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Abstract This contribution presents an approximate solution of the enzyme kinetics
problem for the case of excess of an enzyme over the substrate. A first order per-
turbation approach is adopted where the perturbation parameter is the relation of the
substrate concentration to the total amount of enzyme. As a generalization over exist-
ing solutions for the same problem, the presented approximation allows for nonzero
initial conditions for the substrate and the enzyme concentrations aswell as for nonzero
initial complex concentration. Nevertheless, the approximate solution is obtained in
analytical form involving only elementary functions like exponentials and logarithms.
The presentation discusses all steps of the procedure, starting from amplitude and
time scaling for a non-dimensional representation and for the identification of the
perturbation parameter. Suitable time constants lead to the short term and long term
behaviour, also known as the inner and outer solution. Special attention is paid to the
matching process by the definition of a suitable intermediate layer. The results are
presented in concise form as a summary of the required calculations. An extended
example compares the zero order and first order perturbation approximations for the
short term and long term solution as well as the uniform solution. A comparison to
the numerical solution of the initial set of nonlinear ordinary differential equations
demonstrates the achievable accuracy.
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1 Introduction

1.1 Review of previous work

Enzyme reactions have been under investigation for more than hundred years. In the
simplest form they consist of an initial substance (the substrate)which binds an enzyme
to form a complex. The complex decomposes again into another chemical substance
(the product), thereby releasing the enzyme which can again react with the remaining
substrate. The kinetics of these reactions are described by rate expressions which can
be expressed as a set of nonlinear differential equations.

Solutions of the rate expressions have beenobtained under simplifying assumptions.
The purpose of these assumptions is twofold: At first, they enable theoretical insight
by capturing the essential chemical or biological behaviour. Secondly, they turn the set
of differential equations into simpler nonlinear equations or even into a linear relation.

The rich and mature research in the kinetics of enzyme reactions has always been
concerned with finding the most suitable and valid assumptions for the case under
study and with the derivation of the correct conclusions and solutions from these
assumptions. Only a few recent publications are referenced here which also contain
historical remarks and more references.

Initially the following two assumptions have been studied: At first, that the concen-
tration of the substrate is much higher than the enzyme concentration, and secondly,
that a certain steady state is reached. These assumptions greatly simplify themathemat-
ical description and lead to classical models like the well-known Michaelis–Menten
model [19]. References to original work in the early twentieth century by Henri,
Michaelis and Menten, Briggs and Haldane, and reviews thereof are given e.g.
in [3,22].

Recently, signal transduction in biological systems is being investigated. Here the
substrate serves as carrier of information and its concentration may be rather low
compared to the amount of enzyme in the environment. The same is true for approaches
to molecular communication which are currently envisioned, see Sect. 1.2.

In this case, the classical assumptions do not hold anymore. At first, the concen-
tration of the substrate is now much lower than the enzyme concentration. Secondly,
information is carried by transients rather than by static behaviour. Consequently, it
has been observed that the classical approximations do not hold for low substrate
concentrations, see [23].

The classical assumption that the complex concentration is constant after a short
initial transient (standard quasi steady state assumption) has been reconsidered in [5].
There, the differential equations for the enzyme kinetics were rewritten by replacing
the free substrate concentration by the total substrate concentration which includes the
free substrate and the substrate bound in the complex. Then also the standard quasi
steady state assumption is replaced by a total quasi steady state assumption. It has
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been shown in [5] that the total quasi steady state assumption has a wider range of
validity, including also an excess of enzyme. This range of validity has been revisited
and reformulated by [27].

Standard and total quasi steady state assumptions have been compared in [23] and
the total quasi steady state assumption has been recommended over the standard one.
The assumptions (1) that either the substrate or the enzyme is in excess and (2) that the
concentration of the substance in excess is constant lead to simplified rate expressions
in the form of pseudo first-order kinetics, which have been investigated e.g. in [22].

Since the quasi steady state assumptions are related to a zero order perturbation
approach, it is tempting to use also higher order perturbation approaches to get away
from overly limiting assumptions. A first order perturbation approach has been applied
in [4] for the case of enzyme excess. Consequently, the so-called small parameter is
the relation between the small initial substrate concentration and the relatively high
total enzyme concentration. Closed form first order approximations for the short term
and the long term behaviour have been derived for the case of zero initial complex
concentration. Other perturbation approaches for enzyme kinetics are e.g. [10,17,18].
Recently, a perturbation solution has been presented in a so-called total framework
which is valid for any set of kinetic parameters [9]. Nevertheless, all these approaches
have been derived under the restriction that the initial complex concentration is zero.

1.2 Motivation

This publication reviews enzyme kinetics from a view point of molecular commu-
nications. Here, information is transmitted over small distances by particles rather
than by electromagnetic or acoustic waves. In terms of information theory, the release
of particles is the source and the receptor which senses the particle concentration in
some small distance is the receiver. The environment between source and receiver is
the information channel. Releasing a number of particles triggered by a certain event
carries information from the source to the receiver. However, the repeated release of
particles would eventually flood the channel and overdrive the receptor.

To avoid this situation, Noel et al. [21] have proposed to gradually reduce the
particle concentration by an enzyme reaction. In this setting, the information carrying
particles are the substrate which is turned into the product by the enzyme reaction.
The receptor at the receiver side is sensitive to the substrate, but not to the enyzme,
the complex, or the product. Similar approaches can be found in [2,7,13].

Practical applications of molecular communication are mostly visionary and pub-
lished results are based on more or less simplified models and idealizing assumptions,
see e.g. [8,11,20,21,24,25]. Reaction models for molecular communication serve to
design the chemical or biological implementation of the communication channel.

The number of released substance particles may be very low for a single event.
Therefore, the potential enzyme reactions suitable for molecular communications are
characterized by an excess of enzyme. The initial conditions may adopt arbitrary
values, since a repeated release of substrate may happen for certain nonzero concen-
trations of substrate, complex, and free enzyme left over from the previous release. It
is thus necessary to study enyzme reaction kinetics for arbitrary initial conditions and
reactions with an excess of enzyme.
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1.3 Preview

This article is structured as follows: The familiar enzyme reaction and a mathematical
model with amplitude and time scaling are presented in Sect. 2. The extreme cases of
high substrate and high enzyme concentration are discussed in Sect. 3. For a first order
perturbation approach to the case of high enzyme concentration, Sect. 4 collects the
nonlinear differential equations for nonzero initial conditions of substrate, enzyme,
and complex. These equations are solved in Sect. 5 separately for the long term and
the short term behaviour (also called inner and outer solution). Both solutions are
matched in Sect. 6 and combined to the uniform solutions in Sect. 7. The relation to
previous work in this field is shown in Sect. 8. Finally, the results are demonstrated
by an example in Sect. 9.

This article is an extended and corrected version of some parts of [26]. Its novel
contributions are contained in Sects. 5 to 7.

2 Mathematical model

This section quotes the standard enyzme reaction and gives a derivation of amathemat-
ical model in the form of coupled nonlinear ordinary differential equations. Amplitude
and time scaling are used for a representation in dimensionless variables. The presen-
tation is rather concise, details can be found e.g. in [19] and references therein.

2.1 Reaction model

The enzyme kinetics of the following chemical reaction are studied

S + E
k1�
k−1

C
k2→ E + P. (1)

The substrate S and the enzyme E form a complex C at a rate k1. In turn, the com-
plex decomposes again into S and E at a rate k−1 and into E and the product P at a
rate k2. This type of enzyme reaction is well investigated especially for high substrate
concentrations, see e.g. [19].

