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Abstract In this paper, we propose an efficient method for solving coupled Lane–
Emden boundary value problems in catalytic diffusion reactions. The target is to
obtain approximations of coupled Lane–Emden boundary value problems via series
representation. Convergence and an error estimate are presented. Finally, two BVPs
are solved to illustrative high accuracy of our method. Furthermore, our algorithm is
easy to implement.
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1 Introduction

Lane [1] and Emden [2] first studied the Lane–Emden equation. The applications of
the Lane–Emden equation are found in many research fields like the theory of stellar
structure, the thermal behavior of a spherical cloud of gas, isothermal gas spheres
and the theory of thermionic currents [3]. Since the exact solution of the Lane–Emden
equation does not exist inmany cases, variousmethods [4–10] have been developed for
solving such problem. The singular behavior is the main difficulty of the Lane–Emden
equation.
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In thiswork,wemainly consider systemsofLane–Emdenequations. Such equations
model several physical phenomenon such as chemical reactions, population evolution
and so on [11]. In next section, we propose a numerical method for solving the fol-
lowing coupled Lane–Emden equation

⎧
⎪⎨

⎪⎩

u′′(x) + r

x
u′(x) = f1(u(x), v(x)),

v′′(x) + r

x
v′(x) = f2(u(x), v(x)),

(1)

subject to
u′(0) = 0, u(1) = β1, v′(0) = 0, v(1) = β2, (2)

where r is a real constant and f1(u(x), v(x)) and f2(u(x), v(x)) are arbitrary functions
of u and v. Also, several numerical methods have been developed for solving systems
of Lane–Emden equations. Rach et al. [3,12] proposed a modified recursion scheme
based on the Adomian decomposition method. Geng and Cui [13] provided homo-
topy perturbation reproducing kernel method. Lu [14] developed variational iteration
method. Dehghan [15–17] presented homotopy perturbation method, sinc-collocation
and cubic B-spline scaling function methods. Caglar [18] introduced B-spline method
for solving linear systems.

This work is mainly based on Turkyilmazoglu’s works [19–21] and our previous
work [22]. By using this method, a rapid convergent series solution can be obtained.

The reminder of this paper is organized as follows. A new numerical method is
described in Sect. 2. In Sect. 3, convergence and an error estimate are presented.
In Sect. 4, two BVPs are solved and our method is compared to existing numerical
methods. Finally, our conclusions are made in Sect. 5.

2 A new algorithm

In this section we provide a new algorithm. Considering the base functions

X = [ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), . . .],

which reside in the function space where the true exact of (1) exists, then the exact
solution of (1) is

u(x) =
∞∑

k=0

akϕk(x), (3)

v(x) =
∞∑

k=0

bkϕk(x), (4)

where ak’s and bk’s are coefficients to be determined.
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By means of the definitions

Xn = [ϕ0(x), ϕ1(x), ϕ2(x), . . . , ϕn(x)],

and
An = [a0, a1, a2, . . . , an]T ,

Bn = [b0, b1, b2, . . . , bn]T ,

thus we may approximate the solution at nth order by the product form

un(x) =
n∑

k=0

akϕk(x) = XnAn, (5)

vn(x) =
n∑

k=0

bkϕk(x) = XnBn, (6)

whose derivatives of N order are given by

u(N )
n = XnPNAn, N ≥ 1, (7)

v(N )
n = XnPNBn, N ≥ 1, (8)

where matrix P depends on the choice of Xn . Having denoted the Hilbert space H =
L2[0, 1] with the inner product

〈 f, g〉 =
∫ 1

0
f (x)g(x)dx . (9)

Substituting (7) and (8) into (1),

xXnP2An + 2XnPAn = x f1(XnAn,XnBn), (10)

xXnP2Bn + 2XnPBn = x f2(XnAn,XnBn). (11)

LetQ = [ψ0(x), ψ1(x), ψ2(x), . . . , ψn(x)] be a linearly independent set of functions
in H , whose entries might be standard polynomials. Taking the inner product of (10)
and (11) with the elements of Q , matrices S2(n+1)×1 and T2(n+1)×1 can be obtained,
which satisfy

S2(n+1)×1 = T2(n+1)×1.

