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Abstract
This article deals with the dynamical analysis of discrete-time Brusselator models.
Euler’s forward and nonstandard difference schemes are implemented for discretiza-
tion of Brusselator system. We investigate the local dynamics related to equilibria of
both discrete-timemodels. Furthermore, with the help of bifurcation theory and center
manifold theorem, explicit parametric conditions for directions and existence of flip
and Hopf bifurcations are investigated. A novel chaos control method is implemented
in order to control chaos in discrete-time Brusselator models under the influence of
flip and Hopf bifurcations. Numerical simulations are provided to illustrate theoretical
discussion and effectiveness of newly introduced chaos control strategy.

Keywords Brusselator model · Local stability · Flip bifurcation · Hopf bifurcation ·
Chaos control

1 Introduction

Recently, many authors have studied the models of nonlinear oscillatory behavior
related to chemical reactions [1]. These chemical reactions play important role due to
their similarities with neuronal and biological networks. Moreover, many nonlinear
models related to these chemical reactions have complex and chaotic behavior [2]. The
Belousov–Zhabotinsky reaction which is commonly known as BZ reaction [3–5], is a
family of reactions representing the traditional example of non-equilibrium thermody-
namics and such type of reactions yield nonlinear chemical oscillator. The oscillatory
behavior of Brusselator reaction is similar to BZ reaction. The Brusselator reaction
is an oscillating chemical reaction that was first studied by Prigogine and Lefever in
1968 [6] (see also [7]). Moreover, this model is the minimal mathematical system that
can incorporate the oscillating behavior. In general, the Brusselator chemical reaction
is described by the following steps:
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A −→ X , B + X −→ Y + D,

2X + Y −→ 3X , X −→ E .

Assume that concentrations of A and B are constants and reversible reactions are
neglected, then aforementioned reaction displays oscillatory behavior in two species
X and Y . Under these assumptions, we have only two varying concentrations which
are represented by X and Y . This is minimum number required for an isothermal
oscillatory system [8]. Furthermore, the two reaction rate equations describing how
the concentrations of X and Y vary with respect to time τ are given as follows:

d[X ]
dτ

= k1[A]0 − k2[B]0[X ] + k3[X ]2[Y ] − k4[X ],

and

d[Y ]
dτ

= k2[B]0[X ] − k3[X ]2[Y ].

Moreover, the concentrations [A] and [B] are assumed to be constants, and equal
to their initial values represented by [A]0 and [B]0. In order to obtain the dimen-
sionless forms for aforementioned reaction rate equations, we consider the following
transformations:

[X ] −→ x, [Y ] −→ y, τ −→ t = τk3,

α = [A]0k1
k3

, β = [B]0k2
k3

, k3 = k4.

Furthermore, we assume that the initial concentrations related to A and B are greater,
then the maximum rate concentrations for X and Y are described by the following
differential equations:

dx

dt
= α − (1 + β)x + x2y,

dy

dt
= βx − x2y, (1.1)

where α and β are positive constants, which are proportional to the concentrations
of chemical reactants A and B, respectively. Moreover, the dimensionless variables x
and y are proportional to the chemical reactants X and Y , respectively. The nonlinear
equations may have a stable limit cycle for certain values the parameters α and β. This
system exhibits oscillatory changes in the concentrations of X and Y depending upon

the values of α and β. System (1.1) has unique positive equilibrium point
(
α,

β
α

)
. By

standard mathematical calculation yields that the unique positive equilibrium point of
(1.1) is locally asymptotically stable if and only if β < 1 + α2. Moreover, system
(1.1) undergoes Andronov–Hopf bifurcation in the neighborhood of β = 1+α2 at its
positive equilibrium point, and oscillations are observed for β > 1 + α2 [9].
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It is worthwhile to note that discrete-time models governed by difference equations
are more appropriate than the continuous one due to their efficient computational
results and rich dynamical behavior [10,11]. Moreover, this argument also works
effectively in the case of nonlinear oscillatory behavior related to chemical reactions
[12–14]. Therefore, we study stability, bifurcation analysis and chaos control related
to two discrete counterparts of (1.1).

In [15], Kang and Pesin studied a discrete version of Brusselator model governed
by the reaction–diffusion equations. Zafar et al. [16] implemented the classical fourth
order Runge–Kutta method and non-standard finite difference scheme to system (1.1).
Sanayei [17] investigated chaos control for a Brusselator chemical reaction model
under the influence of a sinusoidal force acted on the reaction as a chaotic oscillator.
In [18], Xu et al. discussed Turing instability and pattern formation in a semi-discrete
Brusselator model. Moreover, in [19], Yu and Gumel investigated Hopf bifurcation
and double-Hopf bifurcations of a chemical oscillator arising from the series coupling
of two Brusselators. Similarly, we refer to [20–31] for some interesting investigations
related to various variants of Brusselator models.

According to the definition of Strogatz [32], chaos requires three ingredients, that
is, periodic long-term behavior, deterministic system, and sensitive dependence on
initial conditions. The last item is equivalent to stating that nearby trajectories diverge
exponentially (positive Lyapunov exponent). Continuous systems in a 2-dimensional
phase space cannot experience such a divergence, hence chaotic behaviors can only
be observed in deterministic continuous systems with a phase space of dimension 3,
at least. That is why, there is no chance of chaotic behavior in continuous system
(1.1). On the other hand, in a discrete map it is well known that chaos occurs also
in one-dimension. Therefore, discrete-time chaotic systems, such as the logistic map,
exhibit chaos whatever their dimension.

Aforementioned investigations reveal that it is an interesting mathematical study
related to period-doubling bifurcation, Neimark–Sacker bifurcation and chaos control
for discrete counterparts of system (1.1). In order to discuss the rich dynamical study
of the system (1.1), we consider the discrete counterparts of (1.1). For this, we apply
forward Euler’s method to the system (1.1) as follows:

xn+1 = xn + h
(
α − (1 + β)xn + x2n yn

)
,

yn+1 = yn + h
(
βxn − x2n yn

)
, (1.2)

where 0 < h < 1 represents step size for Euler’s method. Furthermore, in order to
obtain a dynamically consistent discrete-timemodel, a nonstandard difference scheme
yields the following discrete-time model:

xn+1 = hα + xn + hx2n yn
1 + h(1 + β)

,

yn+1 = yn + βhxn
1 + hx2n

. (1.3)
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In [33], Din investigated local stability of equilibria, flip and Hopf bifurcations, and
chaos control for discrete-time glycolysis models. Moreover, Din et al. [34] discussed
qualitative behavior including stability analysis, bifurcation analysis and chaos control
in discrete-time models related to chlorine dioxide–iodine–malonic acid reaction. In
both [33] and [34], step size is taken as bifurcation parameter. In order to discuss
chaos control, one cannot apply OGY method while keeping step size ( that is, h) as
bifurcation parameter. In order to remove this deficiency, a new hybrid chaos control
technique is implemented for systems (1.2) and (1.3).

The main contributions of this article are summarized as follows:

• A novel dynamically consistent discrete-time Brusselator model (1.3) is proposed
which undergoes Hopf bifurcation at its unique positive steady-state.