2.2 Differential equations

The concentrations of the substrate, the enzyme and the complex are functions of
time t . They are denoted by s(t), e(t), and c(t), respectively. Their time evolution is
governed by the following set of nonlinear ordinary differential equations

ṡ(t) = − k1 s(t) e(t) + k−1 c(t) (2)

ė(t) = − k1 s(t) e(t) + k−1 c(t) + k2 c(t) (3)

ċ(t) = k1 s(t) e(t) − k−1 c(t) − k2 c(t) (4)
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with the time derivatives ṡ(t) etc. and the initial concentrations

s(0) = s0, e(0) = e0, c(0) = c0. (5)

Note, that none of the initial concentrations is assumed to be zero. In a closed system,
the total amount of enzyme eT is constant

e(t) + c(t) = e0 + c0 = eT, (6)

so that one of the Eqs. (2)–(4) can be eliminated. E.g. (3) is removed by setting
e(t) = eT − c(t). The remaining equations are

ṡ(t) = − k1eT s(t) + k−1 c(t) + k1 s(t) c(t), (7)

ċ(t) = k1eT s(t) − (k−1 + k2) c(t) − k1 s(t) c(t). (8)

The further analysis is simplified when these equations are made dimensionless by
amplitude and time scaling.

2.3 Amplitude scaling

The concentrations s(t) and c(t) are made dimensionless by introducing the scaled
concentrations μ(t) and ν(t) as

μ(t) = s(t)

s0
, ν(t) = c(t)

eT
. (9)

The time constants

Te = 1

k1eT
, Ts = 1

k1s0
, (10)

and the dimensionless constants

ρ = k−1Ts, λ = k2Ts, K = ρ + λ, (11)

lead to the representation in scaled concentrations

Te μ̇(t) = −μ(t) + ρ ν(t) + μ(t) ν(t), (12)

Ts ν̇(t) = μ(t) − Kν(t) − μ(t) ν(t), (13)

As an abbreviation for the introduction of different time scales in Sect. 2.4 the functions

f
(
μ(t), ν(t)

) = −μ(t) + ρ ν(t) + μ(t) ν(t), (14)

g
(
μ(t), ν(t)

) = μ(t) − Kν(t) − μ(t) ν(t), (15)

123



1158 J Math Chem (2018) 56:1153–1183

are defined. Then a short notation for the amplitude-scaled equations reads as

Te μ̇(t) = f
(
μ(t), ν(t)

)
, (16)

Ts ν̇(t) = g
(
μ(t), ν(t)

)
, (17)

with the scaled initial conditions

μ(0) = 1, ν(0) = ν0 = c0
eT

= 1 − e0
eT

≤ 1. (18)

The concentrations μ(t) and ν(t) have a dimension of unity but their argument is still
the time t in seconds.

2.4 Time scaling

Time scaling does not only allow a further simplification of (16), (17). It serves also
to highlight the short term behaviour and the long term behaviour of the reaction
dynamics. These different kinds of behaviour appear in the extreme cases of high
substrate concentration or high enzyme concentration discussed in Sect. 3.

Two different time scales are considered here. They are characterized by the refer-
ence times Te and Ts or through (10) by the concentrations eT and s0. The respective
scaled time variables are defined as

τ = t

Te
= k1eT t and θ = t

Ts
= k1s0 t where

τ

θ
= Ts

Te
= eT

s0
. (19)

The time-scaled variables with respect to (w.r.t.) Te are

σe(τ ) = μ(t) γe(τ ) = ν(t), (20)

with
d

dτ
σe(τ ) = σ ′

e(τ ) = d

dt
μ(t)

dt

dτ
= μ̇(t)Te, (21)

and similar for γe(τ ). In the sameway, the time-scaled variablesw.r.t. Ts are introduced
as σs(θ) and γs(θ). Their definitions and derivatives w.r.t. the respective time variables
are compiled here as

σe(τ ) = μ(t) σ ′
e(τ ) = Te μ̇(t), (22)

γe(τ ) = ν(t) γ ′
e(τ ) = Te ν̇(t), (23)

σs(θ) = μ(t) σ ′
s(θ) = Ts μ̇(t), (24)

γs(θ) = ν(t) γ ′
s (θ) = Ts ν̇(t). (25)

Applying these relations to the amplitude-scaled equations (16), (17) gives two ver-
sions of fully amplitude- and time-scaled systems of differential equations with either
the reference time Te
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σ ′
e(τ ) = f

(
σe(τ ), γe(τ )

)
, (26)

Ts
Te

γ ′
e(τ ) = g

(
σe(τ ), γe(τ )

)
, (27)

or the reference time Ts

Te
Ts

σ ′
s(θ) = f

(
σs(θ), γs(θ)

)
, (28)

γ ′
s (θ) = g

(
σs(θ), γs(θ)

)
. (29)

For a further simplification, the relations between the reference times are abbreviated
as

Ts
Te

= eT
s0

= ε,
Te
Ts

= s0
eT

= δ = 1

ε
. (30)

Then (26, 27) can be repesented in two different versions as

σ ′
e(τ ) = f

(
σe(τ ), γe(τ )

)
σ ′
e(τ ) = f

(
σe(τ ), γe(τ )

)
, (31)

ε γ ′
e(τ ) = g

(
σe(τ ), γe(τ )

)
γ ′
e(τ ) = δ g

(
σe(τ ), γe(τ )

)
, (32)

and similar for (28, 29)

δ σ ′
s(θ) = f

(
σs(θ), γs(θ)

)
σ ′
s(θ) = ε f

(
σs(θ), γs(θ)

)
, (33)

γ ′
s (θ) = g

(
σs(θ), γs(θ)

)
γ ′
s (θ) = g

(
σs(θ), γs(θ)

)
. (34)

Note that the left hand side (l.h.s.) and the r.h.s of (31, 32) are identical due to the
reciprocal relationship between ε and δ in (30). In the same way also the l.h.s and the
r.h.s of (33, 34) are identical. Furthermore, the two relations in (31, 32) and in (33,
34) represent the same system of differential equations, differing only in the scale of
the time axis.

Nevertheless, in the extreme cases of either high substrate concentration or high
enzyme concentration, these equivalent formulations give rise to different approxima-
tions for either the short term behaviour or the long term behaviour of the enzyme
reaction system (1). These extreme cases are discussed in the next section.

3 Extreme cases

Thederivation of systemsof differential equations above did notmake any assumptions
on the relation between the amounts of substrate and enzyme in the reaction. However,
different application fields are characterized by either a high substrate concentration
or a high enzyme concentration. In these cases, the relations between the reference
times according to Eq. (30), ε or δ, can be used as small parameters in the sense
of perturbation theory. Therefore, these two extreme cases are discussed below, the
first one shortly for historical reasons, the second one because of its importance in
molecular communications, see Sect. 1.2.
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The application of perturbation approaches is not restricted to these extreme cases.
If the relation between the amounts of substrate and enzyme is not determined by the
application at hand, then other, more general approaches are available for the selection
of the small parameter. One example is the total framework proposed in [9]. Another
possibility is the homotopy method [1,12] where the small parameter describes the
transition from a linear problem to a nonlinear one. Nevertheless, for the application
field described in Sect. 1.2, the case of high enyzme concentration is the most natural
choice.

