4.1) and experiments for
(4.2) in Fig. 1, since it has been shown in the CDW-4B method [45] that at least above
1000keV the sum of the contributions from the singly and doubly excited final states
of helium is small. However, it would be important to assess the contribution from
the excited states also below 1000keV. The theoretical results shown in Fig. 1 are all
obtained using (2.225) as the one-parameter Hylleraas wave function [125] for both
the initial and final ground states of helium in symmetric double charge exchange
(4.1) with Zle(ff =2 —0.3125 = 1.6875 (K = P, T). Using the heliumlike ground-
state wave functions with one parameter [125] (Hylleraas) and four parameters [126—
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Fig. 1 Total cross sections Q(cm?) as a function of the incident energy E(keV) for processes (4.1) and
(4.2): double electron capture from 4He(lsz) by 4He2. The results of the computations for process (4.1),
ie. 4He2t +4He(ls2) — 4He(lsz) +4He2t (ground-to-ground-bound-state transition with the initial and
final one-parameter helium wave functions of Hylleraas [125]) by using 5 different methods whose acronyms
are indicated near the lines: CB1-4B [1,3,33,34], BCIS-4B [1,3,32], BDW-4B [1,3,41], CDW-4B [1,3,30,42]
and CDW-EIS-4B [47]. Experimental data for process (4.2), i.e. *He? + 4He(152) — 4He(Z) + *He?t
(ground-to-any-bound-state transitions): A [58], ¢ [61], o [69], V [75], B [76], [J [79] and e [80]. For
computational details, see the cited theoretical studies. In particular, the lines for the BCIS-4B and BDW-4B
methods show here the Q data obtained by 5-dimensional numerical quadratures using the Gauss-Legendre
rule with 96 points and weights per each integration axis [32]
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128] within the CDW-4B method at energies 100-7000keV, it has been verified in
Refs. [32,42], that the total cross sections are not overly sensitive to the static inter-
electronic correlations. It would be useful to check whether this conclusion regarding
(4.1) also holds true for the BCIS-4B and BDW-4B methods.

The status of the first-order theories is evident from Fig. 1 when comparing the CB1-
4B method with the experimental data [58,61,69,75,76,79,80] (presently taken from
the most exhaustive tabulated database Refs. [85,86]). In Fig. 1, the cross sections
from the CB1-4B method are seen to closely follow the measurements at impact
energies from 200 to 800keV. However, the discrepancy between the CB1-4B method
and experiments keeps on increasing with the augmented impact energy. Thus, e.g. at
3000keV, the CB1-4B method overestimates the experimental data by more than an
order of magnitude. This significant and systematic overestimation is a clear indication
of the importance of the double electronic continuum intermediate states that are not
taken into account in the CB1-4B method.

In order to have a more quantitative insight into the role of the intermediate double
ionization continua of the two electrons, it is necessary to pass onto comparisons of
measurements with the second-order methods. To achieve this goal, we examine the
overall performance of the CDW-4B and CDW-EIS-4B methods. Thus, it is seen in
Fig. 1 that the cross sections from the CDW-EIS-4B method are strongly suppressed
relative to those of the CDW-4B method. For example, at the impact energy of 100keV,
the cross sections of the CDW-EIS-4B method underestimate the results of the CDW-
4B method by nearly four orders of magnitude. Such a gigantic and unprecedented
discrepancy is still huge at larger energies. For instance, even at 1000keV, the predic-
tions by the CDW-EIS-4B method are an order of magnitude lower than those due to the
CDW-4B method. The magnitudes of the cross sections from the CDW-4B method are
seen in Fig. 1 to significantly underestimate the experimental data at impact energies
200-3000keV. Also the lineshapes (the behaviors of the cross sections as a function
of the impact energy) are different in the CDW-4B method and measurements. At still
higher energies (4000 and 7000keV), the CDW-4B method is in excellent agreement
with the measurement from Ref. [79]. However, particularly at 4000keV, the situa-
tion is inconclusive since the cross sections from the two independent measurements
[79,80] differ by more than an order of magnitude (see the pertinent remark on p. 3837
in Ref. [32]).