• A novel hybrid control technique is introduced for controlling chaos under the
influence of flip and Hopf bifurcations in systems (1.2) and (1.3).

• The effectiveness of proposed strategy is illustrated through suitable numerical
simulations, and its comparison with existing hybrid control strategy.

The remaining discussion in this paper is organized as follows. In Sect. 2, we dis-
cuss the local dynamical behaviors of (1.2) and (1.3) at their positive steady-states. In
Sect. 3, bifurcation theory related to normal forms and center manifold theorem are
implemented to discuss existence and directions of flip (period-doubling) for the sys-
tem (1.2) at its positive steady-state. Section 4 is related to Neimark–Sacker (Hopf)
bifurcations for systems (1.2) and (1.3) at their positive steady-states. Moreover, a
novel chaos control technique is introduced in Sect. 5. Finally, numerical simulations
are provided in Sect. 6 in order to illustrate the theoretical discussion for the systems
(1.2) and (1.3).

2 Local stability analysis

In this section, we discuss the local dynamical behaviors of systems (1.2) and (1.3).
For this, first we investigate steady-states related to these systems. The steady-states
of (1.2) solve the following 2-dimensional algebraic system:

x = x + h
(
α − (1 + β)x + x2y

)
, y = y + h

(
βx − x2y

)
, (2.1)

Solving (2.1) yields E =
(
α,

β
α

)
as the unique steady-state for the system (1.2).

Moreover, variational matrix of (1.2) at E is computed as follows:

J (E) =
[
1 + h(β − 1) hα2

−hβ 1 − hα2

]
.

Furthermore, the characteristic polynomial of J (E) is given as follows:

P(λ) = λ2 −
(
2 − h

(
1 + α2 − β

))
λ + 1 − h − hα2 + h2α2 + hβ. (2.2)
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Moreover, from (2.2) it follows that

P(1) = h2α2 > 0, (2.3)

P(−1) = 4 + h
(
α2(h − 2) + 2(β − 1)

)
, (2.4)

and
P(0) = 1 − h − hα2 + h2α2 + hβ. (2.5)

Furthermore, keeping in view the relations between coefficients and roots for a
quadratic equation [35–40], the following Lemma is presented:

Lemma 2.1 Consider the quadratic polynomial P(μ) = μ2 − pμ + q, satisfying
P(1) > 0 such that μ1, μ2 are roots of P(μ) = 0. Then, the following statements hold
true:

(a) |μ1| < 1 and |μ2| < 1 iff P(−1) > 0 and P(0) < 1.
(b) |μ1| < 1 and |μ2| > 1, or |μ1| > 1 and |μ2| < 1 iff P(−1) < 0.
(c) |μ1| > 1 and |μ2| > 1 iff P(−1) > 0 and P(0) > 1.
(d) μ1 = −1 and |μ2| �= 1 iff P(−1) = 0 and P(0) �= ±1.
(e) μ1 and μ2 are complex and |μ1| = |μ2| = 1 iff p2 − 4q < 0 and P(0) = 1.

Moreover, from (2.3) we have that P(1) = h2α2 > 0. Thus, Lemma 2.1 can be
implemented to prove the following results.

Lemma 2.2 For the steady-state E =
(
α,

β
α

)
of (1.2), the following statements hold

true:

(i)
(
α,

β
α

)
is a sink if and only if

4 + h2α2 + 2hβ > 2hα2 + 2h,

and

hα2 + β < 1 + α2.

(ii)
(
α,

β
α

)
is a saddle point if and only if

4 + h2α2 + 2hβ < 2hα2 + 2h.

(iii)
(
α,

β
α

)
is a repeller if and only if

4 + h2α2 + 2hβ > 2hα2 + 2h,

and

hα2 + β > 1 + α2.
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(iv) Assume that λ1 and λ2 be roots of (2.2), then λ1 = −1 and |λ2| �= 1 if and only
if

h = 1 + α2 − β ± √
α4 + (β − 1)2 − 2α2(1 + β)

α2 ,

hα2 + β �= 1 + α2,

and

2 + h2α2 + hβ �= h + hα2.

(v) Suppose thatλ1 andλ2 be roots of (2.2), thenλ1 andλ2 are complexwith absolute
values equal to 1 if and only if

h = 1 + α2 − β

α2 ,

and

α4 + (β − 1)2 < 2α2(1 + β).

Next, we discuss the dynamical behavior of (1.3) at its positive steady-state
(
α,

β
α

)
.

For this, the variational matrix of (1.3) at
(
α,

β
α

)
is computed as follows:

M

(
α,

β

α

)
=

[
1+2hβ

1+h(1+β)
hα2

1+h(1+β)

− hβ

1+hα2
1

1+hα2

]
.

Furthermore, the characteristic polynomial of M
(
α,

β
α

)
is calculated as follows:

F(λ) = λ2 −
(
2 + 1

1 + hα2 − 1 + 2h

1 + h + hβ

)
λ + 1 + h

(
2 + hα2

)
β(

1 + hα2
)
(1 + h + hβ)

. (2.6)

From (2.6), we have

F(1) = h2α2
(
1 + hα2

)
(1 + h + hβ)

> 0,

F(−1) = 4 + h
(
2 + 6β + α2(2 + h + 4hβ)

)
(
1 + hα2

)
(1 + h + hβ)

> 0,

and

F(0) = 1 + h
(
2 + hα2

)
β(

1 + hα2
)
(1 + h + hβ)

> 0.
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Moreover, dynamical behavior of (1.3) at its steady-state
(
α,

β
α

)
is described in the

following Lemma.

Lemma 2.3 For the system (1.3) the following results hold true:

(i) The steady-state
(
α,

β
α

)
for (1.3) is a sink if and only if

1 + h
(
2 + hα2

)
β(

1 + hα2
)
(1 + h + hβ)

< 1.

(ii) The steady-state
(
α,

β
α

)
for (1.3) cannot be a saddle point for all α, β > 0 and

0 < h < 1.
(iii)

(
α,

β
α

)
is a source if and only if

1 + h
(
2 + hα2

)
β(

1 + hα2
)
(1 + h + hβ)

> 1.

(iv) Suppose thatλ1 andλ2 be roots of (2.6), thenλ1 andλ2 are complexwith absolute
values equal to 1 if and only if

h = β − 1 − α2

α2 ,

and

α4(4β − 1) + 2α2
(
1 + β − 4β2

)
+ (β − 1)(1 + β(3 + 4β)) > 0.

3 Flip bifurcation

In this section, center manifold theorem and bifurcation theory are implemented in
order to investigate the existence and direction of period-doubling(flip) bifurcation at

positive steady-state
(
α,

β
α

)
of the system (1.2). For this, we choose h as bifurcation

parameter and taking into account the following conditions:

h ≡ h1 = 1 + α2 − β ± √
α4 + (β − 1)2 − 2α2(1 + β)

α2 , (3.1)

h1α
2 + β �= 1 + α2, (3.2)

and
2 + h21α

2 + h1β �= h1(1 + α2). (3.3)

Let us consider

�PD =
{
(α, β, h1) ∈ R

3+ : (3.1), (3.2) and (3.3) are satisfied
}

.
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If (α, β, h1) ∈ �PD , then roots of (2.2) are λ1 = −1 and

λ2 := α2 − 1 − (
α2 − β

)2 ± L
(
1 + α2 − β

) + 2β

α2 ,

where

L =
√

α4 + (−1 + β)2 − 2α2(1 + β).