3.1 High substrate concentration

The classical application is to convert a raw material (the substrate S) into a chemical
product. To produce large quantities, the amount of substrate S should be high. The
concentration of the enzyme can be as low as possible for a reasonable yield.

The condition for a high substrate concentration eT � s0 induces from (30)

eT
s0

= ε � 1 and Ts � Te. (35)

The latter relation for the reference times shows that the scaled time variables from (19)
describe

τ long term behaviour with reference time Te,

θ short term behaviour with reference time Ts.

Asuitable starting point for an approximation are those two pairs of equations from (31
to 34) which contain the multiplier ε

σ ′
e(τ ) = f

(
σe(τ ), γe(τ )

)
σ ′
s(θ) = ε f

(
σs(θ), γs(θ)

)
,

ε γ ′
e(τ ) = g

(
σe(τ ), γe(τ )

)
γ ′
s (θ) = g

(
σs(θ), γs(θ)

)
.

Setting ε to zero and adopting certain steady state assumptions greatly simplifies these
relations and leads to the classical Michaelis–Menten model [3,19].

3.2 High enzyme concentration

The condition for a high enzyme concentration s0 � eT induces from (30)

s0
eT

= δ � 1 and Te � Ts. (36)

The relation for the reference times shows that the scaled time variables from (19)
describe now
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τ short term behaviour with reference time Te,

θ long term behaviour with reference time Ts.

The starting point for an approximation are the two pairs of equations from (31 to 34)
which contain the multiplier δ

σ ′
e(τ ) = f

(
σe(τ ), γe(τ )

) = − σe(τ ) + ρ γe(τ ) + σe(τ )γe(τ ), (37)

γ ′
e(τ ) = δ g

(
σe(τ ), γe(τ )

) = δ
(
σe(τ ) − Kγe(τ ) − σe(τ )γe(τ )

)
, (38)

and

δ σ ′
s(θ) = f

(
σs(θ), γs(θ)

) = −σe(τ ) + ρ γe(τ ) + σe(τ )γe(τ ), (39)

γ ′
s (θ) = g

(
σs(θ), γs(θ)

) = σe(τ ) − Kγe(τ ) − σe(τ )γe(τ ). (40)

The behaviour described by these differential equations is investigated in detail in
Sect. 4.

4 Perturbation approaches for high enzyme concentration

No exact analytical solution is known for the systems of nonlinear differential equa-
tions in the form of either (37, 38) or (39, 40). However, approximate solutions by
perturbation approaches are possible. The idea is to solve the short term and long
term behaviour separately by suitable approximations, and to combine these partial
solutions into a unified solution which is valid for both time scales [14,16].

This approach has been adopted by many researchers as referenced in Sect. 1. E.g.
in [4,22,27] it is shown that (37–40) can be solved separately for short term behaviour
(σe(τ ), γe(τ )) and long term behaviour (σs(θ),γs(θ)) by considering δ as a perturbation
parameter. A zero order approximation is obtained by simply setting δ = 0. This
approach is extended here to the case where not only the initial substrate and enzyme
concentration but also the initial complex concentration is nonzero, see (5).

4.1 First order perturbation approach

4.1.1 Formulation of the first order perturbation approach

The perturbation approach referenced above expands the solution of Eqs. (37–40) into
a power series in δ. This series converges fast for small values of δ. Considering the
zero order term and the first order term, the unkown functions in (37–40) can bewritten
as

σe(τ ) = σe,0(τ ) + δ σe,1(τ ) + O(δ2), (41)

γe(τ ) = γe,0(τ ) + δ γe,1(τ ) + O(δ2), (42)

σs(θ) = σs,0(θ) + δ σs,1(θ) + O(δ2), (43)
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γs(θ) = γs,0(θ) + δ γs,1(θ) + O(δ2), (44)

where O(δ2) denotes all terms with δn for n ≥ 2.

4.1.2 Initial conditions

Short TermBehaviour The initial conditions of the short term behaviour are the values
of the variables in Eqs. (41) and (42) for τ = 0. They are well defined by the initial
conditions (5) of the unscaled problem or (18) after amplitude scaling. Thus, the initial
values for the short term behaviour do not depend on the perturbation parameter δ.
Therefore, the initial values σe(0) and γe(0) are represented by the initial values σe,0(0)
and γe,0(0) of the zero-order terms. The initial values of the first-order terms are zero.

These relations for the initial conditions are summarized below, where the abbre-
viations σe0 and γe0 for the zero order terms are introduced

σe,0(0) = σe(0) = σe0 γe,0(0) = γe(0) = γe0, (45)

σe,1(0) = 0 γe,1(0) = 0. (46)

From Eq. (18) follows that

σe0 = 1, γe0 = ν0. (47)

However, for better comparison with the initial conditions for the long term behaviour,
the designations σe0 and γe0 are kept for the moment.

Long Term Behaviour The initial conditions of the short term behaviour are the values
of the variables in Eqs. (43) and (44) for θ = 0. Since the long term behaviour is not
a good approximation for θ = 0 the initial conditions σs,0(0), σs,1(0), γs,0(0), and
γs,1(0) cannot be infered directly as for the short term behaviour. In particular, it
cannot be assumed that one or more of these terms are zero. Instead they have to be
determined from the solution of the short term behaviour by process called matching
(see Sect. 6). For the further calculations these initial conditions are abbreviated by

σs,0(0) = σs0 γs,0(0) = γs0, (48)

σs,1(0) = σs1 γs,1(0) = γs1. (49)

4.2 Application to the case of high enzyme concentration

Inserting the perturbation aproach from Eqs. (41)–(44) into the equations for the case
of high enzyme concentration (37)–(40) and collecting the resulting terms by powers
of δ gives a set of four first order non-linear differential equations for the short term
behaviour and another set for the long term behaviour.
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Short Term Behaviour For the short term behaviour, the following set of first order
differential equations results

σ ′
e,0(τ ) = − σe,0(τ ) + ργe,0(τ ) + σe,0(τ ) γe,0(τ ), (50)

γ ′
e,0(τ ) = 0, (51)

σ ′
e,1(τ ) = − σe,1(τ ) + ργe,1(τ ) + σe,0(τ ) γe,1(τ ) + σe,1(τ ) γe,0(τ ), (52)

γ ′
e,1(τ ) = σe,0(τ ) − Kγe,0(τ ) − σe,0(τ ) γe,0(τ ). (53)

Long Term Behaviour The corresponding set of equations for the long term behaviour
is given by

0 = − σs,0(θ) + ργs,0(θ) + σs,0(θ) γs,0(θ), (54)

γ ′
s,0(θ) = σs,0(θ) − Kγs,0(θ) − σs,0(θ) γs,0(θ), (55)

σ ′
s,0(θ) = − σs,1(θ) + ργs,1(θ) + σs,0(θ) γs,1(θ) + σs,1(θ) γs,0(θ), (56)

γ ′
s,1(θ) = σs,1(θ) − Kγs,1(θ) − σs,0(θ) γs,1(θ) − σs,1(θ) γs,0(θ). (57)

The zero on the left hand side of Eq. (54) and the structure of terms on the right hand
sides of Eqs. (54)–(57) suggest an alternate set of equations. It results from replacing
Eq. (55) by the sum of (54) and (55) and Eq. (57) by the sum of (56) and (57). The
resulting four equations read

0 = − σs,0(θ) + ργs,0(θ) + σs,0(θ) γs,0(θ), (58)

γ ′
s,0(θ) = − λγs,0(θ), (59)

σ ′
s,0(θ) = − σs,1(θ) + ργs,1(θ) + σs,0(θ) γs,1(θ) + σs,1(θ) γs,0(θ), (60)

γ ′
s,1(θ) = − λγs,1(θ) − σ ′

s,0(θ). (61)

5 Solution of the differential equations

This section describes the solution of the two sets of nonlinear differential equations
for the short term behaviour Eqs. (50–53) and the long term behaviour Eqs. (58–61).
In the parlance of perturbation theory, the solutions for the short term and long term
behaviour are also called the inner and the outer solution, respectively [14,16]. To
keep the following equations manageable, some abbreviations are introduced along
the way.