Further, it is observed in Fig. 1 that the cross sections from the BCIS-4B and the
BDW-4B methods agree quite well with each other concerning both their magnitudes
and lineshapes. The cross sections from these two methods would be identical if the
helium bound state wave function were exact. For example, the same cross sections are
obtained from the BCIS-3B and BDW-3B methods in the case of electron capture from
hydrogenlike atomic systems by nuclei in process (3.1) for any initial and final state.
In Fig. 1, at intermediate-to-high energies 100—3000keV, the curvatures of the cross
sections from the BCIS-3B and BDW-3B methods are similar to the common lineshape
that could be drawn through the depicted experimental data to guide the eye. As to the
magnitudes of the cross sections, the BCIS-4B and BDW-4B methods underestimate
the experimental data below 1000 keV, albeit by a much smaller factor than in the CDW-
4B method. On the other hand, the BCIS-4B and BDW-4B methods are in excellent
agreement with the experimental data at impact energies 1000-3000keV. However,
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no similar validity assessment is possible at still higher energies (4000, 7000keV)
because of the mentioned more than an order of magnitude discrepancy between the
two measurements reported in Refs. [79,80]. In fact, at 4000keV, the cross sections
from the BCIS-4B and BDW-4B methods are near the mid-point between the two
symbols for experimental data from Refs. [79,80]. Needless to say, it would be highly
desirable and important to perform some new measurements on (4.2) so as to clarify
this unusual disagreement between the two independent measurements of Schuch et
al. [79] and Afrosimov et al. [80].

Evidently, there is no post-prior discrepancy for (4.1) and (4.2) because these are
symmetric double capture events in collisions between alpha particles and helium.
Moreover, in the case of general heavy particle collisions (mp,t >> 1), and not just
single or double capture processes, the numerical values of total cross sections are
expected to be the same for computations with either the logarithmic Coulomb phase
factors or the associated full Coulomb wave functions for the relative motion of the
two heavy scattering aggregates. This has explicitly been confirmed in the CB1-4B
as well as in the BCIS-3B and BCIS-4B methods for single electron capture in heavy
particle collisions [151,152]. The same conclusion is anticipated to apply also to
double capture. Surprisingly, however, the total cross sections in e.g. the four-body
boundary-corrected continuum intermediate state method for double electron capture
from heliumlike atomic systems by heavy nuclei are significantly different (especially
at intermediate-to-lower impact energies) when computed with the full Coulomb wave
function [49-53] and with its logarithmic Coulomb phase [1,3,32]. To clarify the
matter, especially regarding an earlier observation [3] made on this discrepancy, we
performed a new thorough computation the results of which will be published shortly.

5 Discussion and conclusions

In this work, a parallel structure presentation is expounded by juxtaposing the conven-
tional and distorted wave formalisms of the general quantum-mechanical scattering
theory for double electron capture from heliumlike atomic systems by heavy nuclei.
The former deals directly with the original, analytically unsolvable collisional prob-
lem. The latter solves (by analytical means) a flexible model problem with certain
judicious choices of the distorting potentials and the corresponding distorted wave
functions.

Crucially, however, both frameworks for the full transition amplitudes (as well as for
any approximation) in the prior and post forms satisfy the correct boundary conditions.
These conditions are formulated by the following three simultaneous requirements for:

e (I) the proper asymptotic behaviors of the total scattering wave functions in the
initial and final states of the entire system,

e (II) the consistent connections between the perturbation potentials and the total
scattering wave functions in the entrance and exit channels, and

e (IIT) the presence of short-range perturbation potentials in the transition ampli-
tudes.

@ Springer



Journal of Mathematical Chemistry (2019) 57:1-58 49

The most appropriate way to achieve this in practice runs as follows. Whenever
there are residual Coulomb potentials in the asymptotic regions of the considered
collision:

e (i) the unperturbed channel states have to be multiplied by the corresponding loga-
rithmic Coulomb phase factors for the relative motions of the scattering aggregates,

e (ii) the asymptotically present Coulombic interactions must be subtracted from the
original perturbation interactions, and

e (iii) the modified perturbation potentials (that cause the transitions of the whole
system from the initial to the final states) must be short-range, square-integrable
interactions (i.e. falling off faster than 1/r with the augmentation of the inter-
particle separation r).

Overall, the correct boundary conditions (I)—(IIT) must be implemented by (i)—(iii)
whenever there are asymptotically present Coulomb potentials in a collisional system.
The reason for such a stringent requirement is in making a clear distinction between
the situations before and after the collisional event. This distinction is necessary for
unequivocally attributing the results of the measurements (performed always in the
asymptotic region where collision has been completed) to the interaction region alone.
For if there were any remaining long-range Coulomb interaction in the asymptotic
scattering region, they would never cease to perturb the free channel states. This is
due to the fact that Coulomb potentials produce the Coulomb logarithmic phases
that do not die out even at infinitely large inter-particle distances. These Coulomb
phases always distort the free channels states ®; y. Stated equivalently, when ®;
are multiplied by the Coulomb phases, as per the request (i), the modified channel
states CDi _y are not free any longer. Since in such situations we can no longer speak
about free asymptotic states, it is useful to place the superscnpt =+ (symbolizing the
outgoing/incoming waves) on the channel states, via <I> , to remind us that there are
some Coulomb potentials (and, hence, Coulomb phases) in the asymptotic regions of
the entrance and/or exit channels.