Assume that (α, β, h1) ∈ �PD , then (1.2) is described by the following mapping:

(
U
V

)
→

(
U + h1

(
α − (1 + β)U +U 2V

)
V + h1

(
βU −U 2V

)
)

. (3.4)

Moreover, denote by h̄ as bifurcation parameter satisfying |h̄| � 1, then perturbation
mapping for (3.4) is described as follows:

(
U
V

)
→

(
U + (h1 + h̄)

(
α − (1 + β)U +U 2V

)
V + (h1 + h̄)

(
βU −U 2V

)
)

. (3.5)

By taking into account the transformations x = U −α and y = V − β
α
, then it follows

from (3.5) that:

[
x
y

]
→

[
1 + h1(β − 1) h1α2

−h1β 1 − h1α2

] [
x
y

]
+

[
f1(x, y, h̄)

f2(x, y, h̄)

]
, (3.6)

where

f1(x, y, h̄) = h1β

α
x2 + 2h1αxy + h1x

2y + (β − 1)xh̄ + α2yh̄

+β

α
x2h̄ + 2αxyh̄ + O

(
(|x | + |y| + |h̄|)4

)
,

and

f2(x, y, h̄) = −h1β

α
x2 − 2h1αxy − h1x

2y − βxh̄ − α2yh̄

−β

α
x2h̄ − 2αxyh̄ + O

(
(|x | + |y| + |h̄|)4

)
.

For the conversion of the matrix

[
1 + h1(β − 1) h1α2

−h1β 1 − h1α2

]
into normal form, we

consider the following transformation

(
x
y

)
= T

(
u
v

)
, (3.7)
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where

T =
(

h1α2 h1α2

h1(1 − β) λ2 − 1 + h1(1 − β)

)

be a non-singular matrix. From (3.6) and (3.7), we obtain

(
u
v

)
→

(−1 0
0 λ2

) (
u
v

)
+

(
f3(u, v, h̄)

f4(u, v, h̄)

)
, (3.8)

where

f3(u, v, h̄) =
(

β
(
h1(α2 − β + 1) + λ2 − 1

)

α3 (λ2 − 1)

)
x2 +

(
2

(
h1(α2 − β + 1) + λ2 − 1

)

α (λ2 − 1)

)
xy

+
(
h1(α2 − β + 1) + λ2 − 1

α2 (λ2 − 1)

)
x2y

+
(

βh1
(
α2 − β + 2

) + (λ2 − 1) (β − 1) − h1
h1α2 (λ2 − 1)

)
xh̄

+
(
h1

(
α2 − β + 1

) + λ2 − 1

h1 (λ2 − 1)

)
yh̄ +

(
β

(
h1(α2 − β + 1) + λ2 − 1

)

α3h1 (λ2 − 1)

)
x2h̄

+
(
2

(
h1(α2 − β + 1) + λ2 − 1

)

αh1 (λ2 − 1)

)
xyh̄ + O

(
(|u| + |v| + |h̄|)4) ,

f4(u, v, h̄) =
(

βh1
(
α2 − β + 1

)

α3 (1 − λ2)

)
x2 +

(
2h1

(
α2 − β + 1

)

α (1 − λ2)

)
xy

+
(
h1

(
α2 − β + 1

)

α2 (1 − λ2)

)
x2y +

(
α2β − β2 + 2 β − 1

α2 (1 − λ2)

)
xh̄

+
(

α2 − β + 1

1 − λ2

)
yh̄ +

(
β

(
α2 − β + 1

)

α3 (1 − λ2)

)
x2h̄

+
(
2

(
α2 − β + 1

)

α (1 − λ2)

)
xyh̄ + O

(
(|u| + |v| + |h̄|)4) ,

x = h1α
2(u + v), y = −(2 + h1(β − 1))u + (λ2 − 1 − h1(β − 1))v.

For the implementation of the center manifold theorem [41] to (3.8), let Wc(0, 0, 0)
denotes the center manifold of (3.8) evaluated at (0, 0) in a small neighborhood of
h̄ = 0. Then, Wc(0, 0, 0) is computed as follows:

Wc(0, 0, 0) =
{
(u, v, h̄) ∈ R

3 : v = s1u
2 + s2uh̄ + s3h̄

2 + O
(
(|u| + |h̄|)3

)}
,
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where

s1 = −h21α
(
α2 − β + 1

)
(h1 β − 2 h1 + 4)

(λ2 − 1)2
,

s2 = α2h1 − 2 α2 + 2 β − 2

(λ2 − 1)2
, s3 = 0.

Furthermore, themap restricted to the center manifoldWc(0, 0, 0) is given as follows:

F : u → −u + m1u
2 + m2uh̄ + m3u

2h̄ + m4uh̄
2 + m5u

3 + O
(
(|u| + |h̄|)4

)
,

where

m1 = −h1α
(
h1 α2 − β h1 + h1 + λ2 − 1

)
(β h1 − 2 h1 + 4)

λ2 − 1
,

m2 = α2h12 − 2 α2h1 + 2 β h1 − 2 h1 − 2 λ2 + 2

h1 (λ2 − 1)
,

m3 = αβh1
(
α2h1 − β h1 + h1 + λ2 − 1

)
(2s2h1 + 1)

λ2 − 1

−2h1αs2
(
α2h1 − β h1 + h1 + λ2 − 1

)
(β h1 − h1 + 2)

λ2 − 1

−2α
(
h1(α2 − β + 1) + λ2 − 1

)
(h1s2(βh1 − h1 − λ2 + 1) + h1(β − 1) + 2)

λ2 − 1

+ s1
(
h1(α2h1 + α2λ2 − α2 − βλ2 + β + λ2 − 1) + λ2(λ2 − 2) + 1

)

h1 (λ2 − 1)
,

m4 = s2
(
h1

(
α2h1 + α2λ2 − α2 − β λ2 + β + λ2 − 1

) + λ2 (λ2 − 2) + 1
)

h1 (λ2 − 1)
,

and

m5 = −h1α
(
h1(α2 − β + 1) + λ2 − 1

)
(h1(αβh1 − αh1 + 2βs1 + 2α − 4s1) − 2s1(λ2 − 3))

λ2 − 1
.

Next, we define the following two nonzero real numbers:

l1 =
(

∂2 f1
∂u∂ h̄

+ 1

2

∂F

∂ h̄

∂2F

∂u2

)

(0,0)
= α2h21 − 2 α2h1 + 2 β h1 − 2 h1 − 2 λ2 + 2

h1 (λ2 − 1)
,

and

l2 =
(
1

6

∂3F

∂u3
+

(
1

2

∂2F

∂u2

)2
)

(0,0)

= m2
1 + m5.
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Due to aforementioned computation, we have the following result about period-
doubling bifurcation of system (1.2).

