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Abstract
Based on the third-order Traub’s method, two iterative schemes with memory are
introduced. The proper inclusion of accelerating parameters allows the introduction
ofmemory. Therefore, the order of convergence of the iterativemethods increases from
3 up to 3.73 without new functional evaluations. One of them includes derivatives and
the other one is derivative-free. The stability of the methods with memory is analyzed
and their basins of attraction are compared to check the differences between them.
The methods are applied to solve two nonlinear problems in Chemistry, such as the
fractional conversion of the nitrogen-hydrogen feed that gets converted to ammonia
and the Colebrook–White equation.
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1 Introduction

In the last decades there is an extensive interest in the research about the solution of
the nonlinear equation f (x) = 0, where function f : I ⊆ R −→ R is defined in an
open interval I , by means of iterative methods. Most of these schemes are based on
the well-known Newton’s method. The use of different techniques helps the design of
new iterative methods.

These kind of schemes can be sorted depending on several criteria. Based on their
expression, they can be either with or without derivatives, with or without memory,
single-step or multistep,…There is another classification that depends on the own fea-
tures of the method, such as the order of convergence, the R-order of convergence [1],
the efficiency index [2] or the optimality based on the Kung and Traub’s conjecture [3].

The main goal in the research of the iterative schemes, apart from solving the
equation f (x) = 0, is the increasing of the order of convergence and the reach of
the optimality. Multistep methods help to increase this order. They can be constructed
using different techniques, such as the composition or theweight functions techniques.
The former uses different steps of known methods with a later treatment to reduce the
number of functional evaluations (see for instance [4,5]). The latter uses a weight
function depending on previous functional evaluations in specific steps of the method
(see for instance [6,7]). Moreover, a common guideline to improve the order of con-
vergence of a method is to include more than one previous iterate to generate the
following one, resulting in methods with memory, where the conjecture of Kung and
Traub is not valid. Several authors can be found in the literature with this purpose,
highlighting the papers of Petković and Sharma [8], Chun and Neta [9], Soleymani et
al. [10] among others. Furthermore, interesting overviews can be found in [11,12].

In this paper, two iterative schemes are introduced. Based on the two-step third-
order Traub’s method [13], the new methods keep the two-step structure. However,
the main difference is the inclusion of memory. With the proper selection of the
accelerating parameters, this fact will increase the order of convergence in comparison
to the original method. The design of the methods, the inclusion of memory and the
proof of their order of convergence cover Sect. 2. In order to analyze the stability of
the schemes, in Sect. 3 a dynamical study based on multidimensional real dynamics
is performed. Section 4 shows how the proposed methods can be used for solving
common equations in Chemistry. Finally, Sect. 5 collects the main conclusions.

2 Improvement of the order of convergence

The third-order convergent Traub’s method [13] has the iterative expression

yk = xk − f (xk)

f ′(xk)
,

xk+1 = yk − f (yk)

f ′(xk)
, k = 0, 1, 2, . . .

(1)

Frommethod (1), somechanges are introduced.Themain idea is themodificationof the
original method to check its performance over two actions: the inclusion of parameters
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as a way to generate methods with memory and the replacement of the derivatives to
analyze a derivative-free Traub-type method. These actions will generate two different
iterative methods with memory. In order to analyze their order of convergence, the
following statement will be applied [11].

Let {gk} and {hk} be two nonzero sequences. In this work, it is used the notation
gk = O(hk), or equivalently gk ∼ hk , to indicate

gk
hk

k→∞−−−→ C,

where C is a nonzero constant.

2.1 Inclusion of memory

The first modification in method (1) consists of the inclusion of a parameter in the first
step, resulting

yk = xk − f (xk)

f ′(xk) + β f (xk)
,

xk+1 = yk − f (yk)

f ′(xk)
, k = 0, 1, 2, . . .

(2)

Method (2) has order of convergence 3, for every value of the parameter, and its error
equation is

ek+1 = 2c2(c2 + β)e3k + O(e4k ), (3)

where α is the solution of f (x) = 0, ek = xk − α and c j = f ( j)(α)
j ! f ′(α)

, j ≥ 2. Let
us remark that for β = −c2, the method is at least fourth-order convergent, but this
value cannot be reached because the value of α is unknown. Therefore, to increase
the order of convergence, we need an approximation of c2 = f ′′(α)

2 f ′(α)
. Using Newton’s

interpolation polynomial of second degree N (t) = f (xk) + f [xk, xk−1](t − xk) +
f [xk, xk−1, yk−1](t − xk)(t − xk−1), the value of β is approximated by

βk = − N ′′(xk)
2N ′(xk)

.