Notice that

Sq,1 =
〈
xXnP2An + 2XnPAn, ψq−1(x)

〉
,

Tq,1 = 〈
x f1(XnAn,XnBn), ψq−1(x)

〉
,

where 1 ≤ q ≤ n + 1,
and

Sq,1 =
〈
xXnP2Bn + 2XnPBn, ψq−(n+2)(x)

〉
,
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Tq,1 = 〈
x f2(XnAn,XnBn), ψq−(n+2)(x)

〉
,

where n + 2 ≤ q ≤ 2n + 2.
Considering the initial or boundary conditions (2),

Xn(0)PAn = 0, Xn(1)An = β1

Xn(0)PBn = 0, Xn(1)Bn = β2.
(12)

These 4 equations modify 4 number of entries of S2(n+1)×1 and the corresponding
parts of T2(n+1)×1. The elements of An and Bn are determined uniquely, if the system
of nonlinear algebraic equations S = T is solved properly. Eventually, the concrete
form of the approximate solution can be obtained

un(x) =
n∑

k=0

akϕk(x),

vn(x) =
n∑

k=0

bkϕk(x).

Note that when choosing base functions Xn , continuous polynomials {xk : k ∈ Z}
are preferred. Since they are calculated efficiently and can represent various functions
[19]. Then the entries of the matrix P are expressed as Pi,i+1 = i , 1 ≤ i ≤ n and
Pi j = 0 for other 1 ≤ i, j ≤ n + 1, which means

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 n
0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(n+1)×(n+1)

(13)

3 Error estimate and convergence

In this section, the numerical analysis is presented. Let H = L2[0, 1], Pn =
{φ0, φ1, . . . , φn} be a set of polynomials of nth degree and Y = span(Pn). The
L2-error can be obtained by the similar process which was shown in [20]. Since Y is
a finite dimensional vector space, y has a unique best approximation in Y . Thus, there
exists ū, v̄ ∈ Y which satisfy

‖u − ū‖2 ≤ ‖u − h‖2, ∀h ∈ Y,

‖v − v̄‖2 ≤ ‖v − h‖2, ∀h ∈ Y.
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Let � = [φ0, φ1, . . . , φn]T , there exists unique coefficients A = [a0, a1, . . . , an] and
B = [b0, b1, . . . , bn] such that

u � ū =
n∑

i=0

aiφi = A�,

v � v̄ =
n∑

i=0

biφi = B�,

where A and B can be obtained by the following process.

A〈�,�〉 = 〈u,�〉,
B〈�,�〉 = 〈v,�〉,

where

〈u,�〉 =
∫ 1

0
u(x)�(x)T dx = [〈u, φ0〉, 〈u, φ1〉, . . . , 〈u, φn〉],

〈v,�〉 =
∫ 1

0
v(x)�(x)T dx = [〈v, φ0〉, 〈v, φ1〉, . . . , 〈v, φn〉],

and 〈�,�〉 is given by

C = 〈�,�〉 =
∫ b

a
�(x)�(x)T dx .

Then
A = 〈u,�〉C−1, (14)

and
B = 〈v,�〉C−1. (15)

Since the elements of A and B are uniquely determined by (14) and (15), the
approximate solutions ū and v̄ can be obtained. Since the inner product in H is defined
by < f, g > = ∫ 1

0 f (x)g(x)dx and Y = span(Pn), then a L2-error can be presented
as

‖u − ū‖22 =
det

[∫ 1
0 �(x)�(x)T dx

]

det
[∫ b

a �(x)�(x)T dx
] ,

and

‖v − v̄‖22 =
det

[∫ 1
0 �(x)�(x)T dx

]

det
[∫ b

a �(x)�(x)T dx
] ,

where � = [φ0, φ1, . . . , φn]T , � = [u, φ0, φ1, . . . , φn]T and � = [v, φ0, φ1, . . . ,

φn]T .
Next we will prove the convergence of the proposed method. Define ω(y, δ) =

sup |y(x1) − y(x2)|, where x1, x2 ∈ [a, b] and |x1 − x2| ≤ δ. Assume that y(x) is
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bounded on interval [a, b], then ‖y − ∑n
k=0 y

( k
n

)
φk‖∞ ≤ 3

2ω(y,
√

1
n ) [23]. These

lead to the following theorem.

