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Abstract
The aim of this paper is to obtain new inequalities involving some topological indices
of a graph and characterize graphs extremal with respect to them. Our main results
provide lower bounds on several indices involving just theminimum and themaximum
degree of the graphG. This family of indices includes, among others, theWiener index
and several of its generalizations, the harmonic index and the general sum-connectivity
index, and the geometric-arithmetic index.Wealso include some chemical applications
of our results and some open problems.

Keywords Wiener index · Generalized Wiener index · Harmonic index · General
sum-connectivity index · Geometric-arithmetic index.

Mathematics Subject Classification 05C07 · 92E10

1 Introduction

A topological descriptor is a single number that represents a chemical structure
in graph-theoretical terms via the molecular graph, they play a significant role in
mathematical chemistry especially in the QSPR/QSAR investigations. A topologi-
cal descriptor is called a topological index if it correlates with a molecular property.
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Topological indices are used to understand physicochemical properties of chemical
compounds, since they capture some properties of a molecule in a single number.
Hundreds of topological indices have been introduced and studied, starting with the
seminal work by Wiener [41]. Since then, its mathematical properties and chemical
applications have been intensively studied. The Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where {u, v} runs over every pair of vertices in G.
Topological indices based on end-vertex degrees of edges have been used over

40years. Among them, several indices are recognized to be useful tools in chemical
researches. Probably, the best know such descriptor is the Randić connectivity index
[30].

Two of the main successors of the Randić index are the first and second Zagreb
indices, denoted by M1 and M2, respectively, and introduced by Gutman et al. in (see
[21]). They are defined as

M1(G) =
∑

u∈V (G)

d2u =
∑

uv∈E(G)

(du + dv), M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is
the degree of the vertex u.

The general sum-connectivity index was defined by Zhou and Trinajstić in [45] as

χα(G) =
∑

uv∈E(G)

(du + dv)
α.

Note that χ1 is the first Zagreb index M1, 2χ−1 is the harmonic index, χ−1/2 is the
sum-connectivity index, etc.

The concept of variable molecular descriptors was proposed as a new way of char-
acterizing heteroatoms in molecules (see [31,32]), but also to assess the structural
differences (e.g., the relative role of carbon atoms of acyclic and cyclic parts in alkyl-
cycloalkanes [34]). The idea behind the variable molecular descriptors is that the
variables are determined during the regression so that the standard error of estimate
for a particular studied property is as small as possible.

In the paper of Gutman and Tošović [20], the correlation abilities of 20 vertex-
degree-based topological indices occurring in the chemical literature were tested for
the case of standard heats of formation and normal boiling points of octane isomers. It
is remarkable to realize that variable indices provide indices that perform significantly
better than the Randić index.

Countless applications of topological indices were reported, most of them con-
cerned with exploring medicinal and pharmacological issues. A turning point in the
mathematical examination of topological indices happened in the second half of the
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1990s, when a significant and ever growing research field on this matter started, result-
ing in numerous publications. In this context, especially the papers of Erdös [1] and
[2] should be mentioned.

Throughout this work, G = (V (G), E(G)) denotes a (non-oriented) finite simple
(without multiple edges and loops) non-trivial (E(G) �= ∅) graph. A main topic in
the study of topological indices is to find bounds of the indices involving several
parameters. The aim of this paper is to obtain new inequalities for a large family
of topological indices and to characterize the set of extremal graphs with respect to
them. Our main results provide lower bounds on this family of topological indices
involving just the minimum and the maximum degree of the graph. This family of
indices includes, among others, the Wiener index and several of its generalizations
(in Sect. 2), the harmonic index and the general sum-connectivity index (see Sects. 4
and 5, respectively), and the geometric-arithmetic index (in Sect. 6). Theorem 6 and
Corollary 3 show some applications of our results in mathematical chemistry.

2 Wiener index and its generalizations

Along this section we just consider connected graphs G, in order to have defined
d(u, v) for every u, v ∈ V (G).

Motivated by the Wiener index, Randić introduced in [33] an extension of the
Wiener index for trees, and this has come to be known as the hyper-Wiener index. In
[25], this extension was generalized to graphs as

WW (G) = 1

2

∑

{u,v}⊆V (G)

d(u, v) + 1

2

∑

{u,v}⊆V (G)

d(u, v)2.

WW (G) has been useful in correlations (see, e.g., [16] and the references therein).
For information about the hyper-Wiener index in mathematics see, e.g., [3,16,23].

Also, it is interesting to generalize the Wiener index in the following way

W λ(G) =
∑

{u,v}⊆V (G)

d(u, v)λ,

with λ ∈ R. Obviously, if λ = 1, then W λ coincides with the ordinary Wiener
indexW . Note thatW−2 is the Harary index;W−1 is the reciprocal Wiener index; the
quantityW 2 is closely related to the hyper-Wiener index, sinceWW = (W 1+W 2)/2.
Another topological index, proposed in [38] is expressed in terms ofW 1,W 2 and W 3

as (2W 1 + 3W 2 + W 3)/6. See [24] for more connections of the same kind.
Three different variants of the q-Wiener index (q > 0, q �= 1) were defined in [42]

as

W1(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q ,
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W2(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q qL−d(u,v),

W3(G, q) =
∑

{u,v}⊆V (G)

[d(u, v)]q qd(u,v),

where L is the diameter of G, and

[k]q = 1 − qk

1 − q
= 1 + q + q2 + · · · + qk−1.

Since limq→1[k]q = k, we have

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W (G).

The Schultz index and the modified Schultz index of G are defined as

W+(G) =
∑

{u,v}⊆V (G)

(du + dv) d(u, v),

W∗(G) =
∑

{u,v}⊆V (G)

du dv d(u, v),

respectively.
For each fixed real number α, let us define the generalized Schultz-type indices by

W (α)
‡ (G) =

∑

{u,v}⊆V (G)

(
dα
u + dα

v

)
d(u, v),

W (α)
+ (G) =

∑

{u,v}⊆V (G)

(du + dv)
α d(u, v),

W (α)∗ (G) =
∑

{u,v}⊆V (G)

dα
u d

α
v d(u, v),

see, e.g., [22]. For α = 1 the indices W (α)
‡ (G), W (α)

+ (G), and W (α)∗ (G), reduce to
W+(G), and W∗(G), respectively.

Given any positive symmetric function g : [δ,Δ] × [δ,Δ] ∩ Z
2 → (0,∞) and

any non-negative function h : [δ,Δ] ∩ Z → [1,∞), the (g, h)-Wiener index of G is
defined as

Wg,h(G) =
∑

{u,v}⊆V (G)

g(du, dv) h (d(u, v)) .