Replacing β by βk in method (2), the obtained expression is

yk = xk − f (xk)

f ′(xk) + βk f (xk)
,

xk+1 = yk − f (yk)

f ′(xk)
, k = 1, 2, . . .

(4)

Method (4) is calledMM1. Its order of convergence is analyzed in the following result.

Theorem 1 Let f : I ⊂ R −→ R be a real function sufficiently differentiable in
an open interval I . If α ∈ I is a simple root of f (x) = 0 and x0 and x1 are initial
estimations close enough to α, then the iterative method MM1 converges to α with
order of convergence p ≈ 3.30.
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Proof From the error equation (3), the following relation is hold:

ek+1 ∼ 2c2(c2 + βk)e
3
k . (5)

Let us denote ek,y = yk −α, for all k. Let N (t) be the Newton’s interpolation polyno-
mial of second degree which interpolates in xk , xk−1 and yk−1. By using the following
Taylor series expansions around α,

f (xk) = f ′(α)[ek + c2e2k + c3e3k + c4e4k ] + O(e5k ),
f (xk−1) = f ′(α)[ek−1 + c2e2k−1 + c3e3k−1 + c4e4k−1] + O(e5k−1),

f (yk−1) = f ′(α)[ek−1,y + c2e2k−1,y + c3e3k−1,y + c4e4k−1,y] + O(e5k−1,y),

(6)

it is verified

c2 + βk = −c3ek−1,y − c3ek−1 + (−c2c3 − c4)ek−1,yek−1 − c4e2k−1 + (2c22 − c3)ek
+ (3c2c3 − c4)ek−1,yek + (3c2c3 − c4)ek−1ek + (−4c32 + 4c2c3 − c4)e2k
+O3(ek, ek−1, ek−1,y)

∼ ek−1.

(7)
Let us suppose that the R-order of the method is at least p, so it is verified

ek+1 ∼ Dk,pe
p
k (8)

such that
Dk,p

k→∞−−−→ Dp,

where Dp is the asymptotic error constant.
In the same way,

ek ∼ Dk−1,pe
p
k−1. (9)

By using relation (9) in (8), we obtain

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)

p ∼ Dk,pD
p
k−1,pe

p2

k−1. (10)

Let us consider that sequence {yk} has R-order of convergence at least p1. Then,

ek,y ∼ Dk,p1e
p1
k ∼ Dk,p1(Dk−1,pe

p
k−1)

p1 ∼ Dk,p1D
p1
k−1,pe

pp1
k−1. (11)

On the other hand, from (2) and the Taylor series expansion around α

f ′(xk) = f ′(α)[1 + 2c2ek + 3c3e
2
k + 4c4e

3
k ] + O(e4k ),

it is obtained

ek,y = ek − f (xk)

f ′(xk)
= (c2 + βk)e

2
k + O(e3k ) ∼ (c2 + βk)e

2
k .
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And the use of (7) and (9) gives

ek,y ∼ ek−1(Dk−1,pe
p
k−1)

2 ∼ D2
k−1,pe

2p+1
k−1 . (12)

Then, from (7) and (9) the error relation (5) becomes

ek+1 ∼ ek−1(Dk−1,pe
p
k−1)

3 ∼ D3
k−1,pe

3p+1
k−1 . (13)

By matching the exponents in (11) and (12), with the exponents in (10) and (13), we
obtain the following system of two equations

{
pp1 = 2p + 1,
p2 = 3p + 1,

whose solution p = 3.30 is the order of convergence of method MM1. ��

2.2 Derivative-freemethods and inclusion of memory

As mentioned in the previous section, the interest in derivative-free methods lies in
the possibility that not every function has a known derivative. In this way, the second
modification introduced in (1) is the replacement of the derivative by a divided differ-
ence. For allowing the inclusion of memory, the next modification is the introduction
of a parameter in the divided difference. The proposed scheme is

yk = xk − f (xk)

f [xk, vk] ,
xk+1 = yk − f (yk)

f [xk, vk] , k = 0, 1, 2, . . .
(14)

where vk = xk + δ f (xk), and its error equation is

ek+1 = (1 + δ f ′(α))(2 + δ f ′(α))c22e
3
k + O(e4k ). (15)

Note that for δ f ′(α) ∈ {−1,−2} the method has, at least, order of convergence 4.
However, as in the previous method, the value of α is unknown. In an analogous way
as in MM1 case, parameter δ is approximated in terms of N (t), resulting

δk = − 1

N ′(xk)
, (16)

and replacing this value in (14), the final method with memory has the iterative expres-
sion

vk = xk + δk f (xk),

yk = xk − f (xk)

f [xk, vk] ,
xk+1 = yk − f (yk)

f [xk, vk] , k = 1, 2, . . .