Theorem 1 If u(x) and v(x) are bounded on interval [0, 1] and Y = span{Pn}, then

‖u − A�‖2 ≤ 3

2
ω

(

u,

√
1

n

)

, (16)

and

‖v − B�‖2 ≤ 3

2
ω

(

v,

√
1

n

)

, (17)

where A� and B� are the best approximations to u and v respectively in Y .

Proof Since A� and B� are the best approximations to u and v respectively in Y ,
then

‖u − A�‖2 ≤
∥
∥
∥
∥
∥
u −

n∑

k=0

u

(
k

n

)

φk

∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥
u −

n∑

k=0

u

(
k

n

)

φk

∥
∥
∥
∥
∥

∞
≤ 3

2
ω

(

u,

√
1

n

)

,

‖v − B�‖2 ≤
∥
∥
∥
∥
∥
v −

n∑

k=0

v

(
k

n

)

φk

∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥
v −

n∑

k=0

v

(
k

n

)

φk

∥
∥
∥
∥
∥

∞
≤ 3

2
ω

(

v,

√
1

n

)

.

�
If u(x) and u(x) are continuous on [0, 1], then we can get

lim
n→∞ ω

(

u,

√
1

n

)

= 0,

lim
n→∞ ω

(

v,

√
1

n

)

= 0,

which shows that A� and B� are convergent to u and v respectively when n → ∞.
An error estimate is given in the following theorem.

Theorem 2 Suppose u(x) and v(x) are the true solutions to (1). Let Y = span(Pn)
and un and vn be the best approximations to u and v in Y respectively. If u, v ∈
Cn+1[0, 1], then a L2-error estimate is given by

‖u − un‖2 ≤ M1√
2n + 3 · (n + 1)! , (18)

‖v − vn‖2 ≤ M2√
2n + 3 · (n + 1)! , (19)

where M1 = maxx∈[0,1] |u(n+1)(x)| and M2 = maxx∈[0,1] |v(n+1)(x)|.
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Proof According to Taylor’s formula

un(x) = u(0) + u′(0)x + u′′(0)
2! x2 + · · · + u(n)(0)

n! xn + Rn(x),

where Rn(x) = u(n+1)(η)
(n+1)! xn+1, η ∈ (0, 1). Also, consider the following polynomial

p(x) = u(0) + u′(0)x + u′′(0)
2! x2 + · · · + u(n)(0)

n! xn .

Therefore,

‖u − un‖2 ≤ ‖u − p‖2 ≤
√

∫ 1

0
|u(x) − p(x)|2dx ≤

√
∫ 1

0
R2
n(x)dx

≤ M1√
2n + 3 · (n + 1)! ,

where M1 = maxx∈[0,1] |u(n+1)(x)|. (19) can be proved by the similar process. �

4 Applications of our method

In this section, two BVPs are solved to illustrate effectiveness of our method. As
discussed in Section 2, we take Xn = {1, x, x2, . . . , xn}. All the computations are
performed by Mathematica 8.0. Moreover, if the exact solution does not exist, we
compute the maximal error remainder parameters as the error analysis. The maximal
error remainder parameters are

MER(1)
n = max

x∈[0,1]

∣
∣
∣u′′

n(x) + r

x
u′
n(x) − f1(un(x), vn(x))

∣
∣
∣ , (20)

and
MER(2)

n = max
x∈[0,1]

∣
∣
∣v

′′
n (x) + r

x
v′
n(x) − f2(un(x), vn(x))

∣
∣
∣ . (21)

Example 1 Consider the following coupled Lane–Emden equations [3]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(x) + 2

x
u′(x) = k11u

2(x) + k12u(x)v(x),

v′′(x) + 2

x
v′(x) = k21v

2(x) + k22u(x)v(x),

u′(0) = 0, u(1) = β1, v′(0) = 0, v(1) = β2.

