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Abstract
In this paper, we present a fast-converging iterative scheme to approximate the solution
of a system of Lane–Emden equations arising in catalytic diffusion reactions. In this
method, the original system of differential equations subject to a Neumann boundary
condition at X = 0 and a Dirichlet boundary condition at X = 1, is transformed into
an equivalent system of Fredholm integral equations. The resulting system of integral
equations is then efficiently treated by the optimized homotopy analysis method. A
numerical example is provided to verify the effectiveness and accuracy of the method.
Results have been compared with those obtained by other existing iterative schemes
to show the advantage of the proposed method. It is shown that the residual error in
the present method solution is seven orders of magnitude smaller than in Adomian
decomposition method and five orders of magnitude smaller than in the modified
Adomian decomposition method. The proposed method is very simple and accurate
and it converges quickly to the solution of a given problem.
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1 Introduction

We consider a system of Lane–Emden singular equations of the form [1]:

y′′(x) + 2

x
y′(x) = − f (y(x), z(x)), (1)

z′′(x) + 2

x
z′(x) = −g(y(x), z(x)), (2)

subject to the following boundary conditions:

y′(0) = 0, y(1) = α, z′(0) = 0, z(1) = β, (3)

where α and β are finite real constants. This problem appears in the modelling of
several physical phenomena in applied science, such as chemical reactions, population
evolution, pattern formation, and so on [2–4]. Equations (1) and (2) have singularity at
the origin. The existence of a solution to the general form of the coupled Lane–Emden
Eqs. (1)–(2) subjected to the homogeneous Dirichlet boundary condition has been
established in [4].
It is worth noting that much work has been done to obtain numerical solution of scalar
Lane–Emden singular equation [5–9].We emphasize that, to our knowledge, very little
work has been done on a system of Lane–Emden singular equations. Rach et al. [1]
used Adomian decomposition method (ADM) and its modified version, called the
modified Adomian decomposition method (MADM), for solving the problem under
consideration. These methods produce approximate solutions to the given problem in
the form of series, but need a large number iterations to obtain results with a high
degree of accuracy.
The main aim of this study is to present a fast-converging and straight forward iter-
ative algorithm to obtain numerical solution of the coupled Lane–Emden equations
(CLEE) described by equations (1)–(3). In this method, we first convert the system
of differential Eqs. (1)–(2) subject to the boundary conditions (3) into an equivalent
system of Fredholm integral equations. Then the resulting system is efficiently tackled
by the OHAM. The OHAM is an improved version of the standard homotopy analysis
method [10,11] which contains a convergence control parameter h. In the standard
HAM, this parameter is computed by means of plotting so-called the h-curve. But,
it may be very difficult or impossible to identify the value from the h-curve which
ensures the fastest convergence series solution. In the OHAM, the parameter h is com-
puted by minimizing the squared residual error of the governing equation. Unlike the
homotopy perturbationmethod (HPM) [12–15], ADM [1], MADM [1] and variational
iteration method (VIM) [16], the OHAM is always guaranteed to converge to the solu-
tion of a given problem. A numerical example is presented in order to illustrate the
efficiency and accuracy of the proposed technique. The results obtained by the present
method are compared with those obtained by other existing methods applied to the
CLEE (1)–(3). Comparison shows that the proposed technique has certain advantages
over the existing methods.
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This paper is organized as follows. In Sect.2, we construct an iterative technique based
on an OHAM for approximating the solutions of the coupled Lane–Emden equations
(1)–(3). In Sect. 3, we present and analyze numerical results of the problem considered
and compare our results with other existing methods. Finally, we summarize the main
conclusions of this work in Sect. 4.