(17)
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The order of convergence of (17), denoted by MM2, is 3.73, as the following results
establishes.

Theorem 2 Let f : I ⊂ R −→ R be a real function sufficiently differentiable in
an open interval I . If α ∈ I is a simple root of f (x) = 0 and x0 and x1 are initial
approximations close enough to α, then the iterative methodMM2 converges to α with
order of convergence p ≈ 3.73.

Proof First, from the error equation (15)

ek+1 ∼ (1 + δk f
′(α))(2 + δk f

′(α))e3k . (18)

Let us denote ek,y = yk − α, for all k. By using Taylor series expansions (6), the
definition of δk given by (16) satisfies

1 + δk f
′(α) = − c3ek−1,yek−1 + 2c2ek + c3ek−1,yek + c3ek−1ek + (−4c22 + 2c3)e

2
k

+O3(ek−1, ek−1,y).

Then, we have the relation
1 + δk f

′(α) ∼ ek−1,y . (19)

Analogously,

(1 + δk f ′(α))(2 + δk f ′(α)) = −c3ek−1,yek−1 + 2c2ek + c3ek−1,yek + c3ek−1ek
+ 2c3e2k + O3(ek−1, ek−1,y) ∼ ek−1,y .

(20)
Let us suppose that the R-order of the method is at least p, and for sequence {yk} is at
least p1. Then, from the proof of Theorem 1, the following relations are satisfied:

ek ∼ Dk−1,pe
p
k−1, (21)

ek+1 ∼ ep
2

k−1, (22)

ek,y ∼ Dk,p1e
p1
k (23)

∼ Dk,p1(Dk−1,pe
p
k−1)

p1 ∼ Dk,p1D
p1
k−1,pe

pp1
k−1. (24)

As vk = xk + δk f (xk), using the development of f (xk) in (6) and

f (vk) = f ′(α)[vk − α + c2(vk − α)2 + O((vk − α)3)],

it is obtained from the iterative scheme of method MM2

ek,y = ek − f (xk)

f [xk, vk] = (1 + f ′(α)δk)c2e
2
k + O(e3k ) ∼ (1 + f ′(α)δk)e

2
k .

And using relations (19), (21) and (23), we have

ek,y ∼ ek−1,ye
2
k ∼ (Dk−1,p1e

p1
k−1)(Dk−1,pe

p
k−1)

2 ∼ e2p+p1
k−1 . (25)
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Now, from (20) and (21), (18) satisfies

ek+1 ∼ ek−1,ye
3
k ∼ e3p+p1

k−1 . (26)

Finally, as the exponents in (24) and (25) match with the exponents in (22) and (26),
the positive solution of the system of equations

{
pp1 = 2p + p1,
p2 = 3p + p1,

is p ≈ 3.73, p1 ≈ 2.73. Then, the order of convergence of method MM2 is 3.73. ��
Let us note that both methods, MM1 and MM2, increase the order of convergence

of Traub’s method bymeans of memory without any additional functional evaluations.
Moreover,methodMM2 is a derivative-free schemewhich reaches higher convergence
order than method MM1.

3 Dynamical analysis

In this section, we are going to present a dynamical study of the proposed methods
with memory, based on multidimensional real dynamics. Some fundamentals about
real dynamics are introduced below. Further information can be found in [6,14,15].

3.1 Basics onmultidimensional real dynamics

The standard form of an iterative method with memory which uses two previous
iterates to calculate the following one is

xk+1 = φ(xk−1, xk), k ≥ 1,

where x0 and x1 are the initial guesses. A function defined from R
2 to R cannot have

fixed points. Therefore, an auxiliary vectorial function Φ is defined by means of

Φ(xk−1, xk) = (xk, xk+1) = (xk, φ(xk−1, xk)), k = 1, 2, . . .

If (xk−1, xk) is a fixed point of Φ, Φ(xk−1, xk) = (xk−1, xk) so, xk+1 = xk and
xk = xk−1. Then, the discrete dynamical system Φ : R2 → R

2 is defined as

Φ(x) = Φ(z, x) = (x, φ(z, x)), (27)

where φ is the operator of the iterative scheme with memory.
The orbit of a point x is defined as the set {x, Φ(x),Φ2(x), . . . , Φn(x), . . .}. A point

x = (z, x) is a fixed point xF = (z, x)F ofΦ if z = x and x = φ(z, x). If a fixed point
xF of operator Φ is different from (xr , xr ), where xr satisfies f (xr ) = 0, it is called
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strange fixed point. A point xT is T-periodic if ΦT (xT ) = xT and Φ t (xT ) = xT , for
t < T .