5.1 Short term behaviour

The solution of the differential equations for the short termbehaviour (50)–(53) follows
the procedure shown graphically in Fig. 1.
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(51) γe,0(τ) (50) σe,0(τ)

σe,1(τ) (52) γe,1(τ) (53)

Fig. 1 Sequence of the calculations for solving the set of nonlinear differential equations (50)–(53) for the
short time behaviour. Circles denote the Eqs. (50)–(53). Boxes denote the resulting variables. The detailed
calculations are given in Sect. 5.1.1

5.1.1 Individual solutions

Solution of Eq. (51): The most simple equation is (51) with the solution

γe,0(τ ) = γe0. (62)

Solution of Eq. (50): Inserting this result into (50) gives the linear differential equation

σ ′
e,0(τ ) + (1 − γe0) σe,0(τ ) = σ ′

e,0(τ ) + 1

τ0
σe,0(τ ) = ργe0, (63)

where the abbreviation

τ0 = 1

1 − γe0
, (64)

has been used. The solution ofEq. (63) follows directly fromEq. (171) inAppendixA.1
as

σe,0(τ ) = ργe0τ0 + r0 exp
(
− τ

τ0

)
. (65)

Here, the abbreviation r0 has been introduced

r0 = σe0 − ργe0τ0. (66)

The abbreviation (64) allows to express all occurrences of γe0 by τ0 and vice versa.
Nevertheless mixed representations with both γe0 and τ0 in the same equation are
sometimes used for the sake of conciseness.

Solution of Eq. (53): Inserting (65) into (53) gives an algebraic expression for γ ′
e,1(τ )

as
γ ′
e,1(τ ) = r0

τ0
exp

(
− τ

τ0

)
− λγe0, (67)

which can be solved by integration

γe,1(τ ) = r0
(
1 − exp

(
− τ

τ0

))
− λγe0 τ. (68)
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Setting τ = 0 shows that the initial value vanishes γe,1(0) = 0, as has been presumed
in Eq. (46).

Solution of Eq. (52):
Inserting the above results into Eq. (52) gives

σ ′
e,1(τ ) + 1

τ0
σe,1(τ ) = (ρ + σe,0(τ )) γe,1(τ ) = m(τ ), (69)

where the right hand side has been abbreviated bym(τ ). Thus, the solution of this first
order differential equation is given by Eq. (171) as

σe,1(τ ) = exp
(
− τ

τ0

) τ∫

0

m(τ ′) exp
(

τ ′
t0

)
dτ ′, (70)

since the initial value σe,1(0) is zero according to Eq. (46).
It remains to evaluate the right hand side m(τ ) and to solve the integral in Eq. (70).

These steps require only basic algebra and some standard integrals, but the calculations
are somewhat involved. Therefore suitable abbreviations are introduced and the main
intermediate results are stated.

Inserting Eqs. (65) and (68) into the expression for m(τ ) in (69) and sorting terms
with Eq. (64) allows to express m(τ ) in the form

m(τ ) = a0 + b0 τ + c0 exp
(
− τ

τ0

)
+ d0 τ exp

(
− τ

τ0

)
+ e0 exp

(
− 2τ

τ0

)
, (71)

with the abbreviations

a0 = ρτ0 r0, b0 = − ρλ γe0τ0, c0 = r0(r0 − ρτ0),

d0 = − λγe0 r0, e0 = − r20 . (72)

Multiplication with the exponential term inside of the integral gives

m(τ ) exp
(

τ
τ0

)
= a0 exp

(
τ
τ0

)
+ b0 τ exp

(
τ
τ0

)
+ c0 + d0 τ + e0 exp

(
− τ

τ0

)
. (73)

Now the integral in Eq. (70) can be evaluated

τ∫

0

m(τ ′) exp
(

τ ′
t0

)
dτ ′ = τ0(a0 − b0τ0)

(
exp

(
τ
τ0

)
− 1

)
+ c0τ + 1

2 d0 τ 2

+ τ0 e0
(
1 − exp

(
− τ

τ0

))
+ τ0 b0 τ exp

(
τ
τ0

)
. (74)
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Anothermultiplicationwith the exponential outside of the integral in (70) finally gives

σe,1(τ ) = τ0(a0 − b0τ0)
(
1 − exp

(
− τ

τ0

))
+

(
c0τ + 1

2 d0 τ 2
)
exp

(
− τ

τ0

)

+τ0 e0 exp
(
− τ

τ0

) (
1 − exp

(
− τ

τ0

))
+ τ0 b0 τ. (75)

Again, the initial value turns out to be σe,1(0) = 0. Finally, the abbreviations from
Eq. (72) can be re-substituted

σe,1(τ ) = ρτ 20 (r0 + λγe0τ0)
(
1 − exp

(
− τ

τ0

))

+r0
(
(r0 − ρτ0) τ − 1

2 λγe0 τ 2
)
exp

(
− τ

τ0

)

−r20 τ0 exp
(
− τ

τ0

) (
1 − exp

(
− τ

τ0

))
− ρλ γe0τ

2
0 τ. (76)

5.1.2 Summary of the short term behaviour

The above results for the solution of the short term behaviour (aka the inner solution)
are summarized as

σe,0(τ ) =ργe0τ0 + r0 exp
(
− τ

τ0

)
, (77)

γe,0(τ ) =γe0, (78)

σe,1(τ ) =ρτ 20 (r0 + λγe0τ0)
(
1 − exp

(
− τ

τ0

))

+ r0
(
(r0 − ρτ0) τ − 1

2 λγe0 τ 2
)
exp

(
− τ

τ0

)

− r20 τ0 exp
(
− τ

τ0

) (
1 − exp

(
− τ

τ0

))
− ρλ γe0τ

2
0 τ, (79)

γe,1(τ ) =r0
(
1 − exp

(
− τ

τ0

))
− λγe0 τ. (80)

5.2 Long term behaviour

The solution of the differential equations for the long term behaviour (58)–(61) follows
the procedure shown graphically in Fig. 2.

