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Abstract Molecular descriptors are graph invariants representing the chemical struc-
ture in graph-theoretical terms. There is a wide range of such descriptors and the
computation of these invariants for the various chemical frameworks is a current area
of research. Among these the Wiener types of indices have passed through critical
tests and emerged as a useful topological index in QSAR, predictive toxicology and
computer-assisted drug discovery as a starting point to reduce a large data set of chem-
icals. However mathematical techniques to compute hyper-Wiener index continues to
pose considerable challenges, as they involve long and complex manipulations. In the
present study, we develop a new technique based on vertex cut methods to compute
the hyper-Wiener indices of complex silicate and oxide frameworks of current interest
for the first time and obtain the analytical expressions of Wiener polarity indices for
these chemical frameworks based on vertex neighborhood.

Keywords Distance · Hyper-Wiener index · Silicate network · Oxide network

1 Introduction

Graph theory is largely applied to the characterization of chemical structures, thereby
enabling the study of quantitative structure activity (QSAR) and property (QSPR)
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relationships of the molecular structures [19,20,32,53]. The QSAR/QSPR studies
are based on the quantification of the chemical frameworks, by means of which the
chemical and biological properties of a molecule can be studied with comparison to
its molecular structure. One tool used for this purpose are the topological indices.
These indices are employed in the process of correlating the chemical structures with
various characteristics such as boiling points, molar heats of formation, etc., and
thereby exhibiting their significance in the field of biological sciences.

The topological index of a molecule is a single number that quantifies the structure
and the branching pattern of that molecule, which helps in exploring the underlying
topology of themolecule. Amolecular graph is a graphwhose vertices represent atoms
and whose edges represent the covalent bonds of the molecule, thus representing the
chemical constitution of the underlying molecule. Thus, the topological analysis of a
molecule involves translating itsmolecular structure to amolecular graph and then into
a characteristic unique number that may be considered as a descriptor of the molecule
under examination.

The Wiener index (W ) defined by Wiener [54], is the first topological index to be
used in mathematical chemistry. It can be correlated with physico-chemical properties
of organic compounds. At present, there exists a large number of topological indices
which are classified based on the structural properties of the graphs used for their
calculation. The main incentive for developing new molecular descriptors was trig-
gered especially by the pharmaceutical industry in its continuous need for improving
drug design methods. In order to treat the newly discovered syndromes, more than
half a million new substances are synthesized and characterized every year, whereas
only some of them are tested biologically which in turn increases the cost of any new
medicine. Any method helping investigators to know which structures are worthy of
being synthesized and tested and which are not, results in enormous savings. This
is one of the significant roles of the topological indices and this explains partly the
interest for developing new descriptors during the past recent years.

Wiener in his initial work [54] used a linear formula consisting of W and Wiener
polarity index (Wp), for calculating the boiling point of paraffins. After a period of
time, the study of W became more popular compared to Wp. In the recent years, the
study of Wp has indeed caught the attention of many researchers. Lukovits et al. [45]
demonstrated the quantitative structure-property relationships in a series of acyclic
and cycle-containing chemical compounds using Wp whereas Hosoya [27] found a
physical-chemical interpretation of Wp. A linear time algorithm for the computation
ofWp in case of trees were presented in [13] while the generalized version ofWp was
presented in [29] along with a linear time algorithm for trees and partial cubes. Very
recently, Chen et al. [8] provided a simple general formula for computing Wp of any
graph based on vertex neighborhood and also computed the analytical expressions of
Wp for various lattice networks. In this paper, we further continue to explore this index
by computing it for the two chemically significant networks.