In [16], the stability of a periodic point xT is defined from its asymptotical behavior
in the following result.

Theorem 3 Let Φ from R
n to R

n be C2. Assume xT is a T-periodic point. Let
λ1, λ2, . . . , λn be the eigenvalues of Φ ′(xT ), where Φ ′ denotes the Jacobian matrix
of Φ. Then,

1. If all the eigenvalues λ j satisfy |λ j | < 1, then xT is attracting.
2. If one eigenvalue λ j0 satisfies |λ j0 | > 1, then xT is unstable, that is, repelling or

saddle.
3. If all the eigenvalues λ j satisfy |λ j | > 1, then xT is repelling.

In addition, if all the eigenvalues λ j satisfy |λ j | = 1, the T-periodic point is called
hyperbolic. In particular, if there exist an eigenvalue λi such that |λi | < 1 and another
eigenvalue λ j such that |λ j | > 1, then the hyperbolic point is called saddle point.
Moreover, if all the eigenvalues are equal to zero the T-periodic point is superattracting.

A critical point xC satisfies det(Φ ′(xC )) = 0. The basin of attraction of a T-periodic
point x∗, is defined as the set of pre-images of any order such that

A(x∗) = {
x0 ∈ R

n : Φm(x0) → x∗, m → ∞}
.

3.2 Basins of attraction

The dynamical plane represents the basins of attraction of eachmethod. Several imple-
mentations can be found in the literature, such as [17,18], wherein there is shown a
code for different softwares devoted to the complex analysis. For the real dynamics
case, there are two variations of the complex dynamical planes. On the one hand, the
real dynamical plane with memory is very similar to the complex dynamical plane.
The current iteration xk is represented as the abscissae and the previous iteration xk−1
as the ordinates. The method is analyzed over a mesh of values of xk and xk−1 as ini-
tial guesses. On the other hand, there are methods with memory whose final rational
function does not include memory. In this case, the real dynamical plane with memory
turns into the real dynamical line [19], and the method is analyzed over a set of initial
guesses in the real line.

When the rational function includes a parameter, two useful drawing tools are the
convergence plane [20] and the bifurcation diagram. The convergence plane covers an
interval of the parameter as the ordinates, and a set of initial guesses in the real line
as the abscissae. The bifurcation diagram shows the advanced state of the orbit on an
strange fixed point with an small perturbation for a set of values of the parameter.

For the dynamical lines, the dynamical planes and the convergence planes, each
attracting point is mapped with a non-black color. If the orbit of these initial guesses
tends to an attracting fixed point, the initial guess (xk, xk−1) or xk is depicted in the
corresponding color; otherwise, the initial guess is depicted in black.
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3.3 Analysis of the rational functions

The rational functions obtained when each method of Sect. 2 is applied on quadratic
or cubic polynomials are analyzed below.

There are three quadratic polynomials under consideration: p•
2(x) = {p02(x) =

x2, p+
2 (x) = x2 + λ, p−

2 (x) = x2 − λ}, λ > 0. Note that polynomial p+
2 (x) does not

have real roots and the only real root of polynomial p02(x) is x
r = 0, while for p−

2 (x)
the two real roots are xr1,2 = ±√

λ.
The cubic polynomials under analysis, following the guideline of [21], are p•

3(x) =
{p03(x) = x3, p+

3 (x) = x3+x, p−
3 (x) = x3−x, pγ

3 (x) = x3+γ x+1, γ ∈ R}. Note
that for p03(x) and p+

3 (x), the only real root is the value xr = 0, while for p−
3 (x) there

are three real roots, namely xr1 = 0, xr2,3 = ±1. The real roots of pγ
3 (x) depend on the

value of γ . If we denote γ ∗ = −3/ 3
√
4 ≈ −1.8899, when γ < γ ∗, the polynomial

has three xr1−3(γ ) real roots, but for γ > γ ∗ the only real root of pγ
3 (x) is xr1(γ ).

Regarding the study of the fixed points of (27), they must satisfy z = x and
x = φ(z, x), so the real dynamics of Φ becomes in the study of a one-dimensional
operator Φ̃(x) = Φ(z, x)|z=x .