This general approach allows to study in a unified way the previous indices.
Let us start with regular graphs. As usual, denote by Kn the complete graph with n

vertices. Also, we write G1 ∼= G2 if the graphs G1 and G2 are isomorphic.
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Theorem 1 Given 1 ≤ Δ, if h is a non-decreasing function, then we have for any
graph G with minimum and maximum degree Δ,

Wg,h(G) ≥ Δ(Δ + 1)

2
g(Δ,Δ)h(1) = Wg,h(KΔ+1).

Furthermore, if h is strictly increasing, then Wg,h(G) = Wg,h(KΔ+1) if and only if
G ∼= KΔ+1.

Proof Since every vertex inG has degreeΔ, there are at leastΔ+1 vertices and (Δ+1)Δ
2

pairs of vertices. Furthermore,we have g(du, dv) = g(Δ,Δ) for every {u, v} ⊆ V (G).
Hence, we have

Wg,h(G) ≥ Δ(Δ + 1)

2
g(Δ,Δ)h(1) = Wg,h(KΔ+1).

Assume that h is strictly increasing. If Δ = 1, then G ∼= K2 and the last statement
holds. Assume now thatΔ > 1. If G is not isomorphic to KΔ+1, then there are at least
Δ + 2 vertices and (Δ+2)(Δ+1)

2 pairs of vertices, and at least Δ+2
2 of these pairs are

non-adjacent. Therefore,

Wg,h(G) ≥
(

(Δ + 2)(Δ + 1)

2
− Δ + 2

2

)
g(Δ,Δ)h(1) + Δ + 2

2
g(Δ,Δ)h(2)

>
Δ(Δ + 1)

2
g(Δ,Δ)h(1) = Wg,h(KΔ+1).

This finishes the proof. �
For any 1 ≤ δ < Δ, letHδ,Δ denote the family of graphs withΔ+1 vertices where

one of them has degree δ, δ of them have degree Δ, and Δ − δ have degree Δ − 1.
In [27] we obtained the following:

Proposition 1 Given 1 ≤ δ < Δ, there is a unique graph (up to isomorphism), Hδ,Δ,
inHδ,Δ.

Notice that in Hδ,Δ there are (Δ+1)Δ
2 pairs of vertices, (Δ−1)Δ+2δ

2 of them are at
distance 1 and Δ − δ are at distance 2 (those with degree Δ − 1 from the vertex with
degree δ).

Therefore,

Wg,h(Hδ,Δ) =
[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

(
Δ − δ

2

)
g(Δ − 1,Δ − 1)

+ δ(Δ − δ)g(Δ − 1,Δ)

]
h(1) + (Δ − δ)g(δ,Δ − 1)h(2).

First, we prove a non-sharp (but simple) lower bound of Wg,h(G) (for any non-
regular graph G) involving just the minimum and maximum degrees of G.
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Theorem 2 Given 1 ≤ δ < Δ, if g is a non-increasing function in the first variable
and h is a non-decreasing function, then we have for any graph G with minimum
degree δ and maximum degree Δ,

Wg,h(G) ≥ Δ(Δ − 1) + 2δ

2
g(Δ,Δ)h(1) + (Δ − δ)g(δ,Δ)h(2).

Proof SinceG has a vertex with degreeΔ, there are at leastΔ+1 vertices and (Δ+1)Δ
2

pairs of vertices (since g is a non-increasing function in the first variable, we have
g(du, dv) ≥ g(Δ,Δ) for every {u, v} ⊆ V (G)). Since a vertex u0 has degree δ, there
are at least Δ − δ pairs of non-adjacent vertices, and we have g(du0 , dv) ≥ g(δ,Δ)

for these pairs of vertices {u0, v} ⊆ V (G). Therefore,

Wg,h(G) ≥ Δ(Δ − 1) + 2δ

2
g(Δ,Δ)h(1) + (Δ − δ)g(δ,Δ)h(2).

�
Next, we obtain sharp lower bounds of Wg,h .

Definition 1 Let I be any topological index. A graph G with minimum degree δ

and maximum degree Δ is minimal for I if I(G) ≤ I(Γ ) for every graph Γ with
minimum degree δ and maximum degree Δ. A graph G with minimum degree δ,
maximum degreeΔ and n vertices is n-minimal for I if I(G) ≤ I(Γ ) for every graph
Γ with minimum degree δ, maximum degree Δ and n vertices.

Theorem 3 Given 1 ≤ δ < Δ, if g is a non-increasing function in the first variable
and h is a non-decreasing function, then Hδ,Δ is (Δ+1)-minimal for Wg,h. Moreover,
if g is strictly decreasing in the first variable or h is strictly increasing, then G is
(Δ + 1)-minimal for Wg,h if and only if G ∼= Hδ,Δ.

Proof SupposeG hasΔ+1 vertices, x0, x1, . . . , xΔ.Without loss of generality we can
assume that x0 has degree δ and that xδ+1, . . . , xΔ are not adjacent to x0. Therefore,
d(x0, xi ) ≥ 2 and xi has degree at most Δ − 1 for every i > δ. Thus, since g is
non-increasing in the first variable and h is non-decreasing,

Wg,h(G) ≥
[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

(
Δ − δ

2

)
g(Δ − 1,Δ − 1)

+ δ(Δ − δ)g(Δ−1,Δ)] h(1)+ (Δ − δ)g(δ,Δ−1)h(2) = Wg,h(Hδ,Δ).

If G � Hδ,Δ, then there is some other pair of vertices which are not adjacent and
there exist either two vertices with degree less than Δ − 1 or Δ − δ + 2 vertices with
degree less than Δ. Therefore, if g is strictly decreasing in the first variable or h is
strictly increasing, it is immediate to check that Wg,h(G) > Wg,h(Hδ,Δ). �
Theorem 4 Suppose 1 ≤ δ < Δ, g is a non-increasing function in the first variable
and h is a non-decreasing function. If G is any graph with minimum degree δ and
maximum degree Δ and the following conditions hold
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(i)
[(

Δ+1
2

) − (
δ
2

)]
g(Δ,Δ) ≥

[(
Δ
2

) − (
δ
2

)]
g(Δ − 1,Δ − 1),

(ii) (Δ − δ + 1)g(δ,Δ) ≥ (Δ − δ)g(δ,Δ − 1),

then

Wg,h(G) ≥
[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

(
Δ − δ

2

)
g(Δ − 1,Δ − 1)

+ δ(Δ − δ)g(Δ − 1,Δ)] h(1) + (Δ − δ)g(δ,Δ − 1)h(2)=Wg,h(Hδ,Δ).

Furthermore, if either g is strictly decreasing in the first variable or h is strictly
increasing, then Wg,h(G) = Wg,h(Hδ,Δ) if and only if G ∼= Hδ,Δ.