(22)

Such problem arises in catalytic diffusion reactions [11]. The parameters β1, β2, k11,
k12, k21 and k22 can be specified for the actual chemical reactions. We take β1 = 1,
β2 = 2, k11 = 1, k12 = 2/5, k21 = 1/2 and k22 = 1. There is no exact solution
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Table 1 Comparisons on MER(1)
n for Example 1

n The theoretical error estimate (18) MER(1)
n by modified ADM [3] MER(1)

n by present method

2 7.552e−2 4.133e−1 3.617e−1

3 3.846e−2 2.363e−1 2.400e−1

4 1.740e−2 6.434e−2 4.218e−2

5 8.271e−3 4.792e−2 1.134e−2

6 3.781e−3 2.094e−2 1.734e−3

7 1.717e−3 1.094e−2 3.252e−4

8 7.192e−4 6.213e−3 4.584e−5

9 2.538e−4 3.352e−3 7.114e−6

10 6.271e−5 1.799e−3 9.475e−7

11 7.782e−6 9.610e−4 1.345e−7

Table 2 Comparisons on MER(2)
n for Example 1

n The theoretical error estimate (19) MER(2)
n by modified ADM [3] MER(2)

n by present method

2 1.770e−1 5.674e−1 8.361e−1

3 9.208e−2 3.099e−1 5.576e−1

4 4.273e−2 8.522e−2 1.105e−1

5 2.065e−2 6.091e−2 2.756e−2

6 9.541e−3 2.511e−2 4.316e−3

7 4.296e−3 1.365e−2 8.177e−4

8 1.734e−3 7.326e−3 1.173e−4

9 5.711e−4 3.283e−3 1.839e−5

10 1.288e−4 2.095e−3 2.476e−6

11 1.447e−5 1.113e−3 3.601e−7

for such problem. So we compute the approximate solution by the proposed method.
The comparisons on the maximal error remainder parameters between our method
and modified ADM [3] are shown in Tables 1 and 2. It can be observed that our
method performs better. Since the exact solution can not be found for this problem,
the 12th order approximate solution results in an accuracy of order O(10−11) by the
proposed method which can be used in place of analytical solution. The theoretical
error estimates (18) for the considered problems are shown in Tables 1 and 2 to
visualize the convergence. The approximate solutions obtained by our method are
listed in Tables 3 and 4 for various n. The logarithmic plots of MER(1)

n and MER(2)
n

for n = 2 through n = 11 are displayed in Fig. 1. The dots in Fig. 1 are almost on
straight line, which demonstrates an approximate exponential rate of convergence.
The approximate solutions are plotted in Fig. 2 with n = 2, 3, 4.

Example 2 Consider the following system of two coupled nonlinear differential equa-
tions which is subject to a set of Dirichlet boundary conditions and a mixed set of
Neumann and Dirichlet boundary conditions [12]
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Table 3 The approximate
solutions for various n

Node u2(x) u6(x) u11(x)

0.0 0.765999679 0.786442703 0.786442709

0.1 0.768339682 0.788281449 0.788280327

0.2 0.775359692 0.793826049 0.793824948

0.3 0.787059708 0.803172765 0.803173088

0.4 0.803439730 0.816488472 0.816489727

0.5 0.824499759 0.834014042 0.834014797

0.6 0.850239794 0.856073316 0.856072868

0.7 0.880659836 0.883087663 0.883086737

0.8 0.915759884 0.915596130 0.915595938

0.9 0.955539939 0.954281177 0.954281638

1.0 1.000000000 1.000000000 1.000000000

Table 4 The approximate
solutions for various n

Node v2(x) v6(x) v11(x)