3.3.1 Methods on p•2 (x)

The dynamical systems that result from the application of methods MM1 and MM2
on the proposed polynomials does not depend on the previous iterate z. Therefore, as
Φ̃(x) = Φ(z, x)|z=x , the expressions of Φ̃(x) match with the second component of
the dynamical systems Φ(z, x).

When method MM1 is applied on p•
2(x), the one-dimensional operators get the

expressions

Φ̃0
2,MM1(x) = 5x

18
, Φ̃±

2,MM1(x) = ∓λ3 ∓ 5x6 + 23λx4 ∓ 3λ2x2

2x
(
λ ∓ 3x2

)2 ,

for p02(x), p
+
2 (x) and p−

2 (x), respectively.

Lemma 1 The only fixed points of the operators associated to method MM1 on the
quadratic polynomials p•

2(x) are the roots of their respective polynomials.

By applying method MM2 on polynomials p•
2(x) the one-dimensional operators

are the following:

Φ̃0
2,MM2(x) = 7x

27
, Φ̃±

2,MM2(x) = x
(∓5λ3 + 7x6 ∓ 39λx4 + 13λ2x2

)
(
3x2 ∓ λ

)3 ,

for p02(x), p
+
2 (x) and p−

2 (x), respectively.

Lemma 2 The fixed points for the operators of method MM2, when it is applied on
polynomials p•

2(x), agree with the roots of the corresponding polynomials. In addi-
tion, the rational functions corresponding to polynomials p+

2 (x) and p−
2 (x) have the

strange fixed point x F1 = 0, which is repelling.
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Table 1 Real repelling fixed
points (SFP) when MM2 is
applied on p•

2(x)

p•
2(x) MM2 repelling fixed points

p02(x) –

p+
2 (x) x F1

p−
2 (x) x F1

Fig. 1 Bifurcation diagrams of different one-dimensional operators and initial guesses for λ ∈ (0, 30].
a x F1 = 0, Φ̃+

MM2, b x F1 = 0, Φ̃−
MM2

Table 1 gathers the strange fixed points that are real for every value of λ > 0 for
MM2, classified in terms of the quadratic polynomials.

Figure 1 shows the bifurcation diagrams of the methods that have strange fixed
points. The points in the bifurcation diagrams represent the 500th to 700th iterates
for each value of the parameter. In this way, the behavior of the advanced orbit can
be found. Method MM2 has one strange fixed point for x F = 0 for p+

2 (x), whose
bifurcation diagram is represented in Fig. 1a. For the same method applied on p−

2 (x),
the bifurcation diagram corresponding to the strange fixed point x F = 0 is represented
in Fig. 1b.

A chaotic behavior can be observed in Fig. 1a. For MM2 method, the application
on p+

2 (x) results in an unstable behavior as this polynomial does not have real roots.
Regarding Fig. 1b, there is convergence to the roots of the polynomial, verifying that
there is not any other point where the orbit converges.

Figure 2 shows the dynamical lines of both methods when they are applied on
quadratic polynomials. Orange represents convergence either to x∗ = 0, for p02(x),
or to x∗

1 = √
λ, for p−

2 (x). Blue basin represents the convergence to x∗
2 = −√

λ for
p−
2 (x). The initial guesses cover the values x0 ∈ [−30, 30], with a mesh of 500 points.

The iterations stop when the difference between the current iteration and an attracting
point is lower than 10−3 or the number of iterations reach the value 50.
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x0
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x0
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x0
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x0

-30 -20 -10 0 10 20 30

x0

-30 -20 -10 0 10 20 30

x0

(a) (b) (c)

(d) (e) (f)

Fig. 2 Dynamical lines when the methods are applied on p•
2(x) for λ = 2. aMM1, p02(x), bMM1, p+

2 (x),

cMM1, p−
2 (x), d MM2, p02(x), eMM2, p+

2 (x), f MM2, p−
2 (x)

-30 -20 -10 0 10 20 30
x0

0

10

20

30

-30 -20 -10 0 10 20 30
x0

0

10

20

30

(a) (b)

Fig. 3 Convergence planes when the methods are applied on p−
2 (x), λ ∈ [0, 30]. aMM1, b MM2

Thedynamical lines of themethods over p+
2 (x) are black, since they donot converge

to any real root, as expected. Regarding the application of MM1 and MM2 on p−
2 (x),

the real lines split in two regions, and every initial guess converges to the nearest root.
A way to visualize the behavior for different values of the parameter is the conver-

gence plane. Figure 3 represents, with the same map of colors, the convergence plane
of themethods on polynomial p−

2 (x) for λ ∈ [0, 30]. In addition, black and white lines
represent the superattracting fixed points and the strange fixed points, respectively, for
each value of λ.