Proof If G has Δ + 1 vertices, then the results follow from Theorem 3. Suppose G
has at least Δ + 2 vertices, x0, . . . , xΔ+1. Then, there are

(
Δ+2
2

)
pairs of vertices in

G. We can assume that x0 has degree δ, and that x0 is not adjacent to xδ+1, . . . , xΔ+1.
Also, since the maximum degree isΔ, the vertices x1, . . . , xδ are not adjacent to every
vertex. Therefore, there are at least δ

2 pairs of non-adjacent vertices in {x1, . . . , xΔ+1}.
Thus,

Wg,h(G) ≥
[
δg(δ,Δ) +

((
Δ + 1

2

)
− δ

2

)
g(Δ,Δ)

]
h(1)

+
[
(Δ − δ + 1)g(δ,Δ) + δ

2
g(Δ,Δ)

]
h(2).

Now, notice that since h is non-decreasing,

[
δg(δ,Δ) +

((
Δ + 1

2

)
− δ

2

)
g(Δ,Δ)

]
h(1)

+
[
(Δ − δ + 1)g(δ,Δ) + δ

2
g(Δ,Δ)

]
h(2)

≥
[
δg(δ,Δ) +

(
Δ + 1

2

)
g(Δ,Δ)

]
h(1) + (Δ − δ + 1)g(δ,Δ)h(2),

(1)

and since g is non-increasing,

[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

(
Δ − δ

2

)
g(Δ − 1,Δ − 1)

+ δ(Δ − δ)g(Δ − 1,Δ)] h(1) + (Δ − δ)g(δ,Δ − 1)h(2)

≤
[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

((
Δ − δ

2

)
+ δ(Δ − δ)

)
g(Δ − 1,Δ − 1)

]
h(1)

+ (Δ − δ)g(δ,Δ − 1)h(2), (2)

where
(

Δ − δ

2

)
+ δ(Δ − δ) =

(
Δ

2

)
−

(
δ

2

)
.
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Thus, it suffices to check that

[
δg(δ,Δ) +

(
Δ + 1

2

)
g(Δ,Δ)

]
h(1) + (Δ − δ + 1)g(δ,Δ)h(2)

≥
[
δg(δ,Δ) +

(
δ

2

)
g(Δ,Δ) +

((
Δ

2

)
−

(
δ

2

))
g(Δ − 1,Δ − 1)

]
h(1)

+ (Δ − δ)g(δ,Δ − 1)h(2)

⇔
[(

Δ + 1

2

)
−

(
δ

2

)]
g(Δ,Δ)h(1) + (Δ − δ + 1)g(δ,Δ)h(2)

≥
[(

Δ

2

)
−

(
δ

2

)]
g(Δ − 1,Δ − 1)h(1) + (Δ − δ)g(δ,Δ − 1)h(2)

and this holds if conditions (i), (i i) are satisfied.
If h (respectively, g) is strictly increasing (respectively, decreasing in the first

variable), then the inequality (1) (respectively, (2)) is strict, and then Wg,h(G) >

Wg,h(Hδ,Δ). This finishes the proof. �
Corollary 1 Suppose 1 ≤ δ < Δ, g is a constant function g = c and h is a non-
decreasing function. If G is any graph with minimum degree δ and maximum degree
Δ, then

Wg,h(G) ≥ Δ(Δ − 1) + 2δ

2
c h(1) + (Δ − δ)c h(2) = Wg,h(Hδ,Δ).

Furthermore, if h is strictly increasing, then Wg,h(G) = Wg,h(Hδ,Δ) if and only if
G ∼= Hδ,Δ.

Thus, by taking g = 1 and h(t) = t in Corollary 1, we obtain the following
inequality for one of the main topological indices: the Wiener index.

Theorem 5 Given 1 ≤ δ < Δ, we have for any graph G with minimum degree δ and
maximum degree Δ,

W (G) ≥ Δ(Δ − 1) + 2δ

2
+ 2(Δ − δ),

with equality if and only if G ∼= Hδ,Δ.

Although only about 1000 benzenoid hydrocarbons are known, the number of pos-
sible benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid
hydrocarbons with 35 benzene rings is 5851000265625801806530 [39]. Therefore,
the modeling of their physico-chemical properties is very important in order to predict
properties of currently unknown species. The main reason for use topological indices
is to obtain prediction of some property of molecules (see, e.g., [13,17,20,34]). There-
fore, given some fixed parameters, a natural problem is to find the graphs thatminimize
(or maximize) the value of a topological index on the set of chemical graphs (graphs
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with maximum degree at most 4) satisfying the restrictions given by the parameters
(see, e.g., [1,2,4,5,10–12,18]).

Theorems 1 and 5 have the following consequence for chemical graphs.

Theorem 6 Let G bea chemical graphwithminimumdegree δ andmaximumdegreeΔ.
If (Δ, δ) = (4, 4), then W (G) ≥ 10, with equality if and only if G ∼= K5.
If (Δ, δ) = (4, 3), then W (G) ≥ 11, with equality if and only if G has five vertices,

two of them with degree 3 and three with degree 4.
If (Δ, δ) = (4, 2), then W (G) ≥ 12, with equality if and only if G has five vertices,

one of them with degree 2, two with degree 3 and two with degree 4.
If (Δ, δ) = (4, 1), then W (G) ≥ 13, with equality if and only if G has five vertices,

one of them with degree 1, three with degree 3 and one with degree 4.
If (Δ, δ) = (3, 3), then W (G) ≥ 6, with equality if and only if G ∼= K4.
If (Δ, δ) = (3, 2), then W (G) ≥ 7, with equality if and only if G has four vertices,

two of them with degree 2 and two with degree 3.
If (Δ, δ) = (3, 1), then W (G) ≥ 8, with equality if and only if G has four vertices,

one of them with degree 1, two with degree 2 and one with degree 3.
If (Δ, δ) = (2, 2), then W (G) ≥ 3, with equality if and only if G ∼= K3.
If (Δ, δ) = (2, 1), then W (G) ≥ 4, with equality if and only if G is a path graph

with 3 vertices.
If (Δ, δ) = (1, 1), then W (G) ≥ 1, with equality if and only if G ∼= K2.

The pictures of the minimizing chemical graphs in Theorem 6 appear in Fig. 1.
Other choices of h in Corollary 1 with g = 1, give the following results.

Theorem 7 Given 1 ≤ δ < Δ, we have for any graph G with minimum degree δ and
maximum degree Δ,

WW (G) ≥ Δ(Δ − 1) + 2δ

2
+ 3(Δ − δ),

with equality if and only if G ∼= Hδ,Δ.