Theorem 3.1 Suppose that l1 �= 0 and l2 �= 0, then system (1.2) undergoes period-
doubling bifurcation at the unique positive equilibrium point when parameter h varies
in small neighborhood of h1. Furthermore, if l2 > 0, then the period-two orbits that

bifurcate from
(
α,

β
α

)
are stable, and if l2 < 0, then these orbits are unstable.

4 Hopf bifurcation

This section is related to investigate the conditions for the existence and direction of

Hopf bifurcation at positive steady-state
(
α,

β
α

)
of system (1.2). In order to obtain the

parametric conditions for existence of Hopf bifurcation, the point
(
α,

β
α

)
should be

non-hyperbolic such that the variational matrix evaluated at
(
α,

β
α

)
has both complex

eigenvalues with absolute values equal to 1. For this, first we suppose that

h ≡ h2 := 1 + α2 − β

α2 .

Secondly, we assume that the following inequality holds true:

α4 + (β − 1)2 < 2α2(1 + β).

Under aforementioned conditions, both roots of (2.2) are complex having absolute
values equal to 1. Assume that

�NS =
{
(α, β, h2) ∈ R

3+ : h2 = 1 + α2 − β

α2 , α4 + (β − 1)2 < 2α2(1 + β)

}
.

Let (α, β, h2) ∈ �NS , then (1.2) is described by the following mapping:

[
U
V

]
→

[
U + h2

(
α − (1 + β)U +U 2V

)
V + h2

(
βU −U 2V

)
]

. (4.1)

Next, we take h̃ as the bifurcation parameter, then perturbation mapping for (4.1) is
described as follows:

[
U
V

]
→

[
U + (h2 + h̃)

(
α − (1 + β)U +U 2V

)
V + (h2 + h̃)

(
βU −U 2V

)
]

, (4.2)

where |h̃| << 1 represents the small perturbation parameter. Under the transforma-
tions x = U − α and y = V − β

α
the map (4.2) is converted into the following

form:
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[
x
y

]
→

[
1 + (h2 + h̃)(β − 1) (h2 + h̃)α2

−(h2 + h̃)β 1 − (h2 + h̃)α2

] [
x
y

]
+

[
g1(x, y)
g2(x, y)

]
, (4.3)

where

g1(x, y) = (h2 + h̃)β

α
x2 + 2(h2 + h̃)αxy + (h2 + h̃)x2y + O

(
(|x | + |y|)4

)
,

and

g2(x, y) = − (h2 + h̃)β

α
x2 − 2(h2 + h̃)αxy − (h2 + h̃)x2y + O

(
(|x | + |y|)4

)
.

Furthermore, the characteristic equation for the variational matrix of (4.3) at its fixed
point (0, 0) is given as follows:

μ2 − ϕ(h̃)μ + ψ(h̃) = 0, (4.4)

where

ϕ(h̃) = 2 − (h2 + h̃)
(
1 + α2 − β

)
,

and

ψ(h̃) = 1 − (h2 + h̃) − (h2 + h̃)α2 + (h2 + h̃)2α2 + (h2 + h̃)β.

Assume that (α, β, h2) ∈ �NS , then roots of (4.4) are computed as follows:

μ1 :=
ϕ(h̃) − i

√
4ψ(h̃) −

(
ϕ(h̃)

)2

2
,

and

μ2 :=
ϕ(h̃) + i

√
4ψ(h̃) −

(
ϕ(h̃)

)2

2
.

Furthermore, we obtain that

|μ1| = |μ2| =
√
1 − (h2 + h̃) − (h2 + h̃)α2 + (h2 + h̃)2α2 + (h2 + h̃)β.

Moreover, with simple computations it follows that

(
d|μ1|
dh̃

)

h̃=0
=

(
d|μ2|
dh̃

)

h̃=0
= 1

2

(
1 + α2 − β

)
�= 0.
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Moreover, we suppose that ϕ(0) �= 0 and ϕ(0) �= −1, then it follows that

1 + α2 �= β + √
2α, and 1 + α2 �= β + √

3α. (4.5)

Suppose that (α, β, h2) ∈ �NS and conditions (4.5) hold true, then it follows that
ϕ(0) �= ±2, 0,−1. Thus, we have μk

1, μ
k
2 �= 1 for all k = 1, 2, 3, 4 at h̃ = 0. Due to

these assumptions, it follows that the roots of (4.4) do not lie in the intersection of the
unit circle with the coordinate axes when h̃ = 0. Suppose that κ and ω denote real
and imaginary parts of μ2 at h̃ = 0, respectively, then we have

κ := 1

2

(
2 −

(
1 + α2 − β

)2
α2

)
,

and

ω :=
(
1 + α2 − β

) √
2α2(1 + β) − α4 − (1 − β)2

2α2 .

Now, we consider the following transformation:

(
x
y

)
→

(
(h2 + h̃)α2 0

κ − 1 + (h2 + h̃)(1 − β) −ω

) (
u
v

)
. (4.6)

Implementation of transformation (4.6), the normal form of (4.3) is computed as
follows: (

u
v

)
→

(
κ −ω

ω κ

) (
u
v

)
+

(
P̃(u, v)

Q̃(u, v)

)
, (4.7)

where

P̃(u, v) = β

α3 x
2 + 2

α
xy + 1

α2 x
2y + O((|u| + |v|)4),

Q̃(u, v) =
(

β(α4h̃ + α4 − α2βh̃ − 2α2β + α2h̃ + α2κ + α2 + β2 − 2β + 1)

ωα5

)
x2

+
(
2(α4h̃ + α4 − α2βh̃ − 2α2β + α2h̃ + α2κ + α2 + β2 − 2β + 1)

ωα3

)
xy

+
(

α4h̃ + α4 − α2βh̃ − 2α2β + α2h̃ + α2κ + α2 + β2 − 2β + 1

ωα4

)
x2y

+ O((|u| + |v|)4),
x = (h2 + h̃)α2u, and y =

(
κ − 1 + (h2 + h̃)(1 − β)

)
u − ωv.

We compute the following Lyapunov first exponent at (u, v, h̃) = (0, 0, 0) as follows:

L1 =
[

− Re

(
(1 − 2μ1)μ

2
2

1 − μ1
ζ20ζ11

)
− 1

2
|ζ11|2 − |ζ02|2 + Re(μ2ζ21)

]
,
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where

ζ20 = 1

8

[
P̃uu − P̃vv + 2Q̃uv + i

(
Q̃uu − Q̃vv − 2 P̃uv

)]
,

ζ11 = 1

4

[
P̃uu + P̃vv + i

(
Q̃uu + Q̃vv

)]
,

ζ02 = 1

8

[
P̃uu − P̃vv − 2Q̃uv + i

(
Q̃uu − Q̃vv + 2 P̃uv

)]
,

and

ζ21 = 1

16

[
P̃uuu + P̃uvv + Q̃uuv + Q̃vvv + i

(
Q̃uuu + Q̃uvv − P̃uuv − P̃vvv

)]
.