The hyper-Wiener index (WW ), originally introduced by Randić [51] for acyclic
graphs, is a generalization of theWiener index, as it includes squares of distancematrix
elements, and thus it can be considered as a quantitative measure of expansiveness
of a chemical structure. Klein et al. [41] who generalized Randić’s definition of WW
to all graphs, consider hyper-Wiener index as one of the useful chemical structural
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parameters in QSAR, as it measures expansiveness of a molecular structure weighing
expansive graphs to a greater extent compared to ordinary Wiener index of a graph.
Randić [51] considersWW hyper-Wiener index to be among useful topological indices
as the hyper-Wiener index passes several of Randić’s critical tests for it to be among
useful indices in QSAR studies. Therefore hyper-Wiener indices together with other
topological indices that have passed through critical tests can be useful starting point
in computer-assisted drug discovery and predictive toxicological studies in providing
guidance to reduce the data set of millions of starting chemicals for which higher
level ab initio quantum chemical computations and other CPU-intensive techniques
such as quantummolecular dynamics, QM/MM, ONIOM and other accurate quantum
chemical methods are difficult to apply for such demanding drug-protein interactions.
Consequently, there has been considerable interest in obtaining analytical expressions
for hyper-Wiener indices over the years. Cash et al. [7] have obtained mathematical
expressions for the hyper-Wiener indices of linear phenylenes, cyclic phenylenes,
polyazulenes, and several families of periodic hexagonal chains. Likewise Khalifeh et
al. [33] have obtained mathematical expressions for the hyper-Wiener indices of C4
nanotubes, C4 nanotori and q-multi-walled polyhex nanotori. Xing et al. [55] have
obtained the hyper-Wiener indices of unicyclic graphs. Essalih and El Marraki [14]
have obtained the hyper-Wiener indices of corona Cm ◦Cn . Thus obtaining analytical
expressions for the hyper-Wiener indices continues to be an active area of research for
mathematicians and mathematical chemists. In the present study, we fill an important
gap in this field by obtaining closed mathematical expressions for the hyper-Wiener
indices of large inorganic silicate and oxide networks for the first time by developing
a new graph cut method.

2 Mathematical preliminaries

Throughout this paper we consider finite, undirected, connected graphs G, without
loops and multiple edges. Let E(G) and V (G) denote the edge set and the vertex set
of the graph G. By distance between any pair of vertices u, v in a graph G, we mean
the number of edges on a shortest path connecting these vertices in G and is usually
denoted by dG(u, v).

A subgraph H of a graphG is said to be a convex subgraph if for any vertices u, v of
H , any shortest path between u and v inG lies completely in H . An edge cut F ofG is
said to be a convex edge cut if the two components of G− F are the convex subgraphs
of G. The Hamming distance H(l(u), l(v)) between the binary strings l(u) and l(v) is
defined as the number of positions in which the two strings differ. A connected graph
G is called a partial cube if and only if its vertices are labeled with binary strings of
fixed length such that for all vertices u, v ∈ G we have H(l(u), l(v)) = dG(u, v).

A convex vertex cut X of G is defined as analogous to the convex edge cut, the
only difference being the cut X which comprises of vertices instead of edges. An
independent set S of V (G) is defined as a set in which no two vertices are adjacent to
each other. A vertex v of G is said to be a corner vertex if it is not the internal vertex
in the shortest path between any pair of vertices in G and � G denotes the collection
of corner vertices of G.
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Definition 1 [54] The Wiener index W (G) is the sum of distances between all pairs
of vertices in G,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

It is the oldest and the most studied graph invariant. There are various algorithms
[5,48,57] for the evaluation of this index and a number of papers were devoted to
compute the explicit formulae for various classes of graphs [2,11,12,16,42,49].

Definition 2 [54] The Wiener polarity index Wp(G) is defined as the number of
unordered pairs of vertices that are at distance 3 in G,

Wp(G) = |{{u, v} ⊆ V (G)|dG(u, v) = 3}|.

In [44], Liu et al. found the bounds ofWp in terms of Zagreb,Wiener, hyper-Wiener
indices. The mathematical properties of this index and its applications in chemistry
can be found in [9,44] and the references cited therein. Other recent works on Wp are
found in [8,28,58].

The hyper-Wiener index WW was introduced by Randić in case of trees [51] and
was extended to general graphs by Klein et al. in [41]. According to Randić [51], in
the case of trees,WW is equal to the sum of products n(u) ·n(v) of all pairs of vertices
u, v, where n(u) and n(v) are number of vertices lying on the two sides of the path
connecting u and v. This generalizes the earlier result of Wiener [54], according to
which the Wiener index of a tree is equal to the sum of products n(u) ·n(v) of all pairs
of adjacent vertices u, v.