Theorem 8 Given 1 ≤ δ < Δ and λ > 0, we have for any graph G with minimum
degree δ and maximum degree Δ,

W λ(G) ≥ Δ(Δ − 1) + 2δ

2
+ 2λ(Δ − δ),

with equality if and only if G ∼= Hδ,Δ.

Since [k]q (respectively, [k]q qL−k and [k]q qk) is an increasing function on k
for q > 0 (respectively, 0 < q < 1 and q > 1), Corollary 1 has the following
consequence.

Theorem 9 Given 1 ≤ δ < Δ and q > 0, we have for any graph G with minimum
degree δ and maximum degree Δ,
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)1,4()2,4()3,4()4,4(

)2,2()1,3()2,3()3,3(

(1,1)(2,1)

(a) (b) (c) (d)

(e) (f)

(j)(i)

(g) (h)

Fig. 1 Minimizing chemical graphs

W1(G, q) ≥ Δ(Δ − 1) + 2δ

2
+ (Δ − δ)(1 + q) if q �= 1,

W2(G, q) ≥ Δ(Δ − 1) + 2δ

2
qL−1 + (Δ − δ)(1 + q)qL−2 if 0 < q < 1,

W3(G, q) ≥ Δ(Δ − 1) + 2δ

2
q + (Δ − δ)(1 + q)q2 if q > 1,

with equality in each inequality if and only if G ∼= Hδ,Δ.

Given 1 ≤ δ < Δ, let us define

σδ,Δ :=
log (Δ+1

2 )−(δ
2)

(Δ
2)−(δ

2)

log Δ−1
Δ

, ηδ,Δ := log Δ−δ+1
Δ−δ

log Δ+δ−1
Δ+δ

, μδ,Δ := log Δ−δ+1
Δ−δ

log Δ−1
Δ

.

Notice that σδ,Δ, ηδ,Δ, μδ,Δ < 0. Then, Theorem 4 yields the following results:

Theorem 10 Given 1 ≤ δ < Δ and α < 0, for any graph G with minimum degree δ

and maximum degree Δ:

– If α ≥ σδ,Δ and (Δ − δ + 1)(δα + Δα) ≥ (Δ − δ)[δα + (Δ − 1)α], then

W (α)
‡ (G) ≥ δ(δα + Δα) + 2

(
δ

2

)
Δα + 2

(
Δ − δ

2

)
(Δ − 1)α

+ δ(Δ − δ)((Δ − 1)α + Δα) + 2(Δ − δ)(δα + (Δ − 1)α),

– If α ≥ σδ,Δ and α ≥ ηΔ,δ , then

W (α)
+ (G) ≥ δ(δ + Δ)α + 2α

(
δ

2

)
Δα + 2α

(
Δ − δ

2

)
(Δ − 1)α

+ δ(Δ − δ)(2Δ − 1)α + 2(Δ − δ)(δ + Δ − 1)α,
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– If α ≥ 1
2 σδ,Δ and α ≥ μΔ,δ , then

W (α)∗ (G) ≥ δα+1Δα +
(

δ

2

)
Δ2α +

(
Δ − δ

2

)
(Δ − 1)2α

+ δ(Δ − δ)(Δ − 1)αΔα + 2(Δ − δ)δα(Δ − 1)α,

with equality in each inequality if and only if G ∼= Hδ,Δ.

The multiplicative Wiener index of G is defined in [19] as

π(G) =
∏

{u,v}⊆V (G)

d(u, v).

The mathematical arguments leading to this index have been outlined in due detail
in [19].

Given any function f : [δ,Δ] ∩ Z → [1,∞), the f -multiplicative Wiener index
of G is defined as

π f (G) =
∏

{u,v}⊆V (G)

f (d(u, v)) .

Theorem 11 Suppose 1 ≤ δ < Δ, and f is a non-decreasing function. If G is any
graph with minimum degree δ and maximum degree Δ, then

π f (G) ≥ f (1)(Δ(Δ−1)+2δ)/2 f (2)Δ−δ = π f (Hδ,Δ).

Furthermore, if f is strictly increasing, then π f (G) = π f (Hδ,Δ) if and only if G ∼=
Hδ,Δ.

Proof Since

logπ f (G) =
∑

{u,v}⊆V (G)

log f (d(u, v)) = W1,log f (G),

log f ≥ 0 and the logarithm is a strictly increasing function, Corollary 1 gives the
result. �

Therefore, by taking f (t) = t , we obtain the following.

Corollary 2 Suppose 1 ≤ δ < Δ. If G is any graph with minimum degree δ and
maximum degree Δ, then

π(G) ≥ 2Δ−δ = π(Hδ,Δ).

Furthermore, π(G) = π(Hδ,Δ) if and only if G ∼= Hδ,Δ.

Corollary 3 The minimizing graphs in Theorems 7, 8, 9, 10, 11 and 6 are identical.
They are represented in Fig. 1.
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3 General estimates

Given integers 1 ≤ δ ≤ Δ, let us define Gδ,Δ as the set of graphs G with |V (G)| =
Δ + 1, minimum degree δ, maximum degree Δ, and such that:

(1) G is isomorphic to the complete graph with Δ + 1 vertices KΔ+1, if δ = Δ,
(2) there are Δ vertices with degree δ, if δ < Δ and Δ(δ + 1) is even,
(3) there areΔ−1 vertices with degree δ and a vertexwith degree δ+1, if δ < Δ−1

and Δ(δ + 1) is odd,
(4) there are Δ − 1 vertices with degree δ and two vertices with degree Δ, if

δ = Δ − 1 and Δ is odd (and thus Δ(δ + 1) is odd).

Remark 1 Every graph G ∈ Gδ,Δ has maximum degree Δ and |V (G)| = Δ + 1.
Hence, every graph G ∈ Gδ,Δ is connected.

Proposition 2 For any integers 1 ≤ δ ≤ Δ, we have Gδ,Δ �= ∅. Let G be a graph with
minimum degree δ and maximum degree Δ. Then

|E(G)| ≥ Δ(δ + 1)

2
if Δ(δ + 1) is even,

and

|E(G)| ≥ Δ(δ + 1) + 1

2
if Δ(δ + 1) is odd,

with equality if and only if G ∈ Gδ,Δ.

In [28] we obtained the following:

Theorem 12 Let us consider α ∈ R with α < 0, any integers 1 ≤ δ ≤ Δ, and a graph
G with minimum degree δ and maximum degree Δ. The following inequalities hold:

If Δ(δ + 1) is even and

(2Δ)α ≥ (Δ − δ)[(Δ + δ)α − (2Δ)α] + 2α−1Δ(δ − 1)(δα − Δα), (3)

then G ∈ Gδ,Δ is minimal for χα and thus,

χα(G) ≥ Δ(Δ + δ)α + 2α−1Δ(δ − 1)δα.