Furthermore, the partial derivatives related to P̃ and Q̃ at (u, v, h̃) = (0, 0, 0) are
computed as follows:

P̃uu = − (2(α2 − β + 1))(α2β − 2α2κ − β2 + 3β − 2)

α3 ,

Q̃uv = −2(α4 − 2α2β + α2κ + α2 + β2 − 2β + 1)(α2 − β + 1)

α3 ,

Q̃uu = −2(α4 − 2α2β + α2κ + α2 + β2 − 2β + 1)(α2 − β + 1)(α2β − 2α2κ − β2 + 3β − 2)

α5ω
,

P̃uv = −2ω(α2 − β + 1)

α
, P̃uuu = −6(α2 − β + 1)2(α2β − α2κ − β2 + 2β − 1)

α4 ,

Q̃uuv = −2(α4 − 2α2β + α2κ + α2 + β2 − 2β + 1)(α2 − β + 1)2

α4 ,

Q̃uuu = −6(α4 − 2α2β + α2κ + α2 + β2 − 2β + 1)(α2β − α2κ − β2 + 2β − 1)(α2 − β + 1)2

α6ω
,

P̃uuv = −2ω(α2 − β + 1)2

α2 ,

Q̃vvv = Q̃uvv = P̃vvv = P̃uvv = P̃vv = Q̃vv = 0.

Keeping in view aforementioned calculations and implementing bifurcation theory
[42–46], we have the following result which gives criterion of Hopf bifurcation at(
α,

β
α

)
for the system (1.2).

Theorem 4.1 Suppose that (4.5) holds true and L1 �= 0, then system (1.2) undergoes

Hopf bifurcation at
(
α,

β
α

)
when h varies in a small neighborhood of h2 = 1+α2−β

α2 .

Moreover, if L1 < 0, then an attracting invariant closed curve bifurcates from
(
α,

β
α

)

for h > h2, and if L1 > 0, then a repelling invariant closed curve bifurcates from(
α,

β
α

)
for h < h2.

Next, we consider the following set for the system (1.3):


N B =
{
(α, β, h3) : h3 = β − 1 − α2

α2 , �(α, β) > 0, α > 0, β > 0

}
,
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where

�(α, β) := α4(4β − 1) + 2α2
(
1 + β − 4β2

)
+ (β − 1)(1 + β(3 + 4β)).

Moreover, we consider the mapping

[
X
Y

]
→

⎡
⎣

(h3+ĥ)α+X+(h3+ĥ)X2Y
1+(h3+ĥ)(1+β)

Y+β(h3+ĥ)X
1+(h3+ĥ)X2

⎤
⎦ , (4.8)

where |ĥ| << 1 is small bifurcation parameter for (1.3). Furthermore, the transfor-
mations x = X − α and y = Y − β

α
convert (4.8) into the following form:

[
x
y

]
→

⎡
⎣

1+2(h3+ĥ)β

1+(h3+ĥ)(1+β)

(h3+ĥ)α2

1+(h3+ĥ)(1+β)

− (h3+ĥ)β

1+(h3+ĥ)α2
1

1+(h3+ĥ)α2

⎤
⎦

[
x
y

]
+

[
H1(x, y)
H2(x, y)

]
, (4.9)

where

H1(x, y) =
(

(h3 + ĥ)β

α(1 + (h3 + ĥ)(1 + β))

)
x2 +

(
2α(h3 + ĥ)

1 + (h3 + ĥ)(1 + β)

)
xy

+
(

h3 + ĥ

1 + (h3 + ĥ)(1 + β)

)
x2y + O

(
(|x | + |y|)4

)
,

and

H2(x, y) =
(

(α2(h3 + ĥ) − 1)β(h3 + ĥ)

α(α2(h3 + ĥ) + 1)2

)
x2 −

(
2α(h3 + ĥ)

(α2(h3 + ĥ) + 1)2

)
xy

−
(

β(h3 + ĥ)2(α2(h3 + ĥ) − 3)

(α2(h3 + ĥ) + 1)3

)
x3 +

(
(h3 + ĥ)(3α2(h3 + ĥ) − 1)

(α2(h3 + ĥ) + 1)3

)
x2y

+ O
(
(|x | + |y|)4) .

The characteristic polynomial for variational matrix of (4.9) at (0, 0) is computed as
follows:

ρ2−
(
2 + 1

1 + Hα2 − 1 + 2H

1 + H + Hβ

)
ρ+ 1 + H

(
2 + Hα2

)
β(

1 + Hα2
)
(1 + H + Hβ)

= 0, (4.10)

where

H := h3 + ĥ.
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The roots of (4.10) are given as follows:

ρ1 =
ζ(ĥ) − i

√
4ϑ(ĥ) −

(
ζ(ĥ)

)2

2
,

and

ρ2 =
ζ(ĥ) + i

√
4ϑ(ĥ) −

(
ζ(ĥ)

)2

2
,

where

ζ(ĥ) = 2 + 1

1 + Hα2 − 1 + 2H

1 + H + Hβ
,

and

ϑ(ĥ) = 1 + H
(
2 + Hα2

)
β(

1 + Hα2
)
(1 + H + Hβ)

.

Then, we obtain that

|ρ1| = |ρ2| =
√

1 + H
(
2 + Hα2

)
β(

1 + Hα2
)
(1 + H + Hβ)

.

Furthermore, suppose that α2 �= β, then with simple computations it follows that

(
d|ρ1|
dĥ

)

ĥ=0
=

(
d|ρ2|
dĥ

)

ĥ=0
= α2

(
1 + α2 − β

)

2
(
α2 − β

) (
1 + (

α2 − β
)
β
) �= 0.

Moreover, we suppose that ζ(0) �= 0 and ζ(0) �= −1, then it follows that

2+ 1

β − α2 + 2 + α2 − 2β

β2 − 1 − α2β
�= 0, and 3+ 1

β − α2 + 2 + α2 − 2β

β2 − 1 − α2β
�= 0. (4.11)

Suppose that (α, β, h2) ∈ 
NS and conditions (4.11) hold true, then it follows that
ζ(0) �= ±2, 0,−1. Thus, we have ρk

1 , ρ
k
2 �= 1 for all k = 1, 2, 3, 4 at ĥ = 0. Due to

these assumptions, it follows that the roots of (4.10) do not lie in the intersection of
the unit circle with the coordinate axes when ĥ = 0. Suppose that ε and ξ denote real
and imaginary parts of ρ2 at ĥ = 0, respectively, then we have

ε := 1

2

(
2 + 1

β − α2 + 2 + α2 − 2β

β2 − 1 − α2β

)
,
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and

ξ :=
(
1 + α2 − β

) √
α4(1 − 4β) + 2α2

(
4β2 − 1 − β

) + (1 − β)(1 + β(3 + 4β))

2
(
α2 − β

) (
1 + (

α2 − β
)
β
) .