Unfortunately, Randić’s original definition of WW is not applicable to cycle-
containing graphs. In order to avoid this difficulty, Klein et al. [41] demonstrated
that in the case of trees, WW satisfies the right-hand side of Eq. (1). They then pro-
posed that the same expression be used also in the case of cycle-containing graphs,
which eventually was universally accepted. Thus we have:

Definition 3 [41] The hyper-Wiener index WW (G) of a graph G is

WW (G) = 1

2

∑

{u,v}⊆V (G)

dG(u, v) + 1

2

∑

{u,v}⊆V (G)

d2G(u, v). (1)

Various properties of this index were reported in [30,33,35,43,60] and its bounds
were discussed in [15]. It has also been observed that there is a relation between
Wiener and hyper-Wiener indices [21,36,59] and they show good correlation with
various physico-chemical and biological properties [10,46] of chemical compounds.

A so-called cut method (or orthogonal cut method) for computing various distance-
based topological indices was discovered in [37] and then applied in a long series of
papers to benzenoid [1,17,18,22,23,31,38,56] and non-benzenoid chemical species
[3,4,24,25,34]. The mathematical details of the cut method are outlined in the survey
[39]. In what follows, we describe the version of the cut method, suitable for the
calculation of hyper-Wiener indices.
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Fig. 1 A three dimensional silicate network and deletion of dotted lines and hollow vertices gives the three
dimensional oxide network

Let G be a partial cube embedded into the q-cube and for any 1 ≤ i, j ≤ q, let n01i j
be the number of vertices of G whose ith and jth co-ordinates are equal to 0 and 1,
respectively, and in a similar way we define the terms n00i j , n

10
i j and n11i j .

Theorem 1 [35] Let G be a partial cube on n vertices embedded into the q-cube.
Then

WW (G) = W (G) +
q∑

i=1

q∑

j=i+1

[
n11i j n

00
i j + n01i j n

10
i j

]
.

Based on the above formula, Žigert et al. established general expressions for the
hyper-Wiener index of several classes of benzenoid systems [40,60]. Yet, there exist
only a limited number of such results, due to computational complexities.

Most of the distance and/or degree-based topological indices [3,26,50], except the
Wiener polarity and hyper-Wiener indices, have been computed for the silicate and
oxide networks as depicted in Fig. 1 and the method described in Theorem 1 cannot
be used to calculate the hyper-Wiener index of these networks. This motivates us to
derive a new method for computing the same and is discussed in the next section.

3 Hyper-Wiener index via vertex cut method

In the recent paper [3], the first three authors have developed a method for computing
degree and distance-based indices as the sum of the vertex contributions and the
advantage of this method is that it can be applied to certain classes of graphs when
the usual cut method [39] is not applicable. In this section we derive the formula for
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computing the hyper-Wiener index using the vertex cut method and we begin with the
concept of betweenness centrality.

The betweenness centrality B(x) of a vertex x ∈ V (G) is the sum of the fraction
of all pairs of shortest paths that pass through the vertex x . Mathematically,

B(x) =
∑

u,v∈V (G)\{x},u �=v

σu,v(x)

σu,v

where σu,v denote the total number of shortest (u, v)-paths in G and σu,v(x) denote
the number of shortest (u, v)-paths passing through the vertex x . This centrality index
B(x) plays a significant role in decomposing the Wiener index in terms of vertex
contributions [3,52]. But an extension of this index is sufficient to decompose the
hyper-Wiener index and is described as follows.

The betweenness centrality B(x, y) of two distinct vertices x, y ∈ V (G) is the sum
of the fraction of all pairs of shortest paths that pass through both the vertices x and
y. Mathematically,

B(x, y) =
∑

u,v∈V (G)\{x,y},u �=v

σu,v(x, y)

σu,v

where σu,v(x, y) represents the number of shortest (u, v)-paths that pass through the
vertices x and y while σu,v denotes the total number of shortest (u, v)-paths in G.

Theorem 2 Let G be a graph having n vertices. Then

WW (G) = 2W (G) −
(
n

2

)
+

∑

{x,y}⊆V (G)

B(x, y). (2)

Proof From the definition of B(x, y), we have

∑

{x,y}⊆V (G)

B(x, y) =
∑

x,y∈V (G),x �=y

⎛

⎝
∑

u,v∈V (G)\{x,y},u �=v

σu,v(x, y)

σu,v

⎞

⎠

=
∑

u,v∈V (G),u �=v

⎛

⎝
∑

x,y∈V (G)\{u,v},x �=y

σu,v(x, y)

σu,v

⎞

⎠

=
∑

u,v∈V (G),u �=v

(
dG(u, v) − 1

2

)
.