2 Derivation of the proposed iterativemethod

The aim of this section is to construct an iterative algorithm based on an OHAM for
solving the system of Eqs. (1)–(2) with boundary conditions (3). To construct the
method, we first convert the given system of singular differential equations into an
equivalent system of integral equations. To do so, we first set y(x) and z(x) as follows
(see [17]):

y(x) = y(0) −
∫ x

0
t

(
1 − t

x

)
f (y(t), z(t))dt, (4)

z(x) = z(0) −
∫ x

0
t

(
1 − t

x

)
g(y(t), z(t))dt, (5)

where y(0) and z(0) are the unknown constants to be determined. By using the bound-
ary conditions at x = 1 from (3) in Eqs. (4)–(5), we obtain

α = y(0) −
∫ 1

0
t (1 − t) f (y(t), z(t))dt, (6)

β = z(0) −
∫ 1

0
t (1 − t) g(y(t), z(t))dt . (7)

The above equations imply that:

y(0) = α +
∫ 1

0
t (1 − t) f (y(t), z(t))dt, (8)

z(0) = β +
∫ 1

0
t (1 − t) g(y(t), z(t))dt . (9)

Substituting the undetermined constants obtained in (8)–(9) into Eqs. (4)–(5), we get
the following system of Fredholm–Volterra integral equations:

y(x) = α +
∫ 1

0
t (1 − t) f (y(t), z(t))dt −

∫ x

0
t

(
1 − t

x

)
f (y(t), z(t))dt,

(10)

z(x) = β +
∫ 1

0
t (1 − t) g(y(t), z(t))dt −

∫ x

0
t

(
1 − t

x

)
g(y(t), z(t))dt .

(11)
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Next, the above coupled integral equations are solved by the optimized homotopy
analysis method [18,19]. To apply the method, we first rewrite the system (10)–(11)
in the following operator forms:

M[y, z] = y(x) − α −
∫ 1

0
t (1 − t) f (y(t), z(t))dt

+
∫ x

0
t

(
1 − t

x

)
f (y(t), z(t))dt, (12)

N [y, z] = z(x) − β −
∫ 1

0
t (1 − t) g(y(t), z(t))dt

+
∫ x

0
t

(
1 − t

x

)
g(y(t), z(t))dt . (13)

According to the OHAM, we represent y(x) and z(x) in infinite series form as

y(x) = y0(x) +
∞∑

m=1

ym(x), z(x) = z0(x) +
∞∑

m=1

zm(x). (14)

The components ym(x) and zm(x), m ≥ 1 of the series solutions (14) are obtained by
solving the following system of m-th order deformation equations, respectively

G (ym(x) − χm ym−1(x)) = h1L1(x)R1,m
(−→y m−1(x),

−→z m−1(x)
)
, (15)

H (zm(x) − χmzm−1(x)) = h2L2(x)R2,m
(−→y m−1(x),

−→z m−1(x)
)
, (16)

where

χm =
{
0, m ≤ 1,
1, m > 1,

−→y n(x) = {y0(x), y1(x), . . . , yn(x)},
−→z n(x) = {z0(x), z1(x), . . . , zn(x)}, (17)

R1,m(
−→y m−1(x),

−→z m−1(x)) = 1

(m − 1)!
∂m−1M

[ ∞∑
m=1

ym(x)pm ,
∞∑

m=1
zm(x)pm

]

∂ pm−1

∣∣∣∣
p=0

,

R2,m(
−→y m−1(x),

−→z m−1(x)) = 1

(m − 1)!
∂m−1N

[ ∞∑
m=1

ym(x)pm ,
∞∑

m=1
zm(x)pm

]

∂ pm−1

∣∣∣∣
p=0

,

(18)

and G and H are auxiliary linear operators satisfying the properties G(0) = 0 and
H(0) = 0. By using Eqs. (14) and Eqs. (12)–(13), from (18) we obtain
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R1,m(
−→y m−1(x),

−→z m−1(x)) = ym−1(x) − (1 − χm)F(x) −
∫ 1

0
t (1 − t)U1,m−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U1,m−1(t)dt, (19)

R2,m(
−→y m−1(x),

−→z m−1(x)) = zm−1(x) − (1 − χm)P(x) −
∫ 1

0
t (1 − t)U2,m−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U2,m−1(t)dt . (20)

where

F(x) = α, P(x) = β, (21)

U1,m−1(x) = 1

(m − 1)!

(
∂m−1 f

(∑∞
m=1 ym(x)pm,

∑∞
m=1 zm(x)pm

)
∂ pm−1

)∣∣∣∣∣
p=0

, (22)

and

U2,m−1(x) = 1

(m − 1)!