To appreciate this particular feature of Coulomb scattering theory, it is instructive
to see the repercussions of obedience and disobedience of the correct boundary condi-
tions. Thus, when the steps (I)—(III) and (i)—(iii) are accomplished in their entirety, the
pertinent Mgller wave operators exist and they permit the definition of the transition or
T -operators and the scattering or S-matrices. In contradistinction, a disrespect of either
the whole procedure (I)—(III) and (i)—(iii), or implementing these steps incompletely
(e.g. in one channel, but not in the other) would mean that the Mgller wave opera-
tors do not exist, with the consequence of being unable to introduce the T'-operators
and S-matrices [153]. Under such circumstances, attempts to deal with any particular
approximate methods, in spite of the non-existent 7-operators and S-matrices, are
not justified. We presently illustrate how to practically implement the steps (I)—(IIT)
and (i)—(iii) as the gestalt, regarding both the full transition amplitudes and its several
approximate methods.

The purpose of this general, unified and exact setting is to lay the ground for a
systematic and consistent derivation of all the existing approximate methods by making
different choices of the distorting potentials and distorted wave functions. In principle,
any choice of the distorting potentials and distorted wave functions is permitted as long
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as these latter two objects respect the correct boundary conditions through the steps (I)—
(IIT) and (i)—(iii). This is shown here for the four-body formulations of the continuum
distorted wave (CDW-4B) [30,31], the boundary-corrected intermediate state (BCIS-
4B) [32], the Born distorted wave (BDW-4B) [41,42], the continuum distorted wave
— initial/final state (CDW-EIS/EFS-4B) [47] and the boundary-corrected first Born
(CB1-4B) [33,34] methods.

From the unified, general formalism we explicitly derive the transition amplitudes
of all these methods:

e (A) with the full Coulomb wave functions (no eikonal mass limit), and
e (B) with their Coulomb phase factors (due to the eikonal mass limit).

Importantly, however, in the mentioned methods, or in any other properly designed
method, the difference between the total cross sections obtained with (A) and (B) is
totally negligible (barely affecting the third decimal place) from very low to very high
non-relativistic impact energies.

Last but not least, the unifying formalism of the full 7-matrices developed in the
present study has an important feature in establishing the direct relationships among
different distorted wave methods extracted from the general transition amplitudes.
Such insights shed light onto several pertinent aspects, including these issues:

e (a) the relative performance of the analyzed distorted wave methods,

e (b) the role of the double continuum intermediate states of two electrons in the
second-order methods (CDW-4B, BCIS-4B, BDW-4B, CDW-EIS/EFS-4B) rela-
tive to the first-order methods (e.g. CB1-4B) in which such effects are absent from
the onset,

e (c) the extent of the influence of double electronic full Coulomb wave functions
according to their inclusions in two channels, entrance and exit (CDW-4B, CDW-
EIS/EFS-4B) and one channel, entrance or exit (BCIS-4B, BDW-4B),

e (d) the consequences of replacing the double electronic full Coulomb wave func-
tions by their asymptotes (CDW-EIS/EFS-4B) given by the Coulomb logarithmic
phases, especially when compared to the CDW-4B method with no such additional
approximations, and

e (e) the effect of using the two asymptotically equivalent logarithmic Coulomb
phases for the electronic motions in one channel (CDW-EIS/EFS-4B, BDW-4B).