In other way, we have

2
∑

{x,y}⊆V (G)

B(x, y) =
∑

{u,v}⊆V (G)

(dG(u, v) − 1)(dG(u, v) − 2). (3)
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We now algebraically split the term d2G(u, v) as,

d2G(u, v) = dG(u, v) + [dG(u, v) − 1][dG(u, v) − 2] + 2[dG(u, v) − 1] (4)

Obviously the first term on the right-hand side of Eq. (1) is one half of the Wiener
index. Now, using Eqs. (3) and (4), we arrive the formula for the hyper-Wiener index
as follows.

WW (G) = 1

2
W (G) + 1

2

∑

{u,v}⊆V (G)

d2G(u, v) = 1

2
W (G) + 1

2

∑

{u,v}⊆V (G)

×
[
dG(u, v) + [dG(u, v) − 1][dG(u, v) − 2] + 2[dG(u, v) − 1]

]

= W (G) + 1

2

∑

{u,v}⊆V (G)

[
[dG(u, v) − 1][dG(u, v) − 2] + 2[dG(u, v) − 1]

]

= 2W (G) −
(
n

2

)
+ 1

2

∑

{u,v}⊆V (G)

[
[dG(u, v) − 1][dG(u, v) − 2]

]

= 2W (G) −
(
n

2

)
+

∑

{x,y}⊆V (G)

B(x, y)

��
Now we present Theorem 2 in an elegant way to compute WW (G) using vertex

cuts with the following notations. Consider the convex vertex cuts in pairs (Vi , Vj ),
then we arrive any one of the two cases as shown in the Fig. 2. Suppose the cuts are
intersecting each other, we denote the number of vertices in the four fragments G1,
G2, G3 and G4 as n11(Vi , Vj ), n22(Vi , Vj ), n12(Vi , Vj ) and n21(Vi , Vj ) respectively
as depicted in Fig. 2a. On the other side if the cuts are parallel to each other, either
n12(Vi , Vj ) or n21(Vi , Vj ) is zero as shown in Fig. 2b.

Theorem 3 Let G be a connected graph admitting a vertex partition {Vi }ki=1 ∪ � G of
V (G) such that each Vi is a convex vertex cut and an independent set. Then

WW (G) = 2W (G) −
(|V (G)|

2

)
+

k∑

i=1

k∑

j=i+1

×
[
n11(Vi , Vj ) n22(Vi , Vj ) + n12(Vi , Vj ) n21(Vi , Vj )

]
. (5)

Proof In order to prove the theorem it is enough to show that the term
∑

{x,y}⊆V (G)

B(x, y) is equivalent to the last term in Eq. (5). For any two disjoint sets X,Y ⊆ V (G),
we have the following notation

B(X,Y ) =
∑

{x,y}⊆V (G),x∈X,y∈Y
B(x, y).
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Vi

Vj

Vi

Vj

G1

G2

G1

G2

G3

G4

(b)
(a)

n11

n22

n11

n22
n21

n12

Fig. 2 Different cases of elementary cuts (a) intersecting cuts, (b) parallel cuts

Thus we have

∑

{x,y}⊆V (G)

B(x, y) =
k∑

i=1

k∑

j=i+1

B(Vi , Vj ) +
∑

{x,y}⊆� G

B(x, y)

+
∑

{x,y}⊆V (G),x∈Vi ,y∈� G

B(x, y).

The last two summations in the above equation vanish since there exists no shortest
paths passing through the corner vertex.

Suppose Vi and Vj are intersecting cuts. Then B(Vi , Vj ) counts the number of pairs
of vertices {x, y} such that x ∈ V (G1) and y ∈ V (G2) in addition to the number of
pairs of vertices {x, y} such that x ∈ V (G3) and y ∈ V (G4) as depicted in Fig. 2a.
Consequently,

B(Vi , Vj ) = n11(Vi , Vj ) n22(Vi , Vj ) + n12(Vi , Vj ) n21(Vi , Vj ).

On the other hand if Vi and Vj are parallel cuts, we have to consider the pairs {x, y}
such that x ∈ V (G1) and y ∈ V (G2) as depicted in Fig. 2b. Then either n12(Vi , Vj )

or n21(Vi , Vj ) becomes zero, and therefore for this case we have,

B(Vi , Vj ) = n11(Vi , Vj ) n22(Vi , Vj ).