(
∂m−1g

(∑∞
m=1 ym(x)pm,

∑∞
m=1 zm(x)pm

)
∂ pm−1

)∣∣∣∣∣
p=0

. (23)

Substituting Eqs. (19) and (20) into the m-th order deformation Eqs. (15) and (16)
respectively, we get

G (ym(x) − χm ym−1(x)) = h1L1(x)

(
ym−1(x) − (1 − χm)F(x)

−
∫ 1

0
t (1 − t)U1,m−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U1,m−1(t)dt

)
, (24)

H (zm(x) − χmzm−1(x)) = h2L2(x)

(
zm−1(x) − (1 − χm)P(x)

−
∫ 1

0
t (1 − t)U2,m−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U2,m−1(t)dt

)
. (25)

We assume that y0(x) = F(x), L1(x) = 1 and G(u) = u. Taking into account these
conditions, fromEq. (24),we can obtain the following terms forOHAMapproximation
to the solution y(x) of (10):
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y0(x) = F(x),

y1(x) = h1

[
−

∫ 1

0
t (1 − t)U1,0(t)dt +

∫ x

0
t

(
1 − t

x

)
U1,0(t)dt

]
,

yk(x) = (1 + h1)yk−1(x) + h1

[
−

∫ 1

0
t (1 − t)U1,k−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U1,k−1(t)dt

]
, k ≥ 2.

(26)

Further, we assume that z0(x) = P(x), L2(x) = 1 and H(u) = u. Taking into
account these conditions, from Eq. (25), we can obtain the following terms for OHAM
approximation to the solution z(x) of (11):

z0(x) = P(x),

z1(x) = h2

[
−

∫ 1

0
t (1 − t)U2,0(t)dt +

∫ x

0
t

(
1 − t

x

)
U2,0(t)dt

]
,

zk(x) = (1 + h2)zk−1(x) + h2

[
−

∫ 1

0
t (1 − t)U2,k−1(t)dt

+
∫ x

0
t

(
1 − t

x

)
U2,k−1(t)dt

]
, k ≥ 2.

(27)

The n-th order OHAM approximations for the system of Eqs. (1)–(3) are given by

Φn(x) = y0(x) +
n∑

m=1

ym(x), Ψn(x) = z0(x) +
n∑

m=1

zm(x). (28)

The approximation solutions Φn and Ψn, as defined in (28), involve the convergence
control parameters h1, h2. We next find the optimal values of h1 and h2 by minimizing
the squared residual errors of governing Eqs. (10)–(11). The squared residual errors
of the coupled integral Eqs. (12) and (13) are given by

S1,n(h1, h2) =
∫ 1

0
(M[Φn(x), Ψn(x)]2)dx, (29)

S2,n(h1, h2) =
∫ 1

0
(N [Φn(x), Ψn(x)]2)dx . (30)

At the minimum, we have

∂

∂h1

∫ 1

0
(M[Φn(x), Ψn(x)]2)dx = 0, (31)

∂

∂h2

∫ 1

0
(N [Φn(x), Ψn(x)]2)dx = 0. (32)
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We note that in some cases it may be difficult or too time-consuming for evaluating the
above integrals. To avoid this drawback, the minimization can be done via the discrete
version for (29)–(30) using a sufficient number of equally spaced points in the domain
associated with the problem. Once the optimal values of the parameters h1, h2 have
been computed, one can obtain the optimal solution of the system of Eqs. (1)–(3) by
using Eqs. (26) and (27).

3 Numerical illustration

In this section, in order to illustrate the accuracy and efficiency of our technique
described in the previous section, we apply it on the following example. We compare
our findings with those obtained by ADM [1] and its modified version given in [1].

Example Consider the following coupled Lane–Emden singular boundary value prob-
lem arising in the study of catalyst diffusion reactions [2]:

y′′ + 2

x
y′ = ay2 + byz,

z′′ + 2

x
z′ = cy2 + dyz,

(33)

subject to the boundary conditions:

y′(0) = 0, y(1) = α, z′(0) = 0, z(1) = β. (34)

The problem (33)–(34) corresponds to (1)–(3)with f (y, z) = ay2+byz and g(y, z) =
cyz + dz2. The parameters a, b, c, d, α, β can be described for the real chemical
reactions. The authors of [2] have established the existence of solution to the problem
(33)–(34).