Moreover, if the inequality (3) is strict, then G isminimal forχα if and only if G ∈ Gδ,Δ.
If Δ(δ + 1) is odd and

(2Δ)α ≥ (Δ − δ − 1)[(Δ + δ)α − (2Δ)α] + (Δ + δ + 1)α − (2Δ)α

+ δ[(2δ + 1)α − (2Δ)α] + 2α−1[(Δ − 2)(δ − 1) − 1](δα − Δα),
(4)

then G ∈ Gδ,Δ is minimal for χα and thus,
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χα(G) ≥ (Δ − 1)(Δ + δ)α + (Δ + δ + 1)α

+ δ(2δ + 1)α + 2α−1[(Δ − 2)(δ − 1) − 1]δα.

Moreover, if the inequality (4) is strict, then G isminimal forχα if and only if G ∈ Gδ,Δ.

Corollary 4 For any α ∈ R with α < 0, a graph G with minimum and maximum
degree δ = Δ ≥ 1 is mimimal for χα if and only if G ∼= KΔ+1.

4 Harmonic index

Another remarkable topological descriptor is the harmonic index, defined in [14] as

H(G) =
∑

uv∈E(G)

2

du + dv

.

This index has attracted a great interest in the lasts years (see, e.g., [9,15,43,44] and
the references therein).

If G is a graph withm edges and maximum degree Δ, then it is trivial to check that

H(G) ≥ m

Δ
. (5)

Proposition 3 Let G be a graph with minimum degree δ andmaximum degreeΔ. Then

H(G) ≥ δ + 1

2
,

with equality if and only if G ∼= KΔ+1.

Proof The inequality follows from (5) and Proposition 2. If G is isomorphic to the
complete graph KΔ+1, then it is clear that the equality holds. If the equality holds,
then the number of edges is minimal, and so, G ∈ Gδ,Δ by Proposition 2. Also, every
edge joins two vertices with degree Δ. Therefore, δ = Δ and G is isomorphic to the
complete graph KΔ+1. �
Proposition 4 For every integers 1 ≤ δ ≤ Δ and G ∈ Gδ,Δ, we have

H(G) = 2Δ

δ + Δ
+ Δ(δ − 1)

2δ
if Δ(δ + 1) is even,

and

H(G) = 2(Δ − 1)

δ + Δ
+ 2

δ + 1 + Δ
+ 2δ

2δ + 1
+ (Δ − 2)(δ − 1) − 1

2δ

>
2Δ

δ + Δ + 1
+ Δ(δ − 1)

2δ
if Δ(δ + 1) is odd.
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Proof The equalities follow from the definitions of H and Gδ,Δ. The inequality is
trivial. �

Remark 2 Notice that the expression 2(Δ−1)
δ+Δ

+ 2
δ+1+Δ

+ 2δ
2δ+1 + (Δ−2)(δ−1)−1

2δ can be
greater (see, e.g., δ = 3 and Δ = 7) or smaller (see, e.g., δ = 10 and Δ = 11) than
2Δ

δ+Δ
+ Δ(δ−1)

2δ .

Note that the harmonic index of the complete bipartite graph is H(Kδ,Δ) = 2δΔ
δ+Δ

.
Also notice that if δ = 1, then Kδ,Δ and G ∈ Gδ,Δ are both the star graph.

Proposition 5 Consider any integers 1 < δ ≤ Δ with Δ(δ + 1) even and define
α = δ/Δ. Then for any G ∈ Gδ,Δ,

– H(Kδ,Δ) > H(G) if and only if α > 1
3 ,

– H(Kδ,Δ) = H(G) if and only if α = 1
3 ,

– H(Kδ,Δ) < H(G) if and only if α < 1
3 .

Proof We have

H(Kδ,Δ) = 2Δδ

Δ+δ
= 2α

1+α
Δ , H(G) = 2Δ

δ + Δ
+ Δ(δ − 1)

2δ
= 2

1 + α
+ αΔ − 1

2α
.

Therefore, if suffices to check if

2α

1 + α
Δ ≥ 2

1 + α
+ αΔ − 1

2α

⇔ 2

1 + α
(αΔ − 1) ≥ 1

2α
(αΔ − 1)

⇔ 2

1 + α
(δ − 1) ≥ 1

2α
(δ − 1).

This follows immediately since δ > 1 and 2
1+α

≥ 1
2α if and only if α ∈ [ 13 , 1].

Moreover, the equality only holds for α = 1
3 . �

Notice that Theorem12 is not very useful to find theminimal graph for the harmonic
index since for almost every case, the inequalities (3) and (4) do not hold. (Notice that
a graph is minimal for the harmonic index if and only if it is minimal for χ−1 .) Let us
analyze the (easier) case when Δ(δ + 1) is even.

Proposition 6 Suppose α = −1, 1 ≤ δ ≤ Δ and Δ(δ + 1) is even. Given a graph G
with minimum degree δ and maximum degree Δ, then (3) holds if and only if

2δ(Δ + δ) ≥ 2(Δ − δ)2δ + Δ(δ − 1)(Δ + δ)(Δ − δ). (6)
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Proof It is immediate to check that

1

2Δ
≥ (Δ − δ)

[
1

Δ + δ
− 1

2Δ

]
+ Δ(δ − 1)

4

[
1

δ
− 1

Δ

]

⇔ 1 ≥ (Δ − δ)2

Δ + δ
+ Δ(δ − 1)(Δ − δ)

2δ

⇔ 1 ≥ 2δ(Δ − δ)2 + Δ(δ − 1)(Δ − δ)(Δ + δ)

2δ(Δ + δ)

⇔ 2δ(Δ + δ) ≥ 2δ(Δ − δ)2 + Δ(δ − 1)(Δ − δ)(Δ + δ).

�
Thus, it can be seen that (3) holds in a few cases:

Corollary 5 Given α = −1, 1 = δ ≤ Δ, and a graph G with minimum degree δ and
maximum degree Δ, then (3) holds if and only if 1 ≤ Δ ≤ 3.

Corollary 6 Given α = −1, 2 = δ ≤ Δ with Δ even, and a graph G with minimum
degree δ and maximum degree Δ, then (3) holds if and only if Δ = 2.

Proof By Proposition 6, (3) holds if and only if (6) holds. Thus, since δ = 2, it suffices
to see that

4(Δ + 2) ≥ 4(Δ − 2)2 + Δ(Δ − 2)(Δ + 2)

⇔ 0 ≥ Δ3 + 4Δ2 − 24Δ + 8.