Therefore, in general we have the result

∑

{x,y}⊆V (G)

B(x, y) =
k∑

i=1

k∑

j=i+1

[
n11(Vi , Vj ) n22(Vi , Vj ) + n12(Vi , Vj ) n21(Vi , Vj )

]
.

which gives the required formula (5). ��
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We now exhibit the significance of the above result by computing the hyper-Wiener
indices of two chemically important frameworks such as silicate networks and oxide
networks in the following sections.

4 Silicate networks

Silicates are the largest and most important class of rock-forming minerals and make
up approximately 90% of the earth’s crust. They are classified based on the structure
of their silicate groups and are obtained by fusing metal oxides or metal carbonates
with sand [47]. A number of research papers were devoted to explore the properties of
this chemical network [3,6,26,47,50]. The basic chemical unit of silicate is a (SiO4)

tetrahedron in which the corner vertices represents the oxygen nodes and the central
vertex represents the silicon node. These tetrahedra combine in a variety of ways
to form three-dimensional networks of silicates. Silicate network of dimension n is
denoted by SLn , where n denotes the order of circumscribing as shown in the Fig. 1.
It consists of 15n2 + 3n number of vertices and 36n2 number of edges.

Theorem 4 For a silicate network of dimension n,

WW (SLn) = n

12

(
2740n5 + 3858n4 + 1309n3 − 228n2 − 179n − 12

)
.

Proof Let G denote the silicate network SLn and let the indexed sets {Hp}, {Op},
{Ap} represent the set of all horizontal, obtuse and acute vertex cuts [3] of the silicate
network SLn , where 1 ≤ p ≤ 2n − 1 and the remaining vertices form a set � G of
corner vertices of G. Let Vi , Vj ∈ {{Hp}, {Op}, {Ap}} and by Theorem 3,

i = 1

i = 2

i = n-1

i = n

H1

H n

i = 2n-1 H2n-1

Fig. 3 Convex vertex cuts of type P
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Aj

Aj

j = 1 j = 2
j = n-1 j = n

j  =n+1 j  = 2n-2 j  = 2n-1

i = 1

i = 2

i = n-1

i = n

i = 2n-1

Hi

Fig. 4 Convex vertex cuts of type I

WW (G) = 2W (G) −
(|V (G)|

2

)
+

6n−3∑

i=1

6n−3∑

j=i+1

×
[
n11(Vi , Vj ) n22(Vi , Vj ) + n12(Vi , Vj ) n21(Vi , Vj )

]

= 2W (G) −
(|V (G)|

2

)
+ WW ∗(G) (6)

where

WW ∗(G) =
6n−3∑

i=1

6n−3∑

j=i+1

[
n11(Vi , Vj ) n22(Vi , Vj ) + n12(Vi , Vj ) n21(Vi , Vj )

]
.

The Wiener index of silicate network has been computed in [3] and is given by

W (G) = n

2

(
410n4 + 295n3 + 18n2 − 31n − 2

)
. (7)

We now compute WW ∗(G) by considering the vertex cut in pairs. We call the
two different types as (1) Type P as shown in Fig. 3, in which the cuts are parallel
to each other (2) Type I as shown in Fig. 4, in which the cuts intersect each other.
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Table 1 n11(Hi , Hj ) and n22(Hi , Hj ) for parallel pair of cuts

Range for n11(Hi , Hj ) n22(Hi , Hj )

i j

1 ≤ i ≤ n − 1 i + 1 ≤ j ≤ n − 1
i∑

k=1
{5(n + k) − 2} 15n2+5n

2 + 4(n + j) + 3

+
n− j−1∑
k=1

{5(n + j + k) + 3}

n ≤ j ≤ 2n − 1
2n− j∑
k=1

{5(n + k) − 2}

n + 1 ≤ i ≤ 2n − 2 i + 1 ≤ j ≤ 2n − 1 15n2+5n
2 + 4(3n − i) + 3

2n− j∑
k=1

{5n + 5k − 2}

+
2n−i−1∑
k=1

{5(3n − i + k) + 3}

Table 2 nrs (Hi , A j ), r, s = 1, 2 for intersecting pair of cuts

Range for i Range for j n11(Hi , A j ) n12(Hi , A j )

n21(Hi , A j ) n22(Hi , A j )