Now, we consider the following transformation:

(
x
y

)
→

⎛
⎝

(h3+ĥ)α2

1+(h3+ĥ)(1+β)
0

ε − 1+2(h3+ĥ)β

1+(h3+ĥ)(1+β)
−ξ

⎞
⎠

(
u
v

)
. (4.12)

Implementation of transformation (4.12), the normal form of (4.9) is computed as
follows: (

u
v

)
→

(
ε −ξ

ξ ε

) (
u
v

)
+

(
F̃(u, v)

G̃(u, v)

)
, (4.13)

where

F̃(u, v) = β

α3 x
2 + 2

α
xy + 1

α2 x
2y + O((|u| + |v|)4),

G̃(u, v) =
(

β(βεH − 2βH + εH + ε − 1)

α3ξ(1 + H(1 + β))
− Hβ(α2H − 1)

ξα(α2H + 1)2

)
x2

+
(
2(βεH − 2βH + εH + ε − 1)

αξ(1 + H(1 + β))
+ 2Hα

ξ(α2H + 1)2

)
xy +

(
ξ(α2H + 1)2

ξ(α2H + 1)3

)
x3

+
(

βεH − 2βH + εH + ε − 1

α2ξ(1 + H(1 + β))
− H(3α2H − 1)

ξ(α2H + 1)3

)
x2y + O((|u| + |v|)4),

x = (h3 + ĥ)α2

1 + (h3 + ĥ)(1 + β)
u, and y =

(
ε − 1 + 2(h3 + ĥ)β

1 + (h3 + ĥ)(1 + β)

)
u − ξv.

We compute the following Lyapunov first exponent for system (1.3) at (u, v, ĥ) =
(0, 0, 0) as follows:

L2 =
[

− Re

(
(1 − 2ρ1)ρ2

2

1 − ρ1
χ20χ11

)
− 1

2
|χ11|2 − |χ02|2 + Re(ρ2χ21)

]
,

where

χ20 = 1

8

[
F̃uu − F̃vv + 2G̃uv + i

(
G̃uu − G̃vv − 2F̃uv

)]
,

χ11 = 1

4

[
F̃uu + F̃vv + i

(
G̃uu + G̃vv

)]
,

χ02 = 1

8

[
F̃uu − F̃vv − 2G̃uv + i

(
G̃uu − G̃vv + 2F̃uv

)]
,
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and

χ21 = 1

16

[
F̃uuu + F̃uvv + G̃uuv + G̃vvv + i

(
G̃uuu + G̃uvv − F̃uuv − F̃vvv

)]
.

Keeping in view aforementioned computation, we have the following result related to
Hopf bifurcation for the system (1.3).

Theorem 4.2 Suppose that L2 �= 0 and 4.11 is satisfied, then (1.3) undergoes Hopf

bifurcation at
(
α,

β
α

)
as h varies in a small neighborhood of h3 = β−1−α2

α2 . Moreover,

ifL2 < 0, then an attracting invariant closed curve bifurcates from
(
α,

β
α

)
for h > h3,

and if L2 > 0, then a repelling invariant closed curve bifurcates from
(
α,

β
α

)
for

h < h3.

5 Chaos control

In order to control chaos under the influence of flip and Hopf bifurcations one can
design a controller that can modify the bifurcation properties for a given nonlinear
dynamical system and in a result some desired dynamical properties can be obtained
[47]. Chen andYu [48] proposed linear time-delayed state-feedback control for chaotic
systems. In [49], Abed et al. implemented non-linear state-feedback control for con-
trolling chaos under the influence of flip bifurcation. Wen et al. [50] investigated
washout-filter controller for controlling Hopf bifurcation for discrete-time systems.
Luo et al. [51] proposed hybrid control methodology for controlling chaos under the
influence of flip bifurcation in discrete-time systems. Ott et al. [52] introduced a feed-
back control method for controlling chaos in discrete-time systems and this method
is known as OGY method. Pole-placement methodology was proposed by Romeiras
et al. [53] (also see [54]), which may be treated as generalized OGY method.

In case of mathematical biology, bifurcations and unstable fluctuations have always
been regarded as unfavorable phenomena, as they are harmful for the breeding of bio-
logical population [55]. For this reason, we modify the hybrid control strategy to
control chaos under the influence of flip bifurcation and Neimark–Sacker bifurca-
tion. The classical hybrid control strategy introduced by Luo et al. [51], in which
the parameter perturbation and state feedback are combined and used to control the
period-doubling bifurcations and chaos in a discrete nonlinear dynamical system
[40,56]. Moreover, in [40] the authors used hybrid control strategy for controlling
Neimark–Sacker bifurcation in a discrete-time prey–predator system. For some more
applications of feedback control strategies related to discrete-time models, we refer to
[57–62].

In this section, a novel hybrid control strategy is introduced. Like hybrid con-
trol technique, the proposed strategy consists of feedback control and parameters
perturbation. Moreover, this novel scheme is applicable for controlling chaos under
the influence of both period-doubling and Neimark–Sacker bifurcations. The method
works as follows. Consider an n-dimensional discrete dynamical system of the form:
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Xk+1 = F (Xk, δ) , (5.1)

where Xk = (x1k , x
2
k , . . . , x

n
k ) ∈ R

n and δ ∈ R denotes bifurcation parameter for the
system (5.1). We apply both parameters perturbation and state feedback control to
system (5.1) as follows:

Xk+1 = D

(
exp

( − αi (x
i
k − x∗

i )
))

F (m) (Xk, δ) , (5.2)

where D

(
exp

( − αi (xik − x∗
i )

))
is n × n diagonal matrix with diagonal entries

exp
( − αi (xik − x∗

i )
)
, i = 1, 2, . . . , n, (x∗

1 , x
∗
2 , . . . , x

∗
n ) be equilibrium point of (5.1),

α1, α2, . . . , αn are control parameters and F (m) is mth iteration of F(·).
In order to implement the control strategy (5.2) to system (1.2), we take n = 2 and

m = 1. Moreover, assume that (x∗, y∗) =
(
α,

β
α

)
be steady-state of system (1.2) in

chaotic region under the influence of flip or Hopf bifurcations. Then, related controlled
system for (1.2) is written as follows:

xn+1 = exp
(−a(xn − x∗)

)
f (xn, yn, h),

yn+1 = exp
(−b(yn − y∗)

)
g(xn, yn, h), (5.3)

where f (xn, yn, h) = xn + h
(
α − (1 + β)xn + x2n yn

)
, g(xn, yn, h) = yn +

h
(
βxn − x2n yn

)
and a, b ∈ R are controlling parameters. Then, variational matrix for

the controlled system (5.3) at (x∗, y∗) =
(
α,

β
α

)
is computed as follows:

(
1 − aα + h(β − 1) hα2

−hβ 1 − hα2 − bβ
α

)
. (5.4)

Moreover, the characteristic polynomial of (5.4) is computed as follows:

T(λ) = λ2 −
(
2 − aα − h

(
1 + α2 − β

)
− bβ

α

)
λ + 1 − h − aα − hα2

+ h2α2 + ahα3 + abβ + hβ − bβ

α
+ bhβ

α
− bhβ2

α
. (5.5)

In this case, the curves of marginal stability are given by

C1 : hα3(h + aα) + b(h + aα)β − bhβ2 = 0,

C2 : α(h + aα − 2)
(
hα2 − 2

)
+ (2hα + b(h − 2 + aα))β − bhβ2 = 0,
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and

C3 : α
(
−aα + h

(
−1 + α2(−1 + h + aα)

))

+ (hα + b(−1 + h + aα))β − bhβ2 = 0.