0.0 1.486672424 1.533800452 1.533800465

0.1 1.491805700 1.537780146 1.537777351

0.2 1.507205527 1.549783391 1.549780650

0.3 1.532871906 1.570030382 1.570031185

0.4 1.568804836 1.598903698 1.598906825

0.5 1.615004318 1.636956079 1.636957963

0.6 1.671470352 1.684931808 1.684930695

0.7 1.738202936 1.743801726 1.743799417

0.8 1.815202073 1.814811864 1.814811384

0.9 1.902467761 1.899545692 1.899546842

1.0 2.000000000 2.000000000 2.000000000

2 4 6 8 10
10 7

10 5

0.001

0.1

n

M
ER

n1

(a)

2 4 6 8 10

10 6

10 5

10 4

0.001

0.01

0.1

1

n

M
ER

n2

(b)

Fig. 1 Logarithmic plots of the maximal error remainder parameters for n = 2–11
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Fig. 2 Plots of the approximate solutions with n = 2, 3, 4. a The curves of un(x) for n = 2 (dot line),
n = 3 (dash line), n = 4 (solid line). b The curves of vn(x) for n = 2 (dot line), n = 3 (dash line), n = 4
(solid line)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′(x) = α1u(x)v(x)

1 + β1u(x) + β2v(x)
,

v′′(x) + α2u(x)v(x)

1 + β1u(x) + β2v(x)
,

u(0) = 1, u(1) = k, v′(0) = 0, v(1) = 1.

(23)

Such equations describe the kinetics of the reaction between CO2 and phenyl glycidyl
ether (PGE) in solution. The functions u(x) and v(x) are the concentrations of CO2
and PEG, respectively. x is the dimensionless distance as measured from the center
and k is the dimensionless concentration of CO2 at the surface of the catalyst. Next,
we introduce the method for solving such problem. As we have discussed in Sect. 2,
if the base functions are
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X = [ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), . . .],

then we can approximate the solution by the product form

un(x) =
n∑

k=0

akϕk(x) = XnCn, (24)

vn(x) =
n∑

k=0

bkϕk(x) = XnDn, (25)

whereCn = [c0, c1, c2, . . . , cn]T ,Dn = [d0, d1, d2, . . . , dn]T andXn = [ϕ0(x), ϕ1(x),
ϕ2(x), . . . , ϕn(x)]. ak’s and bk’s are coefficients to be determined. The derivatives are
given by

u(N )
n = XnPNCn, N ≥ 1, (26)

v(N )
n = XnPNDn, N ≥ 1, (27)

where P is an operational matrix as we have discussed in Sect. 2. Substituting (26)
and (27) into (23), we have

XnP2Cn · (1 + β1XnCn + β2XnDn) − α1XnCn · XnDn = 0, (28)

XnP2Dn · (1 + β1XnCn + β2XnDn) − α2XnCn · XnDn = 0. (29)

Similarly let Q = [ψ0(x), ψ1(x), ψ2(x), . . . , ψn(x)] be a linearly independent set of
functions in H . The working space and inner product are defined in Sect. 2. By taking
the inner product of (28) and (29) with elements ofQ respectively, matrices S̃2(n+1)×1
and T̃2(n+1)×1 can be obtained, which satisfy

S̃2(n+1)×1 = T̃2(n+1)×1.