1 ≤ i ≤ n 1 ≤ j ≤ n 5i j i(5i − 10 j + 10n − 1)/2

j (5 j − 10i + 10n − 1)/2
(30n2 − 5a2 + 10ai

− 10an − a − 5i2 − 10ni
− i + 2n)/2

n + 1 ≤ j ≤ n + i − 1
( j − n + 10i j + 10 jn

− 5 j2 − 5n2)/2
(i − j + n)(5i − 5 j − 1

+ 5n)/2

(20 jn − n − 10i j − 5n2)/2
(35n2 − i + n + 10i j

− 10ni − 20 jn − 5i2)/2

n + i ≤ j ≤ 2n − 1 i(5i + 10n + 1)/2 –

– ( j − 2n)(5 j − 20n − 1)/2

n + 1 ≤ i ≤ 2n − 1 1 ≤ j ≤ i − n j (5 j + 10n + 1)/2 –

– (i − 2n)(5i − 20n − 1)/2

i − n + 1 ≤ j ≤ n
(10i j − n + i + 10ni

− 5i2 − 5n2)/2
(20ni − n − 10i j − 5n2)/2

(i − j − n)(5i − 5 j + 1
− 5n)/2

(n − j + 10i j − 20ni
− 10 jn − 5 j2 + 35n2)/2

n + 1 ≤ j ≤ 2n − 1
(10i j − 5i2 + 10ni + i

− 5 j2 + 10 jn + j − 10n2

− 2n)/2
( j − 2n)(5 j − 10i + 1)/2

(i − 2n)(5i − 10 j + 1)/2 5(i − 2n)( j − 2n)
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Table 3 Partition of the vertex set based on the third neighborhood of vertices of SLn

i |N3
SLn

(vi )|, vi ∈ Vi |Vi |

1 9 24

2 12 12(n − 2)

3 11 18

4 14 12(n − 2)

5 16 6(n − 1)

6 12 6(n − 1)

7 18 6n2 − 12n + 6

8 22 9n2 − 21n + 12

By symmetry of G, we have

WW ∗(G) = 3[WW ∗(P) + WW ∗(I )] (8)

where

WW ∗(P) =
2n−1∑

i=1

2n−1∑

j=i+1

[
n11(Hi , Hj ) n22(Hi , Hj ) + n12(Hi , Hj ) n21(Hi , Hj )

]

and

WW ∗(I ) =
2n−1∑

i=1

2n−1∑

j=1

[
n11(Hi , A j )n22(Hi , A j ) + n12(Hi , A j )n21(Hi , A j )

]
.

We split the proof into three cases: In the first two cases, we compute separately
the quantities WW ∗(P) and WW ∗(I ). Finally we compute the hyper-Wiener index
by manipulating the computed results.
Case I: WW ∗(P)

In this case, it is enough to calculate the two quantities n11(Hi , Hj ) and n22(Hi , Hj )

as shown in Fig. 3. For different values of i and j , the computed values of n11(Hi , Hj )

and n22(Hi , Hj ) are tabulated in Table 1. Using Table 1, we now compute the value
of WW ∗(P) as follows.

WW ∗(P) =
2n−1∑

i=1

2n−1∑

j=i+1

n11(Hi , Hj ) n22(Hi , Hj )

=
n∑

i=1

⎡

⎣
n−1∑

j=i+1

n11(Hi , Hj ) n22(Hi , Hj ) +
2n−1∑

j=n

n11(Hi , Hj ) n22(Hi , Hj )

⎤

⎦
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+
2n−1∑

i=n+1

2n−1∑

j=i+1

n11(Hi , Hj ) n22(Hi , Hj )

= n

12
(n − 1)(375n4 + 26n3 − 79n2 − 22n + 2).

Case II: WW ∗(I )
Now we turn our attention to the pair of vertex cuts that are intersecting each other

as shown in Fig. 4. Here we consider all pair of cuts of the form (Hi , A j ) where Hi

represents one of the horizontal vertex cuts of G and A j denotes one of the acute
vertex cuts of G. The computed values of the quantities nrs(Hi , A j ), r, s = 1, 2 are
tabulated in Table 2. For convenience, let us denote nrs(Hi , A j ) r, s = 1, 2 as nrs .
With all the computed expressions, we now obtain WW ∗(I ) as

WW ∗(I ) =
2n−1∑

i=1

2n−1∑

j=1

n11 n22 + n12 n21

=
n∑

i=1

⎡

⎣
n∑

j=1

n11 n22 + n12 n21 +
n+i−1∑

j=n+1

n11 n22 + n12 n21 +
2n−1∑

j=n+i

n11 n22

⎤

⎦

+
2n−1∑

i=n+1

⎡

⎣
i−n∑

j=1

n11 n22 +
n∑

j=i−n+1

n11 n22 + n12 n21 +
2n−1∑

j=n+1

n11 n22 + n12 n21

⎤

⎦

= n2

36

(
1615n4 − 15n3 − 566n2 − 75n + 85

)
.