We solve the above problem with a = 1, b = 2/5, c = 1/2, d = 1, α = 1 and β = 2
using present method (28) for different values of n. Making use of (28) with n = 4,
we get the following fourth order approximate solutions:

Φ4(x, h1, h2) = 1

1134000000
(1134000000 + 144h41(5675139 − 7318255x2

+ 1791111x4 − 152265x6 + 4270x8)

+ 625h1(−1 + x2)(−2177280 + 30240h2(−7 + 3x2)

− 480h22(325 − 144x2 + 3x4)

+ h32(−43101 + 19679x2 − 775x4 + 5x6))

+ 50h21(−1 + x2)(272160(−199 + 21x2)

− 480h2(6452 − 3411x2 + 411x4)

+ h22(−877237 + 478963x2 − 68255x4 + 1985x6))

+ 80h31(−1 + x2)(−540(55973
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− 11304x2 + 519x4) + h2(−819273

+ 492682x2 − 96830x4 + 4945x6))), (35)

Ψ4(x, h1, h2) = 1

453600000
(907200000 + 625h42(419781

− 471860x2 + 53214x4 − 1140x6

+ 5x8) + 864h2(−1 + x2)(−875000

+ 47250h1(−7 + 3x2) − 150h21(1961

− 930x2 + 57x4) + h31(−99153 + 51227x2

− 5830x4 + 200x6)) + 50h32(−1

+ x2)(−6000(3139 − 270x2 + 3x4)

+ h1(−1519117 + 800343x2 − 97575x4

+ 1885x6)) + 120h22(−1 + x2)(157500(−67 + 3x2)

− 600h1(3365 − 1626x2 + 117x4)

+ h21(−692289 + 369041x2 − 49195x4 + 2315x6))). (36)

Equations (35) and (36) involve the convergence control parameters h1 and h2. These
parameters are computed by minimizing the squared residual error of the governing
equations. Using Eqs. (31)–(32), we obtain h1 = −0.7993 and h2 = −0.8281 for
n = 4. Substituting the values h1 = −0.7993 and h2 = −0.8281 into Eqs. (35)–(36),
we obtain the following fourth-order OHAM approximations:

Φ4(x) = 0.781778548 + 0.18906843x2 + 0.026091404x4

+ 0.00265316833x6 + 0.000408448870x8, (37)

Ψ4(x) = 1.69120102 + 0.26999473x2 + 0.034897236x4

+ 0.0033800509x6 + 0.000526960667x8. (38)

The exact solutions of (33)–(34) are not known. Tomeasure the efficiency and accuracy
of the proposed method, we define the maximum residual error functions as follows:

E1,R(x) = max
0≤x≤1

∣∣∣∣xΦ ′′
n (x) + 2Φ ′

n(x) − x

(
Φ2

n (x) + 2

5
Φn(x)Ψn(x)

) ∣∣∣∣,

E2,R(x) = max
0≤x≤1

∣∣∣∣xΨ ′′
n (x) + 2Ψ ′

n(x) − x

(
1

2
Φ2

n (x) + Φn(x)Ψn(x)

) ∣∣∣∣,
(39)

whereΦn(x), Ψn(x) represent the n-th order approximations of y(x) and z(x) respec-
tively.

The optimal values of h1, h2 for different values of n are tabulated in Table 1. For the
case of first singular Lane–Emden equation given in (1), Table 2 presents themaximum
residual errors, for different values of n, obtained using the proposed method, ADM
[1] andmodified ADM [1]. One can observe from this table that themaximum residual
error in the 15-th order proposed OHAM approximation is 6.3116 × 10−10, whereas
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Table 1 Numerical values of the
convergence control parameters
h1, h2

n h1 h2

3 − 0.80822 − 0.82852

6 − 0.78670 − 0.80950

9 − 0.77641 − 0.79010

12 − 0.76985 − 0.78382

15 − 0.76576 − 0.77563

Table 2 Numerical results of maximum residual error of y(x)

n Present method ADM in [1] Modified ADM in [1]