Then, stable eigenvalues lie within the bounded regions in ab-plane bounded by the
hyperbolic curves C1,C2,C3 for particular parametric values. Thus instead of unique
bounded region, one might obtain two possible stability regions. Moreover, the fol-
lowing Lemma gives conditions for local asymptotic stability of positive equilibrium(
α,

β
α

)
of the controlled system (5.3).

Lemma 5.1 The positive equilibrium
(
α,

β
α

)
of the controlled system (5.3) is locally

asymptotically stable, if the following condition holds true:

∣∣∣∣2 − aα − h
(
1 + α2 − β

)
− bβ

α

∣∣∣∣ < 2 − h − aα − hα2

+ h2α2 + ahα3 + abβ + hβ − bβ

α
+ bhβ

α
− bhβ2

α
< 2.

Similarly, implementation of control strategy (5.2) to system (1.3) gives the fol-
lowing related controlled system:

xn+1 = exp
(−a(xn − x∗)

) (
hα + xn + hx2n yn
1 + h(1 + β)

)
,

yn+1 = exp
(−b(yn − y∗)

) (
yn + βhxn
1 + hx2n

)
, (5.6)

where (x∗, y∗) =
(
α,

β
α

)
. Then, variational matrix for the controlled system (5.6) at

(x∗, y∗) =
(
α,

β
α

)
is computed as follows:

(
1+2hβ
1+h+hβ

− aα hα2

1+h(1+β)

− hβ

1+hα2
1

1+hα2 − bβ
α

)
. (5.7)

Moreover, the characteristic polynomial of (5.7) is computed as follows:

S(λ) = λ2 +
(
aα − 1

1 + hα2 + bβ

α
− 1

1 + h + hβ
− 2hβ

1 + h + hβ

)
λ

− aα

1 + hα2 + abβ + 1(
1 + hα2

)
(1 + h + hβ)

− bβ

α(1 + h + hβ)

+ 2hβ(
1 + hα2

)
(1 + h + hβ)

− 2bhβ2

α(1 + h + hβ)
+ h2α2β(

1 + hα2
)
(1 + h(1 + β))

.

(5.8)
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Moreover, the following Lemma gives conditions for local stability of steady-state(
α,

β
α

)
for the controlled system (5.6).

Lemma 5.2 The positive equilibrium
(
α,

β
α

)
for the controlled system (5.6) is locally

stable, if the following condition holds true:

∣∣∣∣aα − 1

1 + hα2 + bβ

α
− 1

1 + h + hβ
− 2hβ

1 + h + hβ

∣∣∣∣ < 1 − aα

1 + hα2 + abβ

+ 1(
1 + hα2

)
(1 + h + hβ)

− bβ

α(1 + h + hβ)
+ 2hβ(

1 + hα2
)
(1 + h + hβ)

− 2bhβ2

α(1 + h + hβ)

+ h2α2β(
1 + hα2

)
(1 + h(1 + β))

< 2.

6 Numerical simulation and discussion

Example 6.1 First, we choose α = 3.2, β = 3.1, h ∈ [0.25, 0.348] and taking
initial values (x0, y0) = (3.2, 0.986), then system (1.2) undergoes flip bifurca-
tion at (3.2, 0.96875) as h varies in a small neighborhood of h1 = 0.303724. For
(α, β, h) = (3.2, 3.1, 0.303724), the roots of (2.2) are λ1 = −1 and λ2 = 0.52769.
Moreover, l1 = 21.2990196 and l2 = −749.7017252 < 0. Furthermore, bifurcation
diagrams and largest Lyapunov exponents (LLE) are depicted in Fig. 1.

Next, for (α, β, h) = (3.2, 3.1, 0.347) the controlled system (5.3) is rewritten as
follows:

xn+1 = exp (−a(xn − 3.2))
(
xn + 0.347

(
3.2 − 4.1xn + x2n yn

))
,

yn+1 = exp (−b(yn − 0.96875))
(
yn + 0.347

(
3.1xn − x2n yn

))
. (6.1)

The variational matrix for (6.1) is computed as follows

(
1.7287 − 3.2a 3.55328

−1.0757 −2.55328 − 0.96875b

)
.

In this case, (5.5) reduces to

T(λ) = λ2 + (0.825 + 3.2a + 0.97b)λ − 0.592 + 8.171a − 1.675b + 3.1ab.

Stability conditions of Lemma 5.1 yield that steady-state (3.2, 0.96875) of (6.1) is
locally stable if

−0.38 < a ≤ −0.146,
2.59 × 1023 − 1.3 × 1024a

−2.73 × 1023 + 5.047 × 1023a
< b <

−3.2 × 1024 − 2.96 × 1025a

−1.84 × 1024 + 8.076 × 1024a
,
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Fig. 1 Bifurcation diagrams and largest Lyapunov exponents for system (1.2) with α = 3.2, β = 3.1,
h ∈ [0.25, 0.348] and (x0, y0) = (3.2, 0.986). a Bifurcation diagram for xn , b bifurcation diagram for yn
and c largest Lyapunov exponents

or

−0.146 < a < 0.242,
2.59 × 1023 − 1.33 × 1024a

−2.73 × 1023 + 5.047 × 1023a
< b <

1.08 × 1024 − 1.29 × 1025a

−6.89 × 1024 + 8.08 × 1024a
,

or

0.84 < a < 1.23,
−3.2 × 1024 − 2.96 × 1025a

−1.84 × 1024 + 8.08 × 1024a
< b <

2.59 × 1023 − 1.33 × 1024a

−2.73 × 1023 + 5.05 × 1023a
,

or

1.23 ≤ a < 1.46,
1.08 × 1024 − 1.29 × 1025a

−6.89 × 1024 + 8.08 × 1024a
< b <

2.59 × 1023 − 1.3 × 1024a

−2.73 × 1023 + 5.05 × 1023a
.

Moreover, the hyperbolic curves of marginal stability are given as

C1 : 1.23299 − 0.705928b + a(11.3705 + 3.1b) = 0,

C2 : 0.416172 + 2.64343b − a(4.9705 + 3.1b) = 0,
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Fig. 2 Stability regions for the controlled system (6.1)

and

C3 : 1.59159 + 1.67468b − a(8.1705 + 3.1b) = 0.

Two possible stability regions bounded by these hyperbolic curves are depicted in Fig.
2.

Example 6.2 Next, we choose α = 0.5, β = 1.1, h ∈ [0.4, 1] and (x0, y0) =
(0.5, 2.199). Then system (1.2) undergoes Hopf bifurcation as h varies in a small
neighborhood of h2 = 0.6. At (α, β, h) = (0.5, 1.1, 0.6) roots of (2.2) are calculated
as follows λ1 = 0.955−0.296606i and λ2 = 0.955+0.296606i with absolute values
1. The bifurcation diagrams and LLE are shown in Fig. 3. Moreover, for α = 0.5,
β = 1.1, h = 0.57, h = 0.6, h = 0.61 and h = 0.7 phase portraits of (1.2) are shown
in Fig. 4.