5.2.1 Individual solutions

Solution of Eq. (59):
The most simple differential equation is Eq. (59) with the solution

γs,0(θ) = γs0e
−λθ . (81)

123



J Math Chem (2018) 56:1153–1183 1167

(59) γs,0(τ) (58) σs,0(τ)

σs,1(τ) (60) γs,1(τ) (61)

Fig. 2 Sequence of the calculations for solving the set of nonlinear differential equations (58)–(61) for the
long term behaviour. Circles denote the Eqs. (58)–(61). Boxes denote the resulting variables. The detailed
calculations are given in Sect. 5.2.1

Solution of Eq. (58):
The further calculations are simplified by introducing the function w(θ) with the

following properties

w(θ) = 1 − γs,0(θ), w′(θ) = λ(1 − w(θ)), w′′(θ) = −λw′(θ), (82)

w(θ)w′′(θ) − (w′(θ))2 = w′′(θ) = −λw′(θ). (83)

Inserting Eq (81) into Eq. (58) and solving for σs,0(θ) gives

σs,0(θ) = ρ
γs,0(θ)

1 − γs,0(θ)
= ρ

λ

w′(θ)

w(θ)
. (84)

Solution of Eq. (61):
Eq. (61) requires the derivative of σs,0(θ)

σ ′
s,0(θ) = − ρ

w′(θ)

w2(θ)
= −l(θ), (85)

where (83) has been used. The function l(θ) can be expressed with (84) as

l(θ) = − σ ′
s,0(θ) = ρ

w′(θ)

w2(θ)
= λ

w(θ)
σs,0(θ). (86)

Now Eq. (61) can be written as a first order differential equation

γ ′
s,1(θ) + λγs,1(θ) = − σ ′

s,0(θ) = l(θ), (87)

with the solution from Eq. (171)

γs,1(θ) = e−λθ

(∫ θ

0
l(θ ′)eλθ ′

dθ ′ + γs1

)
. (88)
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The integrand can be written as

l(θ)eλθ = ρ
w′(θ)

w2(θ)
eλθ = ργs0

λ

w2(θ)
, (89)

such that

γs,1(θ) = ργs0 e
−λθ

θ∫

0

λ

w2(θ ′)
dθ ′ + γs1 e

−λθ . (90)

The integral in (90) has the closed form solution (see Appendix A.2)

θ∫

0

ργs0
λ

w2(θ ′)
dθ ′ =

[
lnw(θ ′) − 1

w(θ ′)
+ λθ ′

]∣∣∣∣

θ

0

= ln
w(θ)

w(0)
− 1

w(θ)
+ 1

w(0)
+ λθ. (91)

Inserting this solution into (90) and using (81) gives

γs,1(θ) = ρ γs,0(θ)

(
ln

w(θ)

w(0)
− 1

w(θ)
+ 1

w(0)
+ λθ

)
+ γs1 e

−λθ . (92)

Solution of Eq. (60):
It remains to determine σs,1(θ) from Eq. (60)

(1 − γs,0(θ)) σs,1(θ) = (ρ + σs,0(θ)) γs,1(θ) − σ ′
s,0(θ). (93)

Evaluating

ρ + σs,0(θ) = ρ

(
1 + γs,0(θ)

1 − γs,0(θ)

)
= ρ

1

1 − γs,0(θ)
= ρ

w(θ)
, (94)

and using (82) and (86) gives

σs,1(θ) = 1

w2(θ)

(
λ σs,0(θ) + ρ γs,1(θ)

)
. (95)

5.2.2 Summary of the long term behaviour

The above results for the solution of the long term behaviour (aka the outer solution)
are summarized as
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γs,0(θ) = γs0e
−λθ , (96)

w(θ) = 1 − γs,0(θ), (97)

σs,0(θ) = ρ
γs,0(θ)

w(θ)
, (98)

γs,1(θ) = ρ γs,0(θ)

(
ln

w(θ)

w(0)
− 1

w(θ)
+ 1

w(0)
+ λθ

)
+ γs1 e

−λθ , (99)

σs,1(θ) = 1

w2(θ)

(
λσs,0(θ) + ργs,1(θ)

)
. (100)

Setting θ = 0 in (98) and in (100) gives the initial values of σs,0(0) and σs,1(0) in
terms of the initial values γs0 and γs1. However, these initial values for the long term
behaviour are still unrelated to the initial values of the short term behaviour and thus
to the initial values in (5).

6 Matching of short and long term behaviour

The missing relation between the initial values of the short term and the long term
behaviour can be established by a process called matching [14,16]. At first sight,
the expressions in Eqs. (77)–(80) and in Eqs. (96)–(100) look quite different. More-
over, they are defined on different time scales, represented by the variables τ and θ ,
respectively.

The basic approach is now to express both, the short and long term behaviour by
polynomials and to match their coefficients up to a certain order. This is not possible
on a global time scale due to the different nature of the inner and outer solutions. But
it is possible for a certain time range which is large w.r.t. the short term behaviour and
small w.r.t the long term behaviour. This time range is also called the intermediate
layer. It can be described in more detail for the short term and the long term behaviour
separately.

The equations for the short term behaviour (77)–(80) contain terms which are
constant or linear in τ and exponentially decaying terms. For values of τ which are
sufficiently large, the exponential terms can be neglected and the short term behaviour
can be approximated by a first order polynomial in τ . There is also a polynomial
approximation for the equations for the long term behaviour (96)–(100). It is obtained
by a Taylor series expansion w.r.t. θ which holds for sufficiently small values of θ .
The details of this procedure are now discussed in detail.

6.1 Short term behaviour

The solution for the short term behaviour from Eqs. (77)–(80) is rewritten here in
a more concise form. The exponential terms which can be neglected for τ � τ0 are
abbreviated by EXP. These terms are a special case of the transcendentally small terms
from [16]

σe,0(τ ) = ργe0τ0 + EXP, (101)
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γe,0(τ ) = γe0, (102)

σe,1(τ ) = ρτ 20 (r0 + λγe0τ0) − ρλ γe0τ
2
0 τ + EXP, (103)

γe,1(τ ) = r0 − λγe0 τ + EXP. (104)

For the purpose of matching, only the terms which are constant or linear in τ are of
interest.

6.2 Long term behaviour

The solutions for the long term behaviour can be expressed as first order polynomials
by expansion into a Taylor series with [compare (48)]

σs,0(0) = σs0, σ ′
s,0(0) = σ ′

s0. (105)

and similar for γs,0(θ), σs,1(θ), and γs,1(θ) at θ = 0

σs,0(θ) = σs0 + σ ′
s0 θ + O(θ2), (106)

γs,0(θ) = γs0 + γ ′
s0 θ + O(θ2), (107)

σs,1(θ) = σs1 + σ ′
s1 θ + O(θ2), (108)

γs,1(θ) = γs1 + γ ′
s1 θ + O(θ2). (109)

Both, the short term behaviour for large values of τ in (101)–(104) and the long
term behaviour for small values of θ in (106)–(109) now have the form of first order
polynomials. However, the time scales for τ and θ are still unrelated.

6.3 Intermediate layer

The intermediate layer is the region where the polynomial approximations of the short
term and the long term behaviour can be compared. It is characterized by its own
frequency variable ψ and scaling factor η which is related to both τ and θ by

τ = θ

δ
= ηψ

δ
, τδ = θ = ηψ. (110)

A natural choice is ψ = t and η = k1s0 = 1/Ts, but also a differently scaled time
variable is possible. No special choice is assumed for generality as in [14,16].

To compare the short term and the long term behaviour in the intermediate layer,
the variables τ and θ are replaced by ψ according to (110). This procedure is carried
out for the substrate concentration and for the complex concentration.

123



J Math Chem (2018) 56:1153–1183 1171

6.3.1 Intermediate layer for the substrate concentration

The short term solution σe (η ψ/δ) and the long term solution σs (η ψ) of the substrate
concentration are required to be equal in the intermediate layer

lim
δ↓0 σe

(
η

ψ
δ

)
= lim

δ↓0 σs (η ψ) . (111)

With (41), (43), (106), and (108) the left hand side (l.h.s.) and the right hand side
(r.h.s.) can be written as

lim
δ↓0 σe

(
η

ψ
δ

)
= lim

δ↓0

[
σe,0

(
η

ψ
δ

)
+ δ σe,1

(
η

ψ
δ

)]
, (112)

lim
δ↓0 σs (ηψ) = σs0 + η ψ σ ′

s0 + δ σs1 + δ η ψ σ ′
s1. (113)

In the limit, the terms of O(δ2) vanish but the other terms need further evaluation.