The conclusions can be summarized via:

e (2') At high impact energies, the CDW-4B, BCIS-4B and BDW-4B methods
perform well relative to the experimental data. In sharp contrast, the CDW-
EIS/EFS-4B methods completely fail at all energies. On the other hand, the
CB1-4B method is satisfactory at intermediate, but becomes totally inadequate
at high energies.

e (b’) Twofold continuum states of the two electrons in the intermediate stage of
collisions are of decisive importance in double charge exchange. It is precisely the
neglect of these ionizing states that invalidates the first-order methods (CB1-4B) at
high energies. In the second-order methods, large discrepancies at all energies exist
among the methods that take these electronic continuum states either in a single
channel (BCIS-4B, BDW-4B) or in both channels (CDW-4B, CDW-EIS/EFS-4B).
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e (¢’) Atlower impact energies, the double electronic continua in two channels from
the CDW-4B method for double capture make the total cross sections too large.
This is the same effect encountered in the CDW-3B method for single electron
capture processes. However, for e.g. double capture from helium by alpha parti-
cles, at intermediate and higher energies (250-3000keV), the total cross sections
of the CDW-4B method (with or without the otherwise small contribution from
the final excited heliumlike states) are too low with respect to the experimental
data. For the same process, the BCIS-4B and BDW-4B methods underestimate
the measurements below 1000keV, but above this energy are in a good agreement
with the experimental data at high energies.

e (d") The CDW-4B and CDW-EIS/EFS-4B methods differ in that the latter method
replaces the two electronic full Coulomb waves in only one channel by their
logarithmic phases. Such a replacement has a detrimental effect on the result-
ing total cross sections in the CDW-EIS/EFS-4B methods that underestimate the
experimental data by orders of magnitudes. This completely eliminates the CDW-
EIS/EFS-4B methods from any useful application to double charge exchange
processes.

o (¢/) The only difference between the BDW-4B and CDW-EIS/EFS-4B methods is
in one channel and it is in the forms of the Coulomb logarithmic phase factors. The
CDW-EIS/EFS-4B methods employ the two Coulomb phases for the two electrons
in terms of their distances from the same nucleus in the given channel. Both such
phases have the same joint limit at infinitely large electron-nucleus distances. It is
this latter Coulomb logarithmic phase factor (in terms of the asymptotic electron-
nucleus distances) which is used in the BDW-4B method. The ensuing total cross
sections from the BDW-4B and CDW-EIS/EFS-4B methods differ by more than
two orders of magnitudes at lower energies, and the discrepancy between these two
theories persists to within a factor of ten at higher energies. The CDW-EIS/EFS-
4B methods flagrantly underestimate the experimental data that agree reasonably
well with the BDW-4B method.

Overall, we can conclude that distorted wave methods for double electron capture
from heliumlike atomic systems by heavy nuclei have a varying degree of success
by reference to the existing measurements of total cross sections. More experiments
particularly on double electron capture in collisions of fast alpha particles with helium
are needed to clarify the existing controversy above 3000keV where the total cross
sections measured by Schuch et al. [79] and Afrosimov et al. [80] differ by a factor
of twenty. Among the second-order theories, the CDW-4B, BCIS-4B, BDW-4B are
reasonably satisfactory, whereas the CDW-EIS/EFS-4B methods break down at all
impact energies. The first-order theories (e.g. CB1-4B) are useful only at intermedi-
ate impact energies, but fail at high energies. These findings are in sharp contrast to
single electron capture from heliumlike atomic systems by heavy nuclei for which the
CDW-4B, BCIS-4B, BDW-4B, CDW-EIS/EFS-4B and CB1-4B methods all compare
favorably to the available experimental data at intermediate and high energies. The
primary reason is a significantly enhanced role of continuum intermediate states due to
both electrons in double capture relative to only one active electron in single capture.
In other words, compared to single capture, it follows that double capture is much
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more sensitive to the way in which the twofold ionization continua describe the inter-
mediate stages of the collision. For single capture from heliumlike atomic systems
by heavy nuclei, a simplification of the CDW-4B method through the replacement
of one full electronic Coulomb waves by its asymptotic phase in one channel within
the CDW-EIS/EFS-4B methods yields no significant changes in total cross sections
at intermediate and high energies (below the onset of the Thomas double scattering).
This ceases to be the case for double capture when two full electronic Coulomb waves
from the CDW-4B method are replaced by the two asymptotic Coulomb phases in one
channel in the CDW-EIS/EFS-4B methods. Such a feature might imply that e.g. triple
or quadruple electron capture from multi-electron atomic targets would be even more
sensitive to intermediate multiple electronic continuum states, and this would pose
some new and greater challenges to the adequate theoretical prescriptions. However,
before addressing such multiple capture processes from multi-electron targets, it would
be important to apply the CDW-4B, BCIS-4B and BDW-4B methods to two-electron
capture from multi-electron atoms (C, N, O, Ne, Kr, Ar) by heavy nuclei for which
the experimental data are available at intermediate and high impact energies. Here,
four-body model problems could be used with two nuclei and two active electrons,
while treating the remaining target electrons only through their screening effect in the
frozen core approximation.
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