The behavior of the convergence planes is similar to the behavior of the real line in
Fig. 2 for p−

2 (x) cases.

3.3.2 Methods on p•3 (x)

The dynamical systems that result from the application of MM1 and MM2 on cubic
polynomials include both the previous iteration z and the current one x . Therefore, for
the analysis of the fixed points, the obtention of Φ̃(x) = Φ(z, x)|z=x is mandatory.

WhenmethodMM1 is applied on cubic polynomials, the one-dimensional operators
are

Φ̃0
3,MM1(x) = 11

24
x, Φ̃±

3,MM1(x) =
x5

(
3x2 ∓ 1

) (
99x8 ± 114x6 + 62x4 ± 18x2 + 3

)
(
3x2 ± 1

) (
6x4 ± 3x2 + 1

)3 ,
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Fig. 4 Dynamical planes when MM1 is applied over cubic polynomials for a–c [x, z] ∈ [−100, 100] ×
[−100, 100] and d–f [x, z] ∈ [−3, 3] × [−3, 3]. a p03(x), b p+

3 (x), c p−
3 (x), d p03(x), e p+

3 (x), f p−
3 (x)

for p03(x) and p±
3 (x), respectively.

Lemma 3 The only fixed points of every operator of method MM1 on the cubic poly-
nomials p03(x), p

−
3 (x) and p+

3 (x) are the roots of these polynomials.

Figure 4 represents the dynamical planes of the methodMM1 for p03(x), p
+
3 (x) and

p−
3 (x). Orange is devoted to (z, x)∗ = (0, 0), blue represents the basin of attraction of

(z, x)∗ = (1, 1) and green is the basin of (z, x)∗ = (−1,−1). Note that the dynamical
planes in the bottom row are a zoom of the dynamical planes in the top row. The
dynamical planes of this work have been generated with a mesh of 500 × 500 points
and the same conditions as in the previous dyamical lines.

There are specific iterative methods for finding multiple roots, since the usual
iterative methods use to fail. Figure 4a, d illustrate this fact. In the other pair of figures,
the stability has a good performance in a neighborhood of the roots, converging to the
superattracting points. Let us remark that the orbit of each initial guess represented in
back converges to the infinity.

Regarding the application of MM1 on pγ
3 (x) = x3 + γ x + 1, the corresponding

one-dimensional operator is

Φ̃
γ

3,MM1(x) = −
(
γ + 3x2

) (
x3 + γ x + 1

)
γ 2 + 6x4 + 3γ x2 − 3x

−
(−γ 3 + 27x6 − 27x3

) (
x3 + γ x + 1

)3
(
γ + 3x2

) (
γ 2 + 6x4 + 3γ x2 − 3x

)3 +x .

(28)
The following result collects the number of fixed points depending on the value of γ .
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Fig. 5 Dynamical planes when MM1 is applied over pγ
3 (x) = x3 + γ x + 1 for different values of γ , in the

region a–c [x, z] ∈ [−100, 100] × [−100, 100] and d–f [x, z] ∈ [−3, 3] × [−3, 3]. a γ = −5, b γ = 1, c
γ = 3, d γ = −5, e γ = 1, f γ = 3

Lemma 4 When method MM1 is applied on polynomial pγ
3 (x), the fixed points of the

rational operator are the real roots of the polynomial and two strange repelling fixed
points x F4,5(γ ) when γ ∈ [γ ∗, γ +], where γ + ≈ 1.483004.

Thedynamical planes ofΦγ

3,MM1 are depicted in Fig. 5.As detailed in the analysis of
the rational function, there are three regions of γ where the behavior can be different.
For γ < γ ∗ there are three real roots and no strange fixed point. In the interval
γ ∗ < γ < γ +, there is only a real root and two strange fixed points. For γ > γ +,
only one real root is present. Therefore, the dynamical planes of Fig. 5 represent one
case in each interval.

The expected behavior is observed in Fig. 5 for every value of γ . In Fig. 5d, there
is convergence to either of the three real roots in a neighborhood of them. Figure 5a,
d show black wide regions which correspond to periodic orbits with no convergence
to the roots. A quite different behaviour is observed from Fig. 5b, c, e, f, where there
is only convergence to the unique real root.