Evaluation of σe: First σe (η ψ/δ) is evaluated with the results from (101) and (103)

σe

(
η

ψ
δ

)
= σe,0

(
η

ψ
δ

)
+ δ σe,1

(
η

ψ
δ

)

= ργe0τ0 + δ

(
ρτ 20 (r0 + λγe0τ0) − ρλ γe0τ

2
0 η

ψ

δ

)
+ O(δ2) + EXP

= ργe0τ0 − ρλ γe0τ
2
0 ηψ + δ ρτ 20

(
r0 + λγe0τ0

) + O(δ2) + EXP.

(114)

In the limit δ ↓ 0 the terms of O(δ2) and the exponential terms vanish [14,16]

lim
δ↓0 σe

(
η

ψ
δ

)
= ργe0τ0 − ρλ γe0τ

2
0 ηψ + δ ρτ 20

(
r0 + λγe0τ0

)
. (115)

Evaluation of σs: For the evaluation of σs (η ψ) it is assumed that the limit for δ ↓ 0
is such that the terms ofO(δψ) vanish. Then the last term in Eq. (113) can be omitted

lim
δ↓0 σs (ηψ) = σs0 + η ψ σ ′

s0 + δ σs1. (116)

6.3.2 Intermediate layer for the complex concentration

The relations of the complex concentration in the intermediate layer are calculated in
the same way as for the substrate concentration. In the intermediate layer it is required
that

lim
δ↓0 γe

(
η

ψ
δ

)
= lim

δ↓0 γs (η ψ) . (117)
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With (42), (44), (107), and (109) both sides of this equation turn into

lim
δ↓0 γe

(
η

ψ
δ

)
= lim

δ↓0

[
γe,0

(
η

ψ
δ

)
+ δ γe,1

(
η

ψ
δ

)]
, (118)

lim
δ↓0 γs (ηψ) = γs0 + η ψ γ ′

s0 + δ γs1 + δ ηψ γ ′
s1. (119)

Evaluation of γe: At first γe(η ψ/δ) is evaluated with the results from (102) and (104)

γe

(
η

ψ
δ

)
= γe,0

(
η

ψ
δ

)
+ δ γe,1

(
η

ψ
δ

)

= γe0 + δ
(
r0 − λγe0 η

ψ
δ

)
+ O(δ2) + EXP

= γe0 − λγe0 ηψ + δ r0 + O(δ2) + EXP. (120)

In the limit δ ↓ 0 the terms of O(δ2) and the exponential terms vanish

lim
δ↓0 γe

(
η

ψ
δ

)
= γe0 − λγe0 ηψ + δ r0. (121)

Evaluation of γs: With the same assumption as for (116) the the evaluation of γs (η ψ)

yields
lim
δ↓0 γs (ηψ) = γs0 + η ψ γ ′

s0 + δ γs1. (122)

6.4 Matching of the terms in the intermediate layer

Now, the short term and the long term solutions of the substrate concentration and the
complex concentration within the intermediate layer have been determined. The next
step is to match the corresponding terms for equal orders of δ.

6.4.1 Matching of the substrate concentration

The matching process of the substrate concentration is performed separately for the
terms of O(1) and O(δ). A comparison of the respective terms from (115) and (116)
yields the identities

O(1) ργe0τ0 − ρλ γe0τ
2
0 ηψ = σs0 + σ ′

s0 ηψ, (123)

O(δ) ρτ 20
(
r0 + λγe0τ0

) = σs1. (124)

Matching of the terms of order O(1): The terms of order O(1) from (123) can be
separated into constant terms and terms proportional to ηψ . For these terms two
separate identities

(ηψ)0 σs0 = ργe0τ0, (125)

(ηψ)1 σ ′
s0 = −ρλ γe0τ

2
0 (126)
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follow. The value σ ′
s0 is obtained from (85) for θ = 0 as

σ ′
s0 = σ ′

s,0(0) = −ρ
w′(0)
w2(0)

= −ρ
λγs,0

(1 − γs,0)2
. (127)

Insertion into (126) using (64) yields

− 1

ρλ
σ ′
s0 = γs,0

(1 − γs,0)2
= γe,0

(1 − γe,0)2
. (128)

This identity holds for
γs,0 = γe,0. (129)

Matching of the terms of order O(δ): Eq. (124) states directly

σs1 = ρτ 20
(
r0 + λγe0τ0

)
. (130)

6.4.2 Matching of the complex concentration

Using Eqs. (121) and (122) the zero and first order terms are obtained in the same way
as in Eqs. (123) and (124)

O(1) γe0 − λγe0 ηψ = γs0 + γ ′
s0 ηψ, (131)

O(δ) r0 = γs1. (132)

Matching of the terms of order O(1): Again, a separation into the powers of ηψ gives

(ηψ)0 γs0 = γe0, (133)

(ηψ)1 γ ′
s0 = − λγe0. (134)

From (81) follows
γ ′
s0 = γ ′

s,0(0) = − λγs0. (135)

Insertion into (134) confirms (129).

Matching of the terms of order O(δ): From (132) follows with (66)

γs1 = r0 = σe0 − ργe0τ0. (136)

Thus the abbreviation r0 from (66) turns out to be equal to the initial value of theO(δ)

term of the long term solution of the complex concentration γs1.

6.5 Summary of the matching process

After the tedious matching of corresponding terms for equal powers of δ and of
ηψ for both the substrate and the complex concentration, the individual results from
Eqs. (125), (129), (136), (130), (136), (126), (135) are summarized here
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σs0 = ργe0τ0 = ρ
γe0

1 − γe0
, (137)

γs0 = γe0, (138)

γs1 = r0 = σe0 − σs0 = σe0 − ργe0τ0, (139)

σs1 = ρτ 20
(
r0 + λγe0τ0

)
, (140)

σ ′
s0 = − ρλ γe0τ

2
0 , (141)

γ ′
s0 = γ ′

s,0(0) = − λγs0, (142)

σs1 = τ0(ργs1τ0 − σ ′
s0). (143)

Some conclusions can be drawn from these results:
The abbreviation r0 introduced previously in (66) can be expressed in various ways

by γs1 as well as by σe0 and σs0 in (139). Also the matching result for σs1 in (140) can
be rephrased in terms of the other results in concise form as (143).

Eqs. (137)–(142) allow to express the initial values σs0, γs0, σs1, γs1 and the initial
derivatives σ ′

s0, γ
′
s0 of the long term solution entirely by the two initial values σe0 and

γe0 of the short term solution. Nevertheless, the initial values of the long term solution
constitute concise and meaningful abbreviations for the more lengthy expressions that
arise fromusing only the initial values σe0 and γe0 of the short term solution. Therefore,
the initial values of the long term solution will still be used as abbreviations for the
sake of conciseness.

6.6 Matched solutions for the short term and long term behaviour

The matching process described in this section so far has succeeded in expressing the
initial values σs0, σs1, γs0, γs1 of the long term solution by the initial values of the short
term solution and thus by the initial values of the rate Eq. (5). Thus, the solutions for
the short term behaviour and for the long term behaviour are be compiled here as the
outcome of the matching process. For conciseness, the initial values of the long term
solution are still used but now as abbreviations defined in Eqs. (137)–(142).