Case III: WW (G)

We now first compute the expression for WW ∗(G). By Eq. (8),

WW ∗(G) = n

12

(
2740n5 − 1062n4 − 881n3 + 96n2 + 157n − 6

)
.

Using Theorem 3, we compute the formula for the hyper-Wiener index as follows:

WW (G) = 2W (G) −
(|V (G)|

2

)
+ WW ∗(G)

WW (SLn) = n

12

(
2740n5 + 3858n4 + 1309n3 − 228n2 − 179n − 12

)
.

��

5 Oxide networks

Oxide networks are obtained from the silicate networks by omitting the central vertex
which means the silicon node as shown in Fig. 1. We denote the oxide network of
dimension n as OXn and the properties of this framework were studied in [3,6,50]. It
has a total number of 9n2 + 3n vertices and 18n2 edges. Using the similar proof lines
of the previous section, we now compute the hyper-Wiener index of oxide framework
as follows.
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Theorem 5 For an oxide network of dimension n,

WW (OXn) = n

20

(
1644n5 + 2382n4 + 1055n3 + 60n2 − 179n − 42

)
.

Proof As in Theorem 4, considering the various types of pairs of elementary cuts, we
have computed the expression for WW ∗(OXn) as

WW ∗(OXn) = 3
[
WW ∗(P) + WW ∗(I )

]

= n2

20

(
1644n4 − 570n3 − 595n2 + 121

)
.

The Wiener index of OXn [3] is given as

W (OXn) = 3n

10

(
246n4 + 205n3 + 50n2 − 25n − 6

)
.

By using Theorem 3, the formula for the hyper-Wiener index of oxide network is given
as

WW (OXn) = 2W (OXn) −
(|V (G)|

2

)
+ WW ∗(OXn)

= n

20

(
1644n5 + 2382n4 + 1055n3 + 60n2 − 179n − 42

)
.

��

6 Wiener polarity index of silicate and oxide networks

In this section, we compute the Wiener polarity indices of the silicate and oxide
frameworks based on vertex neighborhoodwhich is defined as follows: For any integer
i , let Ni

G(v) denote the i th neighborhood of a vertex v and symbolically

Ni
G(v) = {u ∈ V (G)|dG(u, v) = i}.

The following lemma gives a simple general formula for computing Wp in terms of
third neighborhood.

Lemma 1 [8] For any graph G, the Wiener polarity index Wp(G) can be expressed
as,

Wp(G) = 1

2

∑

v∈V (G)

|N 3
G(v)|.

Theorem 6 For a silicate network of dimension n,

Wp(SLn) = 153n2 − 99n − 3.
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Fig. 5 Vertex partition of SL3 based on third neighborhood N3
SL3

(v)

Proof We first split the vertex set V (SLn) into eight disjoint sets based on |N 3
SLn

(v)|
as shown in Table 3 and Fig. 5. Using Lemma 1, we compute Wp(SLn) as follows.

Wp(SLn) = 1

2

∑

v∈V (SLn)

|N3
SLn

(v)|

= 1

2

8∑

i=1

|Vi ||N3
SLn

(vi )|

= 153n2 − 99n − 3.

��
Theorem 7 For an oxide network of dimension n,

Wp(OXn) = 63n2 − 39n − 3.

Proof In OXn the vertex set is decomposed into six sets based on |N 3
OXn

(v)| and are
tabulated in Table 4. By Lemma 1, we have,

Wp(OXn) = 1

2

∑

v∈V (OXn)

|N 3
OXn

(v)|

= 1

2

6∑

i=1

|Vi ||N 3
OXn

(vi )|

= 63n2 − 39n − 3.