The solutions of this cubic equation are x1 ≈ −7.4, x2 ≈ 0.4 and x3 ≈ 3.04. Thus,
the only solutions of the inequality where Δ ≥ δ are Δ = 2 or Δ = 3 and in this last
case, Δ(δ + 1) is not even. �
Corollary 7 Given α = −1, 3 ≤ δ ≤ Δ with Δ(δ + 1) even, and a graph G with
minimum degree δ and maximum degree Δ, then (3) holds if and only if δ = Δ.

Proof By Corollary 4, (3) holds if δ = Δ. Assume now that δ < Δ. By Proposition 6,
(3) holds if and only if (6) holds. It is immediate to check that:

2δ(Δ + δ) ≥ 2(Δ − δ)2δ + Δ(δ − 1)(Δ − δ)(Δ + δ)

⇔ Δ + δ ≥ (Δ − δ)2 + Δ(δ − 1)

2δ
(Δ − δ)(Δ + δ).

However, since 3 ≤ δ < Δ, it is trivial that

Δ(δ − 1)

2δ
> 1

and therefore
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Δ + δ <
Δ(δ − 1)

2δ
(Δ + δ) < (Δ − δ)2 + Δ(δ − 1)

2δ
(Δ − δ)(Δ + δ).

�

5 General sum-connectivity index

Theorem 12 is not very useful either to find minimal graphs for the sum-connectivity
index since the inequalities (3) and (4) almost never hold. Let us analyze the (easier)
case when Δ(δ + 1) is even.

Let us define

Nδ,Δ := Δ(δ + 1)

2
− δ, λδ,Δ :=

√
2Δ

Δ + δ
, and εδ,Δ :=

√
Δ

δ
.

Notice that Nδ,Δ is increasing in both variables for 1 ≤ δ ≤ Δ and that εδ,Δ >

λδ,Δ > 1 for every Δ > δ.
Since χ−1/2 is the sum-connectivity index χ , Theorem 12 implies the following:

Proposition 7 Suppose α = − 1
2 , 1 ≤ δ < Δ and Δ(δ + 1) is even. Given a graph G

with minimum degree δ and maximum degree Δ, then (3) does not hold if

Nδ,Δ >
1

λδ,Δ − 1
. (7)

Proof First, let us see that

1√
2Δ

< (Δ − δ)

[
1√

Δ + δ
− 1√

2Δ

]
+ Δ(δ − 1)

2
√
2

[
1√
δ

− 1√
Δ

]

⇔ 1 < (Δ − δ)

( √
2Δ√

Δ + δ
− 1

)
+ Δ(δ − 1)

2

(√
Δ√
δ

− 1

)

⇔ Δ − δ + Δ(δ − 1)

2
+ 1 < (Δ − δ)

√
2Δ√

Δ + δ
+ Δ(δ − 1)

2

√
Δ√
δ

.

Notice that, since δ < Δ,

1 <

√
2Δ

Δ + δ
<

√
Δ

δ
.

Therefore, (3) does not hold if

Δ − δ + Δ(δ − 1)

2
+ 1 < (Δ − δ)

√
2Δ√

Δ + δ
+ Δ(δ − 1)

2

√
2Δ√

Δ + δ
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and, since Δ − δ + Δ(δ−1)
2 = Nδ,Δ, then (3) does not hold if

Nδ,Δ + 1 < Nδ,Δλδ,Δ.

�
Proposition 8 If 9 ≤ δ < Δ, then Nδ,Δ > 1

λδ,Δ−1 .

Proof Since Δ > δ then Nδ,Δ ≥ (δ+1)2

2 − δ and λδ,Δ ≥
√

2(δ+1)
2δ+1 which means that

1

λδ,Δ − 1
≤ 1√

2(δ+1)
2δ+1 − 1

.

Thus, it suffices to check that

1√
2(δ+1)
2δ+1 − 1

<
(δ + 1)2

2
− δ

⇔
√
2(δ + 1)

2δ + 1
>

δ2 + 3

δ2 + 1

⇔ 2(δ + 1)(δ2 + 1)2 > (2δ + 1)(δ2 + 3)2

⇔ δ4 − 8δ3 − 2δ2 − 16δ − 7 > 0.

The real solutions of the equation δ4 − 8δ3 − 2δ2 − 16δ − 7 = 0 are x1 ≈ −0.4 and
x2 ≈ 8.5. Therefore, Nδ,Δ > 1

λδ,Δ−1 for every δ ≥ 9. �

Corollary 8 Suppose α = − 1
2 , 9 ≤ δ ≤ Δ and Δ(δ + 1) is even. If G is a graph with

minimum degree δ and maximum degree Δ, then (3) holds if and only if δ = Δ.

Proposition 9 Suppose α = − 1
2 , 1 ≤ δ < Δ and Δ(δ + 1) is even. If G is a graph

with minimum degree δ and maximum degree Δ, then (3) holds if

Nδ,Δ ≤ 1

εδ,Δ − 1
. (8)

Proof First, let us see that

1√
2Δ

≥ (Δ − δ)

[
1√

Δ + δ
− 1√

2Δ

]
+ Δ(δ − 1)

2
√
2

[
1√
δ

− 1√
Δ

]

⇔ 1 ≥ (Δ − δ)

( √
2Δ√

Δ + δ
− 1

)
+ Δ(δ − 1)

2

(√
Δ√
δ

− 1

)

⇔ Δ − δ + Δ(δ − 1)

2
+ 1 ≥ (Δ − δ)

√
2Δ√

Δ + δ
+ Δ(δ − 1)

2

√
Δ√
δ

.
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Notice that, since δ < Δ,

1 <

√
2Δ

Δ + δ
<

√
Δ

δ
.

Therefore, (3) holds if

Δ − δ + Δ(δ − 1)

2
+ 1 ≥ (Δ − δ)

√
Δ√
δ

+ Δ(δ − 1)

2

√
Δ√
δ

and, since Δ − δ + Δ(δ−1)
2 = Nδ,Δ, then (3) holds if

Nδ,Δ + 1 ≥ Nδ,Δεδ,Δ.

�
However, this proposition does not provide many positive results:

Proposition 10 If 4 ≤ δ < Δ, then Nδ,Δ > 1
εδ,Δ−1 .

Proof Since Δ > δ then Nδ,Δ ≥ (δ+1)2

2 − δ and εδ,Δ ≥
√

δ+1
δ

which means that

1

εδ,Δ − 1
≤ 1√

δ+1
δ

− 1
.

Thus, it suffices to check that

1√
δ+1
δ

− 1
<

(δ + 1)2

2
− δ

⇔
√

δ + 1

δ
>

δ2 + 3

δ2 + 1

⇔ (δ + 1)(δ2 + 1)2 > δ(δ2 + 3)2

⇔ δ4 + 2δ2 + 1 > 4δ3 + 8δ

which is trivially satisfied for every δ ≥ 4. �
Corollary 9 If 1 = δ < Δ, then Nδ,Δ ≤ 1

εδ,Δ−1 if and only if Δ = 2.