6.6.1 Short term behaviour

The short term behaviour is given by Eqs. (77)–(80)

σe,0(τ ) = σs0 + γs1 exp
( − τ

τ0

)
, (144)

γe,0(τ ) = γe0, (145)

σe,1(τ ) = σs1

(
1 − exp

( − τ
τ0

))

+ γs1

(
(γs1 − ρτ0)τ − 1

2λγe0 τ 2
)
exp

( − τ
τ0

)

− γ 2
s1τ0 exp

( − τ
τ0

) (
1 − exp

( − τ
τ0

)) + σ ′
s0 τ, (146)

γe,1(τ ) = − λγe0 τ + γs1

(
1 − exp

( − τ
τ0

))
. (147)
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6.6.2 Long term behaviour

In the same way follows from Eqs. (96)-(100)

γs,0(θ) = γe0 e
−λθ , (148)

w(θ) = 1 − γs,0(θ), (149)

w(0) = 1 − γs0 = 1

τ0
, (150)

σs,0(θ) = ρ
γs,0(θ)

w(θ)
, (151)

γs,1(θ) = ρ γs,0(θ)
(
ln(w(θ)τ0) − 1

w(θ)
+ λθ + τ0

)
+ γs1e

−λθ , (152)

σs,1(θ) = 1

w2(θ)

(
ρ γs,1(θ) + λ σs,0(θ)

)
. (153)

7 Uniform solutions

As the final step, the equations for the short termbehaviour and the long termbehaviour
(aka the inner and outer solutions) are combined to the so-called uniform solution.
It consists not only of the sum of the short term and the long term solution but also
of a subtractive common term. This common term contains those parts which are
common to the short term and long term behaviour and which are counted twice in
their summation. The common term is most simply expressed by a limit value of the
long term behaviour [14,16].

The uniform solution is written in dependency of the short term variable τ with the
long term variable θ replaced by θ = τδ = ηψ from (110).

7.1 Substrate concentration

For the substrate concentration follows from Eqs. (41), (43) and (116)

σu(τ ) = σe(τ ) + σs(τδ) − lim
δ↓0 σs(τδ)

= σe,0(τ ) + δσe,1(τ ) + σs,0(τδ) + δσs,1(τδ) − (σs0 + δσs1 + σ ′
s0 τδ)

= σu,0(τ ) + δ σu,1(τ ) (154)

with

σu,0(τ ) = σe,0(τ ) + σs,0(τδ) − σs0 (155)

σu,1(τ ) = σe,1(τ ) + σs,1(τδ) − (σs1 + σ ′
s0 τ) . (156)

The functions σe,0(τ ), σe,1(τ ), σs,0(τδ), σs,1(τδ) and the initial values σs0, σs1, σ ′
s0 can

be inserted from Eqs. (144), (146), (151), (153) and (137), (140), (141), respectively.
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Note that the initial values cancel the corresponding terms in (146) and (147) as a
result of the matching procedure.

7.2 Complex concentration

For the substrate concentration follows from Eqs. (42), (44) and (122)

γu(τ ) = γe(τ ) + γs(τδ) − lim
δ↓0 γs(τδ)

= γe,0(τ ) + δγe,1(τ ) + γs,0(τδ) + δγs,1(τδ) − (γs0 + δγs1 + γ ′
s0 τδ)

= γu,0(τ ) + δ γu,1(τ ) (157)

with

γu,0(τ ) = γe,0(τ ) + γs,0(τδ) − γs0 (158)

γu,1(τ ) = γe,1(τ ) + γs,1(τδ) − (γs1 + γ ′
s0 τ) (159)

The functions γe,0(τ ), γe,1(τ ), γs,0(τδ), γs,1(τδ) and the initial values γs0, γs1, γ ′
s0 can

be inserted from Eqs. (145), (147), (148), (152) and (138), (139), (142), respectively.
Again, the subtraction of the initial terms reflects the matching procedure.

7.3 Summary of the calculations

The uniform solutions can be written entirely in terms of exponential functions, loga-
rithms and powers of the time variable by inserting the initial conditions from Sect. 6.5
and equations from Sect. 6.6 as described above in Sect. 7. However, the resulting
expressions for the general case are rather lengthy and are not reproduced here. For a
simplified case they are shown in Sect. 8.

A summary of the calculations for the general case is listed in Table 1. It specifies
an algorithm for the computation of the solution of the enzyme kinetics according to
the presented first order perturbation approach. A code example in the programming
environment MATLAB is provided in [15].

The calculation starts with the collection of the given values. The rate constants are
defined with respect to the natural time axis in seconds or fractions thereof. The initial
values are given in terms of amount of substance per volume. Then, the dimensionless
time axes and the dimensionless rate constants are calculated. These serve to express
also the initial values in dimensionless form.

The core of the algorithm is the calculation of the short term and long solutions
and their combination into the uniform solutions simply be evaluation of Eqs. (144)–
(159). Finally, the physical dimensions of the various concentrations are recovered by
inversion of the initial time and amplitude scaling.
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Table 1 Summary of the calculations for the enzyme kinetics with a first order perturbation approach. See
Sect. 7.3 for a detailed explanation

Given: Equations:

time axis t

rate constants k1, k−1, k2 (2)–(4)

initial concentrations s0, e0, c0 (5)

Constants and scaled time axes

eT = e0 + c0 (6)

Te = 1

k1eT
, Ts = 1

k1s0
, δ = Te

Ts
(10), (30)

ρ = k−1Ts, λ = k2Ts, K = ρ + λ, ν0 = c0
eT

, τ0 = 1

1 − ν0
(11), (18), (64)

τ = t

Te
, θ = τδ (19)

Initial values (18), (137)–(142)

σs0 = ρν0τ0, γs0 = γe0 = ν0,

γs1 = 1 − ν0, σs1 = ρτ20 (1 − ν0 + λν0τ0)

σ ′
s0 = −ρλν0τ

2
0 , γ ′

s0 = −λν0

Short term and long term solutions

σe,0(τ ), γe,0(τ ), σe,1(τ ), γe,1(τ ) (144)–(147)

γs,0(θ), w(θ), σs,0(τ ), γs,1(θ), σs,1(θ) (148)–(153)

Uniform solutions

σu,0(τ ), σu,1(τ ), γu,0(θ), γu,1(θ), σu(τ ), γu(θ) (154)–(159)

Physical dimensions for time and amplitudes

s(t) = s0 σu(t/Te), c(t) = eT γu(t/Te), e(t) = eT − c(t) (9), (19), (6)

8 Relation to previous work in this field

As already noted in Sect. 1, the above enzyme kinetics have been investigated before
for the case of zero initial complex concentration. The obtained solutions are included
in the uniform solution from Sect. 7 as a special case.