The one-dimensional operatorswhenmethodMM2 is applied on cubic polynomials
are

Φ̃0
3,MM2(x) = 59590

130321
x, Φ̃+

3,MM2(x) = P25(x)(
19x6 + 17x4 + 7x2 + 1

)4 ,

Φ̃−
3,MM2(x) = Q25(x)(−19x6 + 17x4 − 7x2 + 1

)4 ,
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Table 2 Real neutral and
repelling fixed points when
MM2 is applied on p•

3(x)

p•
3(x) MM2 neutral

fixed points
MM2 repelling
fixed points

p03(x) – –

p+
3 (x) – –

p−
3 (x) x F1,2 x F3−8
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Fig. 6 Dynamical planes when MM2 is applied on cubic polynomials, for a–c [x, z] ∈ [−3, 3] × [−3, 3]
and d–f [x, z] ∈ [−100, 100] × [−100, 100]. a p03(x), b p+

3 (x), c p−
3 (x), d p03(x), e p+

3 (x), f p−
3 (x)

for p03(x), p
+
3 (x) and p−

3 (x), respectively, where P25(x) and Q25(x) are polynomials
of degree 25.

Lemma 5 The roots of polynomials p03(x), p
−
3 (x) and p+

3 (x) are fixed points of their
respective operators for method MM2. Furthermore, Φ̃−

3,MM2(x) has 8 strange fixed

points: x F1,2 = ∓ 1√
3
, x F3,4 ≈ ±0.494627, x F5,6 ≈ ±0.518495 and x F7,8 ≈ ±0.49701.

The fixed points x F1,2 are neutral, while x
F
3−8 are repelling.

The strange fixed points whenMM2 is applied over the three cubic polynomials under
consideration are collected in Table 2.

Figure 6 represents the dynamical planes ofMM2 for p03(x), p
+
3 (x) and p−

3 (x). The
dynamical planes of the top and the bottom rows are applied over the same polynomial.
The difference is the magnification of the axes.

123



1296 Journal of Mathematical Chemistry (2019) 57:1282–1300

Table 3 Real attracting and
repelling fixed points of method
MM2 on pγ

3 (x)

γ Attracting
fixed points

Repelling
fixed points

γ < γ1 x∗
1,2,3, x

F
4,5 x F4−11

γ1 < γ < γ ∗ x∗
1,2,3, x

F
4,5 x F4−9

γ ∗ < γ < γ2 x∗
1 , x F4,5 x F4−9

γ2 < γ < 0 x∗
1 , x F4,5 x F4−7

0 < γ < γ3 x∗
1 x F6,7

γ > γ3 x∗
1 –

In comparison with the dynamical planes of MM1 represented in Fig. 4, in the case
of the method MM2 there only is convergence to the roots for p03(x). For the other
two polynomials, we can see a stability behavior as in the MM1 case.

When method MM2 is applied over pγ
3 (x), the one-dimensional operator is of the

form

Φ̃
γ

3,MM2(x) = Hγ

25(x)(
γ 3 + 19x6 + 17γ x4 − 7x3 + 7γ 2x2 − γ x + 1

)4 ,

where Hγ

25(x) denotes a polynomial of degree 25 with the parameter γ .

Lemma 6 The number of real fixed points of methodMM2 when it is applied on pγ
3 (x)

depends on the value of γ . The real fixed points agree with the roots of the polynomial
in the corresponding interval. Furthermore, when γ < γ1 there is presence of eight
strange fixed points. For γ ∈ [γ1, γ2] there are six strange fixed points. For γ ∈ [γ2, 0]
the number of strange fixed points is four and finally, when γ ∈ [0, γ3] there are two
strange fixed points, where γ1 ≈ −31.4326, γ2 ≈ −0.7976 and γ3 ≈ 0.5969.

Table 3 shows all the fixed points of the one-dimensional operator depending on
γ in different intervals. As in method MM1, the roots of pγ

3 (x) are denoted by x∗
1−3.

Let us reamark that the strange fixed points x F4,5, with x F4 = −x F5 , are attracting and
repelling depending on small subintervals of γ .

Figure 7 shows the dynamical planes of Φ
γ

3,MM2 taking different values for γ

according to the intervals used in Table 3. Since there are two strange fixed points that
are attracting for different values of γ , their basin of attraction is represented in white.

Figure 7 shows the good qualities of method MM2 for a generic cubic polynomial.
Despite for little initial guesses there is attraction to a strange fixed point, the usual
behaviour is the convergence to the roots.