3 1.2697 × 10−2 0.4428 0.2363

6 1.6953 × 10−4 7.1558 × 10−2 2.0937 × 10−2

9 2.5134 × 10−6 1.4907 × 10−2 3.3520 × 10−3

12 3.9764 × 10−8 3.5455 × 10−3 5.1124 × 10−4

15 6.3116 × 10−10 9.1389 × 10−4 7.5440 × 10−5

Table 3 Numerical results of maximum residual error of z(x)

n Present method ADM in [1] Modified ADM in [1]

3 1.2606 × 10−2 0.5706 0.3099

6 1.1949 × 10−4 8.9823 × 10−2 2.5111 × 10−2

9 1.9772 × 10−6 1.8550 × 10−2 3.2833 × 10−3

12 2.6049 × 10−8 4.3938 × 10−3 5.8961 × 10−4

15 4.5961 × 10−10 1.1298 × 10−3 8.6060 × 10−5

Fig. 1 Approximate solutions Φn (x) for n = 2, 3, 4
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Fig. 2 Approximate solutions of Ψn (x) for n = 2, 3, 4

the maximum residual errors in ADM [1] and modified ADM [1] are 9.1389 × 10−4

and 7.5440 × 10−5, respectively. This indicates that the error in OHAM solution is
6 and 5 orders of magnitude smaller than in ADM and its modified version solution,
respectively with the same number of terms in the solution series. On the other hand,
for the second singular Lane–Emden equation of (2), Table 3 presents the maximum
residual errors for different values of n obtained using the proposed method, ADM [1]
and modified ADM [1]. One can see from this table that the maximum residual error
in the 15th order OHAM approximation is 4.5961 × 10−10, whereas the maximum
residual error inADM[1] andmodifiedADM[1] are 1.1298×10−3 and 8.6060×10−5,
repectively, this suggest that the error inOHAMsolution is 7 and 5 orders ofmagnitude
smaller than in the ADM and its modified version, respectively. Tables 2 and 3 indicate
that our method converges faster to the solution of the problem considered than the
methods in [1]. Moreover, from these tables, it can be observed that our method
with a few terms approximates the solution of the problem very well and the error
decreases sharply with the increase in n. The approximate solutions Φn(x) and Ψn(x)
for n = 2, 3, 4 are plotted in Figs. 1 and 2, respectively. Figures 3 and 4 depict the
approximate solutionsΦn(x) andΨn(x) for n = 4, 5, 6, 7. One can observe from these
figures that, the approximate solution converges to a certain function as the number
of terms in the solution series increases. The logarithmic plots of residual errors in
the approximate solutions for different values of n are presented in Figs. 5 and 6,
which shows that as the number of solution components increases, the residual error
decreases.

4 Conclusion

An iterative method based on an OHAM has been proposed to obtain an accurate
approximate solution of the system of Lane–Emden singular boundary value prob-
lems arising in catalytic diffusion reactions. The formulation of this scheme is divided
into two steps. In the first step, the original system of boundary value problems is
converted into an equivalent system of Fredholm integral equations. In the second
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Fig. 3 Approximate solutions Φn (x) for n = 4, 5, 6, 7

Fig. 4 Approximate solutions Ψn (x) for n = 4, 5, 6, 7

Fig. 5 Residual errors in Φn (x)
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Fig. 6 Residual errors in Ψn (x)

step, the resulting problem is efficiently tackled by the optimized homotopy analysis
method. A numerical example was considered to evidence the efficiency of the pro-
posed method. In order to show the advantage of the proposed method, the obtained
results have been compared with those obtained by existing iterative schemes such as
ADM or MADM. It has been observed that the residual error in the proposed OHAM
solution is seven orders of magnitude smaller than in ADM, whereas it is five orders of
magnitude smaller than in MADM with the same number of terms in the series solu-
tion. This suggest that our method converges quickly to the solution of the the coupled
Lane–Emden singular equations than the ADM and MADM. Unlike the ADM and its
modified version, the presented method is guaranteed to converge to the solution of
the problem. To conclude, the proposed iterative algorithm works well for the system
of differential equations subjected to Neumann and Dirichlet boundary conditions.
Moreover, it is a straight forward, highly accurate and very fast convergent. In this
study, the optimized homotopy analysis method has been developed to tackle a system
of singular equations which models reaction diffusion process in a catalyst. Without
doubt, this method can be used to solve other similar problems arising in Chemistry
and other branches of science.
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