Using (18), (64), and (137)–(142) the simplified relations for a vanishing initial
complex concentration c(0) can be obtained

σe0 = 1, γe0 = ν0 = 0, τ0 = 1, (160)

σs0 = 0, γs0 = 0, γs1 = 1, (161)

σs1 = ρ, σ ′
s0 = 0, γ ′

s0 = 0. (162)

The short term solutions (144)–(147) become

σe,0(τ ) = e−τ , σe,1(τ ) = ρ
(
1 − e−τ

) + (1 − ρ) τe−τ − e−τ
(
1 − e−τ

)
(163)

γe,0(τ ) = 0, γe,1(τ ) = 1 − e−τ . (164)
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From (81) and (82) follows with γs0 = 0 that also w(θ) = 1. The long term solutions
(148)–(153) are now

σs,0(θ) = 0, σs,1(θ) = ρ e−λθ , γs,0(θ) = 0, γs,1(θ) = e−λθ . (165)

The uniform solutions for zero initial complex concentration are

σu(τ ) = e−τ + δ
(
e−2τ + [(1 − ρ) τ − (1 + ρ)] e−τ + ρe−λτδ

)
, (166)

γu(τ ) = δ
(
e−λτδ − e−τ

)
. (167)

Returning to physical dimensions for time and concentration finally gives the substrate
and complex concentrations [see Table 1 and Eqs. (9), (19), (30)]

s(t) = s0e
−k1eTt

+ s20
eT

(
e−2k1eTt +

[
(k1s0−k−1)

eT
s0
t −

(
1+ KD

s0

)]
e−k1eTt + KD

s0
e−k2t

)
,

(168)

c(t) = s0
(
e−k2t − e−k1eTt

)
. (169)

These relations coincide with the results obtained in [4, Eq. (21)] with the dissociation
constant KD = k−1/k1.

9 Example

The uniform solutions from Sect. 7 have been calculated according to Table 1 with
the parameter values listed in Table 2. They are compared to the numerical solution
of the Eqs. (7,8) which is calculated by the MATLAB ODE solver ode15s with the
relative tolerance set to δ2/10. The program code for the generation of this example
is available at [15].

Table 2 Parameter values for the example in Sect. 9. The top row contains the values for the rate constants
and the initial concentrations according to the top section in Table 1. The bottom row shows the numerical
values that have been calculated according to the second section in Table 1. The initial concentrations are
given in a suitable unit (amount of substance per volume). The rate constants k−1 and k2 are given in inverse
time. The values for the reference times Te and Ts follow in the corresponding time unit

s0 e0 c0 k1 k−1 k2

0.03 0.5 1 100
3 0.1 1

eT Te Ts δ ρ λ K ν0 τ0

1.5 0.02 1 0.02 0.1 1 1.1 2
3 3
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0 0.2 0.4 0.6 0.8 1 1.2
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complex num.
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substrate 1

complex 0

complex 1

Fig. 3 Short term (left) and long term (right) behaviour for the substrate concentration (thin) and the com-
plex concentration (thick) for order zero and one along with the respective numerical solutions. Horizontal
axis: dimensionless time τ (left) and dimensionless time θ (right). Vertical axis: dimensionless concentration

0 2 4 6 8 10 12 14 16 18 20 22 24

0.1

0.25

Time τ

substrate numerical

substrate 1 - short term

substrate 1 - long term
common term

Fig. 4 Short term behaviour and long term behaviour for the substrate concentration and common term
for first order along with the numerical solution. Horizontal axis: dimensionless time τ . Vertical axis:
dimensionless concentration. The grey shaded area indicates the approximate position of the intermediate
layer

Figure 3 (left) shows the short term behaviour for the perturbation approaches of
order 0 and 1. The first order approach approximates the numerical solution quite well
for 0 < τ < 10. The long term behaviour is shown in Fig. 3 (right). The zero order
approach deviates visibly from the numerical solution for all values of θ while the first
order approach is a good approximation for θ > 0.2. Note that τ = 10 corresponds
to θ = 0.2 due to δ = 0.2 (see Table 2) and Eq. (110).

Figure 4 shows both the short term and the long term behaviour for the substrate
concentration as well as the so-called common part of both first order approximations.
This common part approximates those regions of the short term behaviour and of the
long term behaviour which deviate from the true solution. These regions are 0 < θ <
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Fig. 5 Left: Uniform solutions for the substrate concentration (thin) and the complex concentration (thick).
Right: Differences between the zero order and first order approximations and the numerical solution for the
substrate and the complex concentration.Horizontal axis: dimensionless time τ . Vertical axis: dimensionless
concentration difference

0.2 for the long term behaviour and 0.2 < θ for the short term behaviour. Subtracting
the common part in (154) corrects for these poor approximations.

The uniform solution for the substrate and the complex concentration and for the
perturbation approaches of order 0 and 1 are shown in Fig. 5 (left). The zero order
approximation is reasonably good although some deviations are visible. The first
order approximation can hardly be distinguished from the numerical solution. The
differences betweens the zero order resp. first order approximation and the numerical
solution are shown in Fig. 5 (right). The deviations of the zero order approximation
for substrate and complex concentration is about 1%. The first order approximation
exhibits a deviation which is about one order of magnitude less.

Finally, the complex concentration is plotted against the substrate concentration in
the style of a phase diagram in Fig. 6. The perturbation appoximation is of first order.
In similar representations (e.g. [Figs. 3–6] [10]), the time evolution starts at a complex
concentration of zero, but here an arbitrary initial complex concentration is possible.
The short term behaviour is characterized by a quick decrease of the substrate with an
almost constant complex concentration. When less than 10% of the initial substrate
is left, the decomposition of the complex is dominant over the formation of new
complex. The corresponding faster decrease of the complex characterizes the long
term behaviour.

10 Conclusions

An approximate solution of the classical enzyme kinetics problem by a perturbation
approach has been presented. The adopted definition of the perturbation parameter δ is
suitable whenever there is an excess of enzyme over substrate. This choice ismotivated
by potential applications in molecular communications, where few substrate particles
act as carriers of information.

As a generalization over existing solutions of the same problem, the presented
approximation allows for nonzero initial conditions of the substrate and the enzyme

123



J Math Chem (2018) 56:1153–1183 1181

11.0

0.3

0.4

0.5

Substrate concentration

C
om

pl
ex

co
nc

en
tr
at
io
n

numerical solution
short term solution
long term solution
uniform solution

Fig. 6 Complex concentration versus substrate concentration: Numerical solution, short term, long term,
and uniform solution for first order perturbation. The time evolution starts at the initial values denoted by
a small circle at (1, 0.5) and proceeds towards decreasing values of both concentrations

concentrations as well as for nonzero initial complex concentration. Nevertheless, the
approximate solution has been obtained in analytical form involving only elementary
functions like exponentials and logarithms.

Crucial in the derivation and presentation of the approximation is the choice of
meaningful intermediate quantities. Here the time constant τ0 and the function w(θ)

have been proven useful to express the first order perturbation solution in a concise
form.

Further work in this direction may extend the proposed framework to other def-
initions of the perturbation parameter suitable for other regimes of concentration
relations. Of interest is also a comparison to the homotopy method [12].

Compliance with ethical standards
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A Appendix

A.1 Solution of a linear first order differential equation

The linear ordinary differential equation of first order with initial condition

y′(t) + 1

t0
y(t) = v(t), y(0) = y0 (170)

has the solution [6]

y(t) = exp
(
− t

t0

)
⎡

⎣
t∫

0

v(t ′) exp
(
t ′
t0

)
dt ′ + y0

⎤

⎦ . (171)
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A.2 Integration of Eq. (90)

For the function w(θ) from Eq. (82) holds

∫
λ

w2(θ)
dθ = lnw(θ) − 1

w(θ)
+ λθ + const (172)

since

d

dθ

[
lnw(θ) − 1

w(θ)
+ λθ

]
= w′(θ)

w(θ)
+ w′(θ)

w2(θ)
+ λ

= 1

w2(θ)

[
w′(θ)

(
1 + w(θ)

) + λw2(θ)
]

= λ

w2(θ)
,

(173)

where the relations (82) and (83) have been used.
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