Note that

S̃q,1 = 〈XnP2Cn · (1 + β1XnCn + β2XnDn) − α1XnCn · XnDn, ψq−1(x)〉,

where 1 ≤ q ≤ n + 1,

S̃q,1 = 〈XnP2Dn · (1 + β1XnCn + β2XnDn) − α2XnCn · XnDn, ψq−(n+2)(x)〉,

where n + 2 ≤ q ≤ 2n + 2,
and

S̃q,1 = 0,

where 1 ≤ q ≤ 2n + 2.
Considering the boundary conditions in (23),

Xn(0)Cn = 1, Xn(1)Cn = k

Xn(0)PDn = 0, Xn(1)Dn = 1.
(30)
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Table 5 Comparisons on MER(1)
n for Example 2

n The theoretical error estimate (18) MER(1)
n by modified ADM [12] MER(1)

n by present method

1 4.155e−2 0.2 0.2

2 5.288e−3 8.889e−2 3.868e−2

3 5.797e−4 8.889e−3 1.143e−3

4 2.090e−4 9.994e−4 4.878e−4

5 2.856e−5 8.889e−5 4.070e−5

6 5.451e−6 8.889e−6 1.017e−6

7 1.657e−6 8.889e−7 3.907e−7

8 2.817e−6 1.049e−7 4.881e−9

9 1.506e−6 2.760e−8 3.640e−9

10 4.959e−7 2.804e−9 1.220e−10

Table 6 Comparisons on MER(2)
n for Example 2

n The theoretical error estimate (19) MER(2)
n by modified ADM [12] MER(2)

n by present method

1 8.311e−2 0.4 0.4

2 1.058e−2 1.778e−1 7.736e−2

3 1.159e−3 1.778e−2 2.287e−3

4 4.181e−4 2.000e−3 9.755e−4

5 5.712e−5 1.778e−4 8.140e−5

6 1.087e−5 1.778e−5 2.033e−6

7 3.318e−6 1.778e−6 7.813e−7

8 5.691e−6 2.098e−7 9.762e−9

9 3.027e−6 5.520e−8 7.282e−9

10 9.915e−7 5.608e−9 2.438e−10

These 4 equationsmodify 4 number of entries of S̃2(n+1)×1 and the corresponding parts
of T̃2(n+1)×1. If we can solve nonlinear algebraic equations S̃ = T̃ properly, then we
can obtain the coefficientsCn = [c0, c1, c2, . . . , cn]T andDn = [d0, d1, d2, . . . , dn]T .
Then the approximate solution of (23) can be obtained. It is reminded that the system
of nonlinear algebraic equations can be solved numerically such as by Newton iter-
ation method [24] or by any contemporary symbolic solver such as MAT LAB and
Mathematica. Since all the computations are performed by Mathematica, we can
use ‘FindRoot’ or ‘NSolve’ command to solve such equations. Take α1 = 1, α2 = 2,
β1 = 1, β2 = 3 and k = 1/2. The comparisons on the maximal error remainder
parameters are shown in Tables 5 and 6. It can be observed that our method performs
better. As we have discussed in Example 1, the theoretical error estimates (18) are
listed in Tables 5 and 6. The proposed method converges rapidly to the exact solution.
The approximate solutions obtained by the proposed method are displayed in Tables
7 and 8.
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Table 7 The approximate
solutions for various n in
Example 2

Node u2(x) u5(x) u10(x)

0.0 1.000000000 1.000000000 1.000000000

0.1 0.943326605 0.942911248 0.942911345

0.2 0.888136187 0.887599173 0.887599307

0.3 0.834428745 0.833985178 0.833985194

0.4 0.782204280 0.781993069 0.781992920

0.5 0.731462792 0.731548514 0.731548289

0.6 0.682204280 0.682578507 0.682578355

0.7 0.634428745 0.635010824 0.635010838

0.8 0.588136187 0.588773494 0.588773628

0.9 0.543326605 0.543794250 0.543794349

1.0 0.500000000 0.500000000 0.500000000

Table 8 The approximate
solutions for various n in
Example 2

Node v2(x) v5(x) v10(x)

0.0 0.851702334 0.839920072 0.839920073

0.1 0.853185310 0.841750561 0.841750756

0.2 0.857634240 0.847134403 0.847134672

0.3 0.865049124 0.855914406 0.855914440

0.4 0.875429960 0.867938181 0.867937884

0.5 0.888776750 0.883057065 0.883056616

0.6 0.905089493 0.901125042 0.901124739

0.7 0.924368190 0.921997670 0.921997698

0.8 0.946612840 0.945531001 0.945531270

0.9 0.971823443 0.971580507 0.971580704

1.0 1.000000000 1.000000000 1.000000000

Table 9 maxx∈[0,1] |u(x) − un(x)| for various n in Example 1

n Bessel
polynomials [25]