��
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Table 4 Partition of the vertex
set based on the third
neighborhood of vertices of
OXn

i |N3
OXn

(vi )|, vi ∈ Vi |Vi |

1 6 12

2 8 6(n − 2)

3 7 18

4 9 12(n − 2)

5 10 6(n − 1)

6 14 9n2 − 21n + 12

7 Concluding remarks

In this paper, we have presented the vertex version formula for computing the hyper-
Wiener index WW , and thereby calculated expressions for WW for two chemically
significant metal organic frameworks. In earlier literature, this index has been studied
only for a limited number of graphs, due to its complicated computing procedures,
which in turn signifies the work of the present paper. Furthermore, we have computed
the Wiener polarity index Wp of these complex chemical frameworks based on its
chemical significance. Since we dealt with chemical graphs, the results obtained here
will be of much use in QSAR/QSPR studies, as well as for analyzing properties of
chemical compounds.
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29. A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index. Graphs Comb.

29(5), 1403–1416 (2013)
30. A. Iranmanesh, Y. Alizadeh, Computing hyper Wiener and Schultz indices of TU ZC6[p, q] nanotube

by GAP Program. Dig. J. Nanomater. Biostruct. 4(4), 607–611 (2009)
31. P.E. John, P.V. Khadikar, J. Singh, A method of computing the P I index of benzenoid hydrocarbons

using orthogonal cuts. J. Math. Chem. 42, 37–45 (2007)
32. M. Karelson, Molecular Descriptors in QSAR/QSPR (Wiley, New York, 2000)
33. M. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The hyper-Wiener index of graph operations. Comput.

Appl. Math. 56, 1402–1407 (2008)
34. M. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Another aspect of graph invariants depending on the path

metric and an application in nanoscience. Comput. Math. Appl. 60, 2460–2468 (2010)
35. S. Klavžar, Applications of isometric embeddings to chemical graphs. DIMACS Ser. Discrete Math.

Theor. Comput. Sci. 51, 249–259 (2000)
36. S. Klavžar, I. Gutman, Relation between Wiener-type topological indices of benzenoid molecules.

Chem. Phys. Lett. 373, 328–332 (2003)
37. S. Klavžar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects he vertex-distance

relations. J. Chem. Inf. Comput. Sci. 35, 590–593 (1995)
38. S. Klavžar, I. Gutman, A. Rajapakse, Wiener numbers of pericondensed benzenoid hydrocarbons.

Croat. Chem. Acta 70, 979–999 (1997)
39. S. Klavžar, M.J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of inde-

pendent approaches. Curr. Org. Chem. 19(4), 348–358 (2015)
40. S. Klavžar, P. Žigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of ben-

zenoid hydrocarbons. Comput. Chem. 24, 229–233 (2000)
41. D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing

structures. J. Chem. Inf. Comput. Sci. 35, 50–52 (1995)

123



1510 J Math Chem (2018) 56:1493–1510

42. H. Liu, X.F. Pan, On theWiener index of trees with fixed diameter. MATCH Commun. Math. Comput.
Chem. 60, 85–94 (2008)

43. M. Liu, B. Liu, Trees with the seven smallest hyper-Wiener indices.MATCHCommun.Math. Comput.
Chem. 63, 151–170 (2010)

44. M. Liu, B. Liu, On the Wiener polarity index. MATCH Commun. Math. Comput. Chem. 66, 293–304
(2011)

45. I. Lukovits, W. Linert, Polarity-numbers of cycle-containing structures. J. Chem. Inf. Comput. Sci. 38,
715–719 (1998)

46. I. Lukovits, W. Linert, A novel definition of the hyper-Wiener index for cycles. J. Chem. Inf. Comput.
Sci. 34, 899–902 (1994)

47. P. Manuel, I. Rajasingh, Minimum metric dimension of silicate networks. Ars Comb. 98, 501–510
(2011)

48. B.Mohar, T. Pisanski, How to compute theWiener index of a graph. J. Math. Chem. 2, 267–277 (1988)
49. J. Quadras, K. Balasubramanian, K.A. Christy, Analytical expressions for Wiener indices of n-

circumscribed peri-condensed benzenoid graphs. J. Math. Chem. 54(3), 823–843 (2016)
50. B. Rajan, A.William, C. Grigorious, S. Stephen, On certain topological indices of silicate, honeycombs

and hexagonal networks. J. Comput. Math. Sci. 3(5), 530–535 (2012)
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