Next, for (α, β, h) = (0.5, 1.1, 0.95) the controlled system (5.3) is rewritten as
follows:

xn+1 = exp (−a(xn − 0.5))
(
xn + 0.95

(
0.5 − 2.1xn + x2n yn

))
,

yn+1 = exp (−b(yn − 2.2))
(
yn + 0.95

(
1.1xn − x2n yn

))
. (6.2)

The variational matrix for (6.2) is computed as follows

(
1.095 − 0.5a 0.2375

−1.045 0.7625 − 2.2b

)
.

In this case, (5.5) reduces to

T(λ) = λ2 − (1.8575 − 0.5a − 2.2b)λ + 1.08313 − 0.38125a − 2.409b + 1.1ab.
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Fig. 3 Bifurcation diagrams and largest Lyapunov exponents for system (1.2) with α = 0.5, β = 1.1,
h ∈ [0.4, 1] and (x0, y0) = (0.5, 2.199). a bifurcation diagram for xn , b bifurcation diagram for yn and c
largest Lyapunov exponents

Moreover, the hyperbolic curves of marginal stability are given as

C1 : 0.225625 − 0.209b + a(0.11875 + 1.1b) = 0,

C2 : 3.94063 − 4.609b − a(0.88125 − 1.1b) = 0,

and

C3 : 0.083125 − 2.409b − a(0.38125 − 1.1b) = 0.

The unique stability region bounded by these hyperbolic curves is depicted in Fig. 5.
In particular, if we select b = −0.0001, then steady-state (0.5, 2.2) of (6.2) is stable
if and only if 0.218602 < a < 4.4716.

Example 6.3 Taking α = 0.8, β = 2.1, h ∈ [0.1, 1] and (x0, y0) = (0.8, 2.6249),
then system (1.3) undergoes Hopf bifurcation as h varies in a small neighborhood of
h3 = 0.71875. At (α, β, h) = (0.8, 2.1, 0.71875), (1.3) has steady-state (0.8, 2.625),
and roots of (2.6) are computed as follows λ1 = 0.964925 − 0.262526i and λ2 =
0.964925+0.262526i with absolute values equal to 1. In this case, LLE and bifurcation
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Fig. 4 Phase portraits of (1.2) with α = 0.5, β = 1.1, h = {0.57, 0.6, 0.61, 0.7}, x0 = 0.5, y0 = 2.199. a
h = 0.57, b h = 0.6, c h = 0.61 and d h = 0.7

Fig. 5 Stability region for the controlled system (6.2)

diagrams are depicted in Fig. 6. Moreover, for α = 0.8, β = 2.1, h = 0.71875,
h = 0.6, h = 0.3 and h = 0.1 various phase portraits for (1.3) are depicted in Fig. 7.
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Fig. 6 Bifurcation diagrams and largest Lyapunov exponents for system (1.3) with α = 0.8, β = 2.1,
h ∈ [0.1, 1] and (x0, y0) = (0.8, 2.6249). a Bifurcation diagram for xn , b bifurcation diagram for yn and
c largest Lyapunov exponents

Finally, we select (α, β, h) = (0.8, 2.1, 0.3) to see the effectiveness of newly
introduced control strategy (5.6) for system (1.3). In this case, system (5.6) is written
as follows:

xn+1 = exp (−a(xn − 0.8))

(
0.24 + xn + 0.3x2n yn

1.93

)
,

yn+1 = exp (−b(yn − 2.625))

(
yn + 0.63xn
1 + 0.3x2n

)
. (6.3)

The variational matrix for (6.3) is computed as follows

(
1.17098 − 0.8a 0.0994819

−0.528523 0.838926 − 2.625b

)
.

In this case, (5.8) reduces to

S(λ) = λ2 − (2.00991 − 0.8a − 2.625b)λ + 1.03494 − 0.671141a

− 3.07382b + 2.1ab.
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Fig. 7 Phase portraits of (1.3)withα = 0.8,β = 2.1, h = {0.71875, 0.6, 0.3, 0.1}, x0 = 0.8, y0 = 2.6249.
a h = 0.71875, b h = 0.6, c h = 0.3 and d h = 0.1

Moreover, the hyperbolic curves of marginal stability are given as

C1 : 0.0250381 − 0.448822b + a(0.128859 + 2.1b) = 0,

C2 : 4.04485 − 5.69882b − a(1.47114 − 2.1b) = 0,

and

C3 : 0.0349442 − 3.07382b − a(0.671141 − 2.1b) = 0.

The unique stability region bounded by these hyperbolic curves is depicted in Fig. 8.

7 Concluding remarks

We have investigated the dynamical behavior related to discrete-time Brusselator
models (1.2) and (1.3). A dynamically consistent nonstandard difference scheme is
implemented in order to obtainmodel (1.3). Bifurcation theory related to normal forms
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Fig. 8 Stability region for the controlled system (6.3)

is implemented for investigation of Hopf bifurcation for both models. Moreover, it is
proved that system (1.2) undergoes flip bifurcation. A novel chaos control strategy
(5.2) is presented for controlling flip and Hopf bifurcations. In order to show effec-
tiveness of proposed chaos control scheme, a comparison with existing chaos control
techniques is presented as follows. For this, first we compare it with OGY method
[52]. In order to apply OGY method to (1.2), we take (α, β, h) = (0.5, 1.1, 0.95). In
this case, the control system via OGY method is written as follows:

xn+1 = xn + (0.95 − k1(xn − 0.5) − k2(yn − 2.2))
(
0.5 − 2.1xn + x2n yn

)
,

yn+1 = yn + (0.95 − k1(xn − 0.5) − k2(yn − 2.2))
(
1.1xn − x2n yn

)
, (7.1)

where k1 and k2 represent control parameters. The variational matrix for (7.1) at
(0.5, 2.2) is computed as follows:

J (0.5, 2.2) =
(

1.095 0.2375
−1.045 0.7625

)
.

Moreover, regulator poles [63] for J (0.5, 2.2) are given by 0.92875 ± 0.469626i
with absolute value 1.04073 > 1. Thus OGY method fails to control chaos under the
influence of Hopf bifurcation in system (1.2).

Next, for same parametric values, an application of hybrid control method [51]
yields the following control system:

xn+1 = A
(
xn +

(
0.5 − 2.1xn + x2n yn

))
+ (1 − A)xn,

yn+1 = A
(
yn +

(
1.1xn − x2n yn

))
+ (1 − A)yn, (7.2)
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where 0 < A < 1 denotes control parameter. The variational matrix for (7.2) at
(0.5, 2.2) is computed as follows:

V (0.5, 2.2) =
(
1 + 0.095A 0.2375A
−1.045A 1 − 0.2375A

)
.

The characteristic polynomial for V (0.5, 2.2) is computed as follows:

P(λ) = λ2 − (2 − 0.1425A) λ + 1 − 0.1425A + 0.225625A2.

The roots P(λ) have absolute values less than unity if and only if 0 < A < 0.631579.

Thus hybrid control strategy can control chaos in open interval

]
0, 0.631579

[
only.

Whereas in Example 6.2, newly proposed control strategy (5.2) implemented to (1.2)
for the same parametric values and stability region is depicted in Fig. 5. Therefore,
the proposed chaos control method is for better than both existing techniques and
applicable to larger class of discrete-time models.
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and suggestions leading to improvement of this paper.
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