Proof Note that, in this case, Δ(δ + 1) = 2Δ is even. Nδ,Δ ≤ 1
εδ,Δ−1 if and only if

Nδ,Δ+1
Nδ,Δ

≥ εδ,Δ. Thus, it suffices to check that

Δ

Δ − 1
≥ √

Δ ⇔ Δ2 ≥ Δ(Δ − 1)2 ⇔ Δ2 − 3Δ + 1 ≤ 0,

and therefore, Δ ∈ {1, 2}. Since Δ > 1, this is equivalent to Δ = 2. �
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Corollary 10 If 2 = δ < Δ with Δ(δ + 1) even, then Nδ,Δ > 1
εδ,Δ−1 .

Proof Note that

3Δ − 2

3Δ − 4
≥

√
Δ

2
⇔ 9Δ3 − 42Δ2 + 40Δ − 8 ≤ 0.

The solutions of the equation 9Δ3 − 42Δ2 + 40Δ − 8 = 0 are x1 ≈ 0.3, x2 ≈ 0.9,
x3 ≈ 3.4 and therefore, there are no even integer solutions such that 2 < Δ. �
Corollary 11 If 3 = δ < Δ, then Nδ,Δ ≤ 1

εδ,Δ−1 if and only if Δ = 4.

Proof Note that, in this case, Δ(δ + 1) is even. We have

2Δ − 2

2Δ − 3
≥

√
Δ

3
⇔ 4Δ3 − 24Δ2 + 33Δ − 12 ≤ 0.

The solutions of the equation 4Δ3 − 24Δ2 + 33Δ − 12 = 0 are x1 ≈ 0.6, x2 ≈ 1.2,
x3 ≈ 4.2 and therefore, the only integer solution with Δ > 3 is Δ = 4. �

6 Geometric-arithmetic index

The first geometric-arithmetic index GA1, defined in [40] as

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2 (du + dv)

where uv denotes the edge of the graph G connecting the vertices u and v, and du
is the degree of the vertex u, is one of the successors of the Randić index. Although
GA1 was introduced in 2009, there are many papers dealing with this index (see, e.g.,
[6–8,29,36,37,40] and the references therein).

Let us recall Corollary 2.3 in [35].

Corollary 12 Let g be the function g(x, y) = 2
√
xy

x+y with 0 < a ≤ x, y ≤ b. Then
2
√
ab

a+b ≤ g(x, y) ≤ 1. The equality in the lower bound is attained if and only if either
x = a and y = b, or x = b and y = a, and the equality in the upper bound is attained
if and only if x = y.

Let us recall the following example from [26, Example 2.11].

Example 1 Let us suppose δ = 4 and Δ = 56. Consider a graph G with 57 vertices,
two of them, a1, a2 with degree 56 and the rest, b1, . . . , b55 with degree 4. Let us
assume the edges are as follows. There is an edge aib j for every i, j , an edge a1a2 and
the vertices b1, . . . , b55 induce a cycle of length 55. Note that these edges produce the
claimed degree in each vertex.
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Notice thatG has 166 edges, one of them joins twovertices of degree 56, 110 of them
join vertices with degree 56 with vertices with degree 4 and 55 of them join vertices

with degree 4. Therefore, GA1(G) = 2·110√4·56
4+56 + 56 = 220

√
224

60 + 56 ≈ 110.8776.

However, GA1(H) = 112
√
224

60 + 84 ≈ 111.9377 for every H ∈ G4,56, and
GA1(K4,56) = 448

√
224

60 ≈ 111.7508.

Given integers 0 < i ≤ δ < Δ, let us define Hi
δ,Δ as the set of graphs H with

minimum degree δ, maximum degree Δ, |V (H)| = Δ + 1, and such that:
(1) there are i vertices with degree Δ and Δ − i + 1 vertices with degree δ, if

(Δ − i + 1)(δ − i) is even,
(2) there are i vertices with degreeΔ,Δ− i vertices with degree δ and an additional

vertex with degree δ + 1 (possibly Δ if δ = Δ − 1), if (Δ − i + 1)(δ − i) is odd.
Note that the graph from Example 1 belongs toH2

4,56.

Remark 3 Every graph H ∈ Hδ,Δ has maximum degree Δ and |V (H)| = Δ + 1.
Hence, every graph H ∈ Hδ,Δ is connected. Notice also that the subgraph of H
induced by the set of vertices with degree Δ is complete.

Remark 4 By definition, Gδ,Δ = H1
δ,Δ for every δ < Δ and GΔ−1,Δ = H2

Δ−1,Δ if Δ

is odd (and therefore, Δ2 is odd and (Δ − 1)(Δ − 3) is even).

Proposition 11 For any integers 1 ≤ i ≤ δ < Δ, we have Hi
δ,Δ �= ∅.

Proof Weare going to define a graph H withΔ+1 vertices, v1, . . . , vΔ+1. The vertices
vΔ−i+2, . . . , vΔ+1 define a complete graph, and let us define an edge joining v j with
vk for every j ≤ Δ − i + 1 < k. Thus, dv j = Δ for every j > Δ − i + 1.

First, suppose δ−i is even. Thus, (Δ−i+1)(δ−i) is even.We have already i edges
in each v j with j ≤ Δ − i + 1. We are going to add edges so that dv j = δ for every
j ≤ Δ−i+1.Note that this holds if δ = i , sowecan assume that δ > i . Let us define for
every 1 ≤ j, k ≤ Δ− i +1, || j −k|| = min{| j −k|,Δ− i +1−| j −k|}, i.e., || j −k||
is the distance between the vertices v j and vk in the cycle v1, v2, . . . , vΔ−i+1, v1.
Consider an edge v jvk for every pair of vertices with || j − k|| ≤ δ−i

2 . This is possible
since δ − i is even and δ − i < Δ − i . Then, every vertex v j with j ≤ Δ − i + 1
satisfies that dv j = δ and H ∈ Hi

δ,Δ.
Now, suppose δ − i is odd and Δ − i + 1 is even. Thus, (Δ − i + 1)(δ − i) is even.

Consider an edge v jvk for every pair of vertices with || j − k|| ≤ δ−i−1
2 and an edge

v jvk if || j−k|| = Δ−i+1
2 . Notice that this is well defined sinceΔ− i +1 is even and it

is a new edge (recall that Δ−i+1
2 > δ−i−1

2 ). Thus, every vertex v j with j ≤ Δ − i + 1
satisfies that dv j = δ and H ∈ Hi

δ,Δ.
Finally, suppose δ − i and Δ − i + 1 are odd. Therefore, (Δ − i + 1)(δ − i)

is odd. Consider an edge v jvk for every pair of vertices with || j − k|| ≤ δ−i−1
2 .