4 Numerical performance

This section is devoted to demonstrate the features of the introducedmethodsMM1and
MM2. They will also be compared with two well-known iterative schemes: Newton’
and Traub’s methods. To carry out this study, some nonlinear problems of applications
in Chemistry are solved.
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Fig. 7 Dynamical planes when MM2 is applied over pγ
3 (x) = x3 + γ x + 1 for different values of γ and

the regions [x, z] ∈ [−100, 100] × [−100, 100] and [x, z] ∈ [−3, 3] × [−3, 3]. a γ = −5, b γ = −0.5, c
γ = 3, d γ = −5, e γ = −0.5, f γ = 3

For each case, we show a table that gathers themain results of each iterativemethod.
The stopping criteria is either | f (xk+1)| < 10−500 or |xk+1 − xk | < 10−500, and both
values are displayed in each table. Moreover, the number of iterations needed to
converge and the approximated computational order of convergence ACOC [22] are
also shown.

4.1 Fractional conversion

The fractional conversion describes the fraction of the nitrogen-hydrogen feed that
gets converted to ammonia. For 250 atm and 227K, the expression can be described
by [23,24]

f (x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x − 1.674. (29)

Figure 8 represents the fractional conversion.
In Table 4 we can see the results obtained for the different iterative schemes to

find the solution of the nonlinear problem defined in (29), where the initial guesses
are x0 = {0.1, 0.5}. The obtained values confirm the expected behavior. The methods
with memory converge in less iterations than the original scheme of Traub, and their
ACOC is close to the theoretical values.
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Fig. 8 Fractional conversion. a 0 ≤ x ≤ 0.5, b 0.111 ≤ x ≤ 0.165

Table 4 Results of several iterative methods for solving the nonlinear equation (29) of the fractional
conversion with two different initial guesses

x0 Method Iterations |xk+1 − xk | | f (xk+1)| ACOC

0.1 Newton 11 2.43 × 10−316 5.15 × 10−631 2.00

0.1 Traub 8 2.34 × 10−257 2.17 × 10−769 3.00

0.1 MM1 7 6.69 × 10−390 1.37 × 10−1243 3.20

0.1 MM2 7 1.20 × 10−261 1.38 × 10−882 3.38

0.5 Newton 11 2.11 × 10−421 3.87 × 10−841 2.00

0.5 Traub 7 9.90 × 10−173 1.64 × 10−515 3.00

0.5 MM1 7 6.63 × 10−187 1.40 × 10−594 3.18

0.5 MM2 7 2.93 × 10−342 2.96 × 10−1155 3.38

4.2 Friction coefficients

The friction coefficients used when calculating resistance or pressure loss in ducts,
tubes or pipes can be calculated with the Colebrook–White equation as [25]

f (x) = 1√
x

+ 2 log10

(
θ

3.7065
+ 2.5226

Re
√
x

)
, (30)

where θ is the relation between the roughness of the surface and de hydraulic diameter,
and Re is the number of Reynolds. For the test cases, θ = 10−4 and Re = 4 × 10−3.

Figure 9 represents the function (30). Table 5 collects the data from the application
of the different iterative methods to the problem defined by (30). The methods with
memory MM2 converges in many less iterations than the other three methods, and its
ACOC is close to the theoretical value.
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Fig. 9 Friction coefficients. a 0 ≤ x ≤ 0.1, b 0.03 ≤ x ≤ 0.05

Table 5 Results of several iterative methods for solving the nonlinear equation (30) of the friction coeffi-
cients with two different initial guesses

x0 Method Iterations |xk+1 − xk | | f (xk+1)| ACOC

0.038 Newton 49 1.30 × 10−496 9.40 × 10−502 1.00

0.038 Traub 26 6.63 × 10−490 4.78 × 10−502 1.00

0.038 MM1 26 5.47 × 10−490 3.94 × 10−502 1.00

0.038 MM2 6 6.28 × 10−356 1.37 × 10−1197 3.35

0.044 Newton 49 1.88 × 10−501 1.36 × 10−506 1.00

0.044 Traub 26 2.46 × 10−501 1.78 × 10−513 1.00

0.044 MM1 26 2.02 × 10−501 1.46 × 10−513 1.00

0.044 MM2 7 6.68 × 10−223 1.42 × 10−747 3.39

5 Conclusions

Two new iterative methods with memory have been introduced. In comparison with
Traub’smethod, they have higher order of convergence.MM1 is amethod that includes
derivatives of order 3.30, while MM2 is derivative-free of order 3.73. The stability
of the methods has been verified via the multidimensional real dynamics, showing
the good performance of both methods for quadratic polynomials, of MM1 for a
generic family of cubic polynomials with three roots and of MM2 for specific cubic
polynomials with a multiple root, three simple roots and a single root. In addition, the
capacity of the method to solve a common chemical problem has been shown.
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