Non-polynomial
functions (η = 1) [26]

Trigonometric
functions

Present method

2 6.931e−2 9.024e−2 3.305e−2 3.826e−2

3 1.478e−2 5.246e−3 – 8.915e−3

4 1.484e−3 3.643e−4 4.468e−4 1.016e−3

5 2.594e−4 2.936e−5 – 1.579e−4

6 5.484e−5 1.813e−6 6.435e−5 1.756e−5

7 1.266e−5 1.980e−7 – 2.291e−6

5 Conclusions

In this paper, we have provided a numerical method for solving coupled Lane–Emden
boundary value problems in catalytic diffusion reactions and proved the convergence
of the proposed method. Also, we give an error estimate. Finally, two BVPs are solved
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Table 10 maxx∈[0,1] |v(x) − vn(x)| for various n in Example 1

n Bessel
polynomials [25]

Non-polynomial
functions (η = 1) [26]

Trigonometric
functions

Present method

2 1.549e−1 1.808e−1 7.765e−2 8.823e−2

3 3.351e−2 1.088e−2 – 2.080e−2

4 3.524e−3 7.718e−4 1.037e−3 2.450e−3

5 6.219e−4 6.487e−5 – 3.855e−4

6 5.265e−5 4.028e−6 1.524e−5 4.382e−5

7 3.345e−5 5.486e−7 – 5.783e−6

Table 11 maxx∈[0,1] |u(x) − un(x)| for various n in Example 2

n Bessel
polynomials [25]

Non-polynomial
functions (η = 1) [26]

Trigonometric
functions

Present method

2 3.427e−3 2.734e−2 4.897e−3 2.413e−3

3 5.181e−4 4.879e−3 – 1.133e−5

4 2.092e−5 1.292e−4 1.929e−4 7.886e−7

5 4.878e−7 5.092e−6 – 5.252e−7

6 5.553e−8 1.529e−7 2.226e−6 2.585e−9

7 1.023e−8 5.753e−9 – 2.511e−9

Table 12 maxx∈[0,1] |v(x) − vn(x)| for various n in Example 2

n Bessel
polynomials [25]

Non-polynomial
functions (η = 1) [26]

Trigonometric
functions

Present method

2 5.892e−3 2.208e−1 1.592e−3 2.998e−2

3 1.124e−3 5.702e−3 – 3.541e−4

4 1.462e−5 1.181e−4 1.520e−4 2.744e−4

5 1.063e−6 3.930e−6 – 2.563e−5

6 4.862e−7 1.303e−7 2.814e−6 2.297e−7

7 5.692e−8 5.731e−9 – 2.245e−7

to demonstrate the high accuracy of our method. It is worthy to note that our method
can be applied to solve other linear or nonlinear BVPs.

6 Remarks

To show the efficiency of the present method, the BVPs in Example 1 and Exam-
ple 2 are solved by a of selection of base functions such as Bessel polynomials [25],
non-polynomial functionsXn = {eηx , eηx x, . . . , eηx xn} [26], trigonometric functions
Xn = {1, cos(x), sin(x), . . . , cos( n2 ), sin( n2 )} and our base functions. As we have dis-
cussed in Sect. 4, the 12th approximate solution is adequate for the practical purposes.
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The numerical results are shown in Tables 9, 10, 11 and 12. It can be obtained that non-
polynomial functions converges to true solution faster. Certainly some other functions
can be used as base function such as Chebyshev polynomials, Legendre polynomials
and Bernstein polynomials [27,28]. In our future work, more fast convergence basis
will be considered and applied to solve many other BVPs.

Acknowledgements The authors would like to thank the referees for their many constructive comments
and suggestions which helped to improve this paper.
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