Now every vertex v j with j ≤ Δ − i + 1 has degree δ − 1. Let us define, for every
1 ≤ j < k ≤ Δ−i , an edge v jvk if k− j = Δ−i

2 (this edge is new since δ−i−1
2 < Δ−i

2 ).
Now, dv j = δ for every 1 ≤ j ≤ Δ− i . It suffices to define an edge joining vΔ−i+1 to

any non-adjacent vertex v j0 , for example j0 = δ−i−1
2 + 1, and therefore, H ∈ Hi

δ,Δ.
Notice that, in this case, dvk = Δ for every k > Δ − i + 1, dv j0

= δ + 1 and dv j = δ

for every j ≤ Δ − i + 1 with j �= j0. �
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Proposition 12 For every integers 1 ≤ i ≤ δ < Δ and H ∈ Hi
δ,Δ, we have

GA1(H) = i(Δ − i + 1)
2
√

δΔ

δ + Δ
+ i(i − 1)

2
+ (Δ − i + 1)(δ − i)

2
if (Δ − i + 1)(δ − i) is even,

GA1(H) = i(Δ − i)
2
√

δΔ

δ + Δ
+ i

2
√

(δ + 1)Δ

δ + Δ + 1
+ (δ − i + 1)

2
√

δ(δ + 1)

2δ + 1

+ i(i − 1)

2
+ (Δ − i − 1)(δ − i) − 1

2

> i(Δ − i + 1)
2
√

δΔ

δ + Δ
+ i(i − 1)

2
+ (Δ − i + 1)(δ − i)

2
if (Δ − i + 1)(δ − i) is odd.

Proof The equalities follow from the definitions of GA1 and Hi
δ,Δ.

To obtain the inequality, it suffices to check that

i
2
√

(δ + 1)Δ

δ + 1 + Δ
> i

2
√

δΔ

δ + Δ
and (δ − i + 1)

2
√

δ(δ + 1)

2δ + 1
≥ δ − i + 1

2
.

The first claim follows from Corollary 12. For the second claim it suffices to check
that

(δ − i + 1)
2
√

δ(δ + 1)

2δ + 1
≥ δ − i + 1

2
⇔

(4δ2 + 4δ)(δ2 − 2δi + 2δ + i2 − 2i + 1)

≥
(

δ2 − 2δi + δ − i + i2 + 1

4

)
(4δ2 + 4δ + 1) ⇔

(4δ2 + 4δ)

(
δ − i + 3

4

)
≥ δ2 − 2δi + δ − i + i2 + 1

4
= (δ − i)2 + δ − i + 1

4
.

Since δ ≥ i , then it is immediate to see that

(4δ2 + 4δ)

(
δ − i + 3

4

)
≥ 3δ2 + 3δ > δ2 + δ + 1 > (δ − i)2 + δ − i + 1

4
.

�
Proposition 13 For any integers 1 < i ≤ δ < Δ, if Δ(δ + 1) is even, α = δ

Δ
and

Δ
Δ−i >

2(1−√
α )2

1−α2 , then for any G ∈ Gδ,Δ and H ∈ Hi
δ,Δ, we have GA1(H) >

GA1(G).

Proof Let us see that

i(i − 1)

2
+ (Δ − i + 1)(δ − i)

2
+ i(Δ − i + 1)

2
√

δΔ

δ + Δ
>

Δ(δ − 1)

2
+ Δ

2
√

δΔ

δ + Δ
.
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Notice that

Δ(δ − 1)

2
= (Δ − i + 1)(δ − i)

2
+ (i − 1)(δ − i)

2
+ (i − 1)Δ

2

= (Δ − i + 1)(δ − i)

2
+ i − 1

2
(δ + Δ − i),

with δ + Δ − i > 0. Therefore, if ε = 2
√

δΔ
δ+Δ

, it suffices to check that

[(i − 1)Δ − i(i − 1)] ε >
i − 1

2
(δ + Δ − 2i)

⇔ ε >
(i − 1)(δ + Δ − 2i)

2[(i − 1)Δ − i(i − 1)] = δ + Δ − 2i

2(Δ − i)

⇔ 2
√

αΔ

(1 + α)Δ
= 2

√
α

1 + α
>

(1 + α)Δ − 2i

2(Δ − i)

= 2(Δ − i) − (1 − α)Δ

2(Δ − i)
= 1 − (1 − α)Δ

2(Δ − i)

⇔ 1 − α

2

Δ

Δ − i
> 1 − 2

√
α

1 + α
= 1 + α − 2

√
α

1 + α
= (1 − √

α )2

1 + α

⇔ Δ

Δ − i
>

2(1 − √
α )2

1 − α2 .

�

Corollary 13 For any integers 1 < i ≤ δ < Δ, if Δ(δ + 1) is even and δ ≥ 0.09Δ,
then for any G ∈ Gδ,Δ and H ∈ Hi

δ,Δ, we have GA1(H) > GA1(G).

Proof Let us define α = δ/Δ ∈ (0, 1). Notice that we have Δ
Δ−i > 1 for every i > 1.

Thus, let us check that

2(1 − √
α )2

1 − α2 ≤ 1 ⇔ 2(1 − √
α )2 ≤ 1 − α2

⇔ 2 − 4
√

α + 2α ≤ 1 − α2 ⇔ α2 + 2α + 1 ≤ 4
√

α

⇔ (α + 1)2 ≤ 4
√

α ⇔ (α + 1)4 ≤ 16α

⇔ α4 + 4α3 + 6α2 − 12α + 1 ≤ 0.

Since the real roots of the equation x4 + 4x3 + 6x2 − 12x + 1 = 0 are x1 ≈ 0.087
and x1 = 1, it is clear that the condition is satisfied for every α ∈ [0.09, 1). �

Conjecture 13 Given any integers 1 < δ < Δ, a graph G is minimal for GA1 if and
only if G ∈ Hi

δ,Δ for some 1 ≤ i ≤ δ.
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40. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means
of end-vertex degrees of edges. J. Math. Chem. 46, 1369–1376 (2009)

41. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)
42. Y.S. Zhang, I. Gutman, J.G. Liu, Z.C. Mu, q-Analog of Wiener index. MATCH Commun. Math.

Comput. Chem. 67, 347–356 (2012)
43. L. Zhong, The harmonic index for graphs. Appl. Math. Lett. 25, 561–566 (2012)
44. L. Zhong, K. Xu, Inequalities between vertex-degree-based topological Indices. MATCH Commun.

Math. Comput. Chem. 71, 627–642